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Summary 
This paper presents both a general review on developmental biomechanics and a concrete 
proposition for the computation of a symmetry breaking instability of a model of biological 
development in terms of self-organization theory. The necessary biological and physical facts 
taken from the literature are described and discussed in the context of a unified statement of 
the problems for mathematical modeling of pattern formation. This is then applied to planar 
cell polarization of the Drosophila wing. In this way the process is modeled by an elasto-
polarization equation. In terms of this statement, the mechanical specificity (interaction with 
basal plate) of wing planar cell polarization is characterized. Some aspects of modeling 
somite formation as well as other developmental processes are also concerned. 
 
1. Introduction 
We start from the point of view that the epistemological principle of classical Laplacian 
determinism cannot explain developmental processes either in living or nonliving 
natural systems. One remarkable attempt to go beyond classical determinism in biology 
is Driesch’s theory of vitalism (Oppenheimer, J.M. 1970), but we accept here, that only 
Self-Organization Theory (SOT) gives a broad enough conception for treating the 
problem of morphogenesis in living systems. 
 In the recent past a large number of theoretical models have been published in 
the field of developmental biology, which are classified in (Held,L.I.Jr. 1992). The 
models can be grouped into two rather distinct classes: biochemical and biomechanical 
ones. We can present this classification by the following scheme: 
 
biochemical models:           biochemistry  morphogenesis   biomechanics 
biomechanical models:       biochemistry  biomechanics   morphogenesis  
 
Similar understanding can also be found in (Oster,G.F. et al. 1983; Oster,G.F. et al. 
1985, Oster,G.F. et al. 1988). A basic assumption in the bio-chemical modeling is the 
existence of specific biochemical substances, which act as morphogens and signaling 
molecules. They react to other substances in accordance with corresponding rules of 
their kinetics and propagate (diffuse) in correspondence with physical laws. As a result 
they create chemical concentration patterns that precede morphological ones. The 
famous Turing theory (Turing, A. 1952), despite of having no direct parallels in 
biology, greatly affected the entire scientific community by increasing the interest in 
applying the theory of morphogenesis in a form of SOT to biological development. 
From Turing model of chemical morphogenesis we can turn directly to models of 
biological morphogenesis (development), firstly to chemo-kinetic models (represented 
most clearly by those of Gierer and Meinhardt (Meinhardt,1982) and then to those that 
include mechanical components (Belintsev et al, 1987). Mainly this approach is treated 
further in this review. However some more recent considerations are also taken into 
account in our approach. 
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To understand the self-organizational relationship between mechanical and 
informational components of these phenomena we need to test corresponding 
hypotheses in the framework of appropriate mathematical models. In (Oates,A. et all. 
2009), the importance of mathematical modeling to integrate quantitative biological 
information into the morphomechanics of developmental processes is described. 
Certainly, in the modern literature the idea that gene expression informationally controls 
all processes is dominant (Caussinus et al., 2008). However there are many authors 
(Ingber, D. E. 2006, Keller, R. et all. 2008, Lecuit, T. & Lenne, P. F. 2007) recently 
developed the idea that mechanical forces can also govern cell behaviour in 
development. 
 
  
 

 
 

Figure 1. Mechanosensing in single cells (taken from Oates,A. Et al. 2009) 
 

As it is seen in Figure 1, when some patterned substrates are used to control cell shape and their 
spread, two different developments are possible: (i) small and round cells enter apoptosis; (ii) 
spread-out cells proliferate and differentiate. More details on this point can be found in (Chen, 
C. S. et al. 1997, Singhvi, R. et al. 1994), where direct experimental evidence is provided 
that cell shape governs whether individual cells grow or die. So, the mechanical forces 
have in turn been shown to regulate gene expression and growth (Hamant et al., 2008). 

Subsequently in this review, other examples for experimental evidence of a 
mechanical influence on development will be presented. In addition, here we take into 
account recently established biochemical conditions (Goldbeter,A. et al. 2007), in which 
mechanical effects can take place. By using these conditions, in author’s recent work 
(Petrov, V. & Timmer, J. 2009) we propose a mechano-mathematical consideration of 
somite formation process with an emphasis on insights gained from exact qualitative 
modeling (in terms of geometrical theory of differential equations).  
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2. Mechano-Polarization Approach for Modelling Intercellular Elastic 
Interactions During Biological Development 

The starting point of this topic is the scaling invariance, which corresponds to the 
observation, first made by Driesch in 1891, that any of the meridian blastomers of 2-
cell or 4-cell sea urchin embryos are capable of forming a complete embryo, if 
cultured in isolation. One modern attempt to explain this point (scaling invariance) is 
the mechano-polarization model of intercellular interactions during morphogenesis 
(Belintsev et al, 1987). In that paper, the polarisation of embryonic cells is an active 
process accompanied by profound transformations of the cytoskeleton-associated 
intracellular structures. The experimental data are summarised in the form of 
following principal statements: (i) Individual cells of morpho-genetically active 
embryonic epithelia are mechanically active. They can deform themselves to acquire 
one of two discrete shapes iso-diametric or elongated normal to a layer surface, both 
being stable against small perturbations; (ii) The cell material of an epithelial tissue 
considered as a solid medium posseses passive elasticity in a purely mechanical sense; 
(iii) The mechanical activity of a given cell is modified by contact influences exerted 
by adjacent cells. The contact elastic interactions provide for the short-range co-
operativity of cell polarisation; (iv) The elastic stresses in epithelium interfere with 
mechano-chemical activity. For instance, lateral transitions suppress cell polarisation 
normal to the cell sheet surface.  

The mechano-polarization model, based on the above four statements is 
phenomenological, i.e. it does not assume any particular mechanism responsible for 
the active cell deformation. Instead, a scalar phenomenological parameter w is 
introduced as a function of space coordinate x and time t. By assumption, w equals 
zero if the mechano-chemical activity is switched off. Based on this general 
definition, in the simplest one-dimensional consideration, the observed features of the 
cell polarisation process may be rewritten as a kinetic equation:  
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where   is charactestic time of the process,   is an axial elastic tension and   is a 
coefficient of proportionality. When 0 , we say it is an axial stretch tension. For 

0  it is an axial compression. We use also the terms positive cross polarization 
when 0w  and negative one for 0w . D is a diffusion-like coefficient, and  are 
parameters characterizing cell mechano-chemical activity. 

The first term of the equation (2.1) presents the self-regulated character of the 
mechano-chemical activity; the second term - its transition between adjacent cells and 
the third term - its modulation by lateral stress in the sheet. The fact that one can 
observe two distinct classes of cell morphology allows one to assume the trigger-like 
control of the cell activity. One can simulate this by the N-like shape of the function 

 (2.2)   ))(1()(     wwwwf  

The graph of the function (2.2) is shown in fig.2.  
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The qualitative analysis made in (Petrov, V. & Timmer, J. 2009) shows that, if 
a traveling wave solution of (2.1) exists, then the sign of the wave velocity c is the 
same as the sign of the area under the curve )(wf  between the points 0 and 1. If this 
area is positive, then the traveling front propagates from the point 0 to 1, and the 
second point is called dominant. For sufficiently small values of  , the fixed point 1 
is dominant. Thus in this case the polarization front propagates from the point 0 to 1. 
On the other hand, if   is close to 1, the fixed point 0 is dominant and the wave front 
propagates in the opposite direction (from 1 to 0). For some intermediate value of   , 
the situation would be neutral - neither right nor left direction of propagation is 
preferable. However, by appropriate slow dependence of   on w  (through  , which 
is proportional to w averaged), the neutral value of   could be made stable. Such a 
possibility is inherent to equation (2.1), where the tension   can indeed be expressed 
to be proportional to w averaged. So, equation (2.1) is a closed integro-differential 
equation, which contains the principle property of a loss of the dominance of the state 
0, changing dominance to 1, and vice versa. At the same time, state   is stabilized. In 
this way, (2.1) has the actual feature to tend towards a state of inhomogeneous 
distribution of cell polarity. This feature does not exist if the term of elastic tension in 
(2.1) is constant. Then the two states 0 and 1 are always stable and their 
destabilization is not possible, thus a stable inhomogeneous state is also not possible. 
By introducing the elasto-polarization dependence in (2.1), we actually involve a 
Turing bifurcation in the model. 
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Figure 2. Graphical presentation of steady state points of (2.1)  [Petrov,V.&Timmer,J. 2009] 

 
One of the paradigmatic examples of biological development is the well-

known process of somite formation in a bistability window of PreSomitic Mesoderm 
(PSM). Besides the universal sense of this example of biological development, the 
somite formation has also a vast underlying basis of biochemical, cytological and 
physiological investigations in the recent literature from the beginning of this 
millennium up to the essential study of Goldbeter,A. et al. 2007, and the last author’s 
paper (Petrov,V.&Timmer,J. 2009) on the subject.  

It is argued that somitogenesis is a robust process based upon the mechanical 
relationship between a long-range tension force stretching the axial mesoderm and 
short-range forces of pre-somite cell cohesion (Beloussov,L.V. 2001). In the dynamical 
theory context the terms robust and structurally stable have one and the same sense 
(Nikolov,S. et al. 2006). It is of interest therefore to analyze stability in terms both of 
Lyapunov’s definition and structural one and to interpret it in the context of 
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somitogenesis robustness. Both polarized and non-polarized states should be considered 
as stable ones by analogy with the sharp developmental thresholds defined through 
bistability by antagonistic gradients of Retinoic Acid (RA) and Fibroblast Growth 
Factor (FGF) signaling (Goldbeter,A. et al. 2007).  

In the model (2.1), cell polarization can be transmitted by contact from a given 
somite cell to its neighbor one. Moreover a mutual relationship between cross 
polarization and axial elastic tension of the mesoderm is introduced. So, we call this the 
elasto-polarization model. In our paper (Petrov,V. and Timmer,J. 2009) we show that, 
as a result of the interaction of elastic forces, spontaneous and contact polarization, a 
traveling front of somatic cell polarization propagates through the bistability window of 
the mesoderm layer. The mathematical scheme of the above described mechanism has 
been developed in the paper of Belintsev, B. N. et al. (1987).  

In order to approach to the main problem of transforming temporal oscillations 
in PSM into spatial pattern formation, we can add a corresponding clock-wise 
oscillator of the type of the cell cycle to the wave front equation (2.1). As is shown in 
(Petrov,V., Pfeifer,M.&Timmer,J. 2006), the following negative feed-back oscillator 
for the key-regulator variable u  and dynamical mass variable v  of the cell cycle 
process can be defined: 

 (2.3)   nqvksnlpumpun
dt

du
/)(/)()( 32  , 

 (2.4)     Tsqvspun
dt

dv
/)()(   .               

The other constant parameters skqpn ,,,,  in (2.3) are defined in the mentioned 
author’s paper (Petrov,V. et al. 2006). This oscillator is qualitatively identical to the 
FitzHugh-Nagumo model (FNm) (FitzHugh,1960,1961; Nagumo et al. 1962).  

It is shown, that the model (2.3-4) is remarkable with the critical role of the 
parameter k , which determines the transition from bi-stability to self-oscillatory 
behavior of the oscillator (2.3-4). For sufficiently large values of the parameter T , the 
key-regulator variable u  is fast with respect to the mass growth rate v . This means in 
Slow and Fast Variables Approximation (SFVA) described in authors paper 
(Petrov,V., Nikolova,E., Wolkenhauer,O. 2006) in a particular case of Quasi-Steady-
State-Approximation (QSSA), we can separately consider on the one hand the key-
regulator u , as a switch of the polarization process described by (2.1), and on the 
other hand to treat the higher steady state value of polarization w  as a switch of the 
clock-wise oscillations.  

This possibility could be realized in the form of self-organizational theory of 
somite formation to explain the mechanism of transforming temporal oscillations into 
spatial patterns. For this purpose we connect equations (2.1) and (2.3-4) by 

introducing relations u01    and wkk 0 . Certainly, such additional 

relationships (making the constant coefficients   and k  variable ones) need 
corresponding argumentation. Our basic consideration is that somite formation 
correlates with cycles of cell-autonomous gene expression that spread from the tail 
bud to the rostral PreSomitic Mesoderm (PSM) border with a periodicity equal to that 
of the somitogenesis (Palmeirim et al. 1997).  
 
3. Modeling Planar Cell Polarization of Drosophila Wing. Statement of One- and 
Two- Dimensional Problems  
The previous considerations suggest that the model (2.1) seems to posses some 
advantages which are of interest for a possible extension of the approach to other 
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cases, and applying it to other processes of biological development. In the case of 
pattern formation of wing cell polarity, we have again to consider the following items: 
The first one is in introducing mechanical feedback between local and global elastic 
events, one of which is exemplified by a single cell’s tendency to actively polarize 
itself, and the other one is presented by cell to cell transmission of polarization via 
elastic interactions. The second one is exemplified by the overall passive elastic 
tension of a cell layer that prevents the further active elasto-polarization of its cells. 
As a result, an initially homogeneous cell layer can be segregated, independently of 
scaling, into domains of highly polarized and flattened cells.  
 
3.1. One-Dimensional Model of Planar Cell Polarization. Statement of the 
Problem. 
The process of planar cell polarization (PCP) occurs as a result of mechanical 
interaction between cells of epithelium and the basal plate. The corresponding pattern 
of polarized and non-polarized cells predetermines the further formation of the scale. 
It is of interest to establish possible relationships between the regular or irregular 
distribution of patterns on the one hand and the intensity of tangential stresses 
between adherens junctions and lamina (extra-cellular matrix) on the other. For this 
purpose we firstly write the one-dimensional equation of PCP in the form 
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Here the notations have the same sense already explained in section 2.  

The force of interaction between one-dimensional epidermis and basal plate is 
proportional to qu , where u  is the scalar displacement and q  is a coefficient of 
proportionality characterizing the elastic properties of the basal lamina. The equation 
of mechanical equilibrium of this “one-dimensional epidermis” is 

(3.1.2)   0
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By taking into account the additional elastic connections in equation (3.1.1), we 

introduce a new quantity expressed with the parameter qERe /2  . The parameter eR  
presents the characteristic length of exponential decay of elastic tensions in the layer 
when a local source of active force a  exists. After some transformations of (3.1.2) 
and its substitution in (3.1.1) we obtain a closed equation of cell polarization 
dynamics of a“one-dimensional epidermis” in the form 
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Here   is a proportionality coefficient between the elastic tension   and planar cell 
polarity w . If we accept an initial state with switched mechano-chemical activity (i.e. - 
without cell polarity)  
  ,0,0  w  

The stationary problem 0



t

w
 of the equation (3.1.2) will be evidently satisfied, but 

by parametrical variation of , 
q

E
Re   and DRp   the equation can be 

approached to the bifurcation point of loss of asymptotic stability with the appearance 
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of new, spatially modulated regimes of behavior. (The parameter pR  appears in 
(3.1.3) after its transition to dimensionless form). 
 
3.2. Two-Dimensional Modeling Planar Cell Polarization. Statement of the 

problem 
It will be interesting to elaborate on the mechano-polarization model (2.1) by applying 
a two-dimensional generalization to the problem of modeling pattern formation of 
wing cell polarization with mechanical instability. Following (Belintsev,B.N. et al. 
1987) we consider a mathematically idealized epithelial sheet in a form of flat 
monolayer of cells. Cells are considered as elastic units, attached to each other and to 
a basal plate made up of extra cellular matrix material, mainly chitinous structures, 
which is essential as a substrate reacting to planar polarization forces. In the basic 
equation (2.1), the variable  has a sense of temporarily limiting the degrees of 
freedom for all processes laying in the active cell deformation. The function 
governing PCP dynamics takes into account only the fact of relative stability of two 
steady states of the cell, which can be distinguished at a morphological level (for 
example – isotropic and polarized states). This fact is modeled by the specific type of 
relationship )(wf , shown graphically in fig.2. 
 Let 0w  describe an isotropic cell. Any elongation normal to the cell sheet 
has a positive value of w , and the polarization of cells, stretched longitudinally in the 
sheet plane, have a negative value of w . The one-dimensional equation of cell 
polarization (2.1) in two-dimensions takes the form 
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symbols have the same sense as in equation (2.1), but considered in the plane. In the 

two-dimensional case only the trace 
e
ii  of stress tensor 

e
ik  (rank 2) is essential for 

the cell elongation normal or longitudinal to sheet. So, shear stresses are neglected. 

But we distinguish two parts of stress tensor components: passive purely elastic (
e
ik ) 

and active (
a
ik ), connected with the polarization process. The mechanical steady state 

(equilibrium) condition is presented by the equation 
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The term iqu  corresponds to the elastic external connections of the considered cell 
layer with the basal lamina ( q  is the coefficient of rigidity of the dermal layer). The 
corresponding force is proportional to the displacementu


. As in the one-dimensional 

case, the active stress component is linearly related to the polarization w  under 
additional assumption for isotropic stress of compression or dilation. Formally this 
active stress – polarization relationship is expressed in the form 

(3.2.3)     .wik
a
ik    

Here   is a phenomenological coefficient of proportionality, and ik  is the Kronekker 
symbol expressing the plane isotropic character of the tensions produced by the apico-
basally (i.e. normally to the sheet) elongated cells. In view of these considerations, it 
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follows that in equation (3.2.1), the member k  has a sense of trace of the tensor 
a
ik

e
ikik   . 

 Following (Landau,L.D.&Lifshitz,E.M. 1960) we firstly take into account the 
relation 
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Then we apply operator div  to equation (3.2.2) and obtain the equation of elastic and active 
stress in the form 
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E  and m  are Young modulus and Poisson ratio of the cellular sheet respectively.  
 The system of nonlinear partial differential equation (3.2.1) and linear partial 
differential equation (3.2.5) presents a closed system for the variables ),,( tyxw  and 

),,( tyxU  defined in an idealized quadratic epidermal sheet. The latter is considered 
as a flat monolayer of cells that are elastic units, so w  characterizes the 
morphological state of a single cell. In this sense 0w  corresponds to an isotropic 
(non-polarized) state of a cell, while any cell elongated perpendicular to the cell sheet 
has 0w . Vice versa, cells stretched longitudinally in the sheet plane have negative 
values of w . 
 The equations (3.2.1) and (3.2.5) can be analyzed mathematically as a system 
of two partial differential equations. 
 
4. SOT-Based Computation of Symmetry Breaking Instability of One-
Dimensional Model of Planar Cell Polarization. 
The above described one- and two-dimensional models of PCP can be analyzed in the 
framework of more formal approaches of Self-Organization Theory (SOT). Such pure 
mathematical approach is presented in the paper (Sattinger,D.H. 1979) and later used 
to analyze more concrete formal models in (Belintsev,B.N. et al., 1981). The results, 
obtained in the mentioned papers can be directly applied to calculate Symmetry 
Breaking Instability (SBI) of the elasto-polarization models formulated in the 
previous section. Let us first resume the essence of the general result obtained in 
(Sattinger,D.H. 1979): 
 Consider the equilibrium states of a dynamical system that have the form of 
equation 
(4.1)    0);()(  uFuBL  . 
Here L  and B  are linear operators and F is a nonlinear one. The operators are 
defined in a Banach space. The parameter   is real. Moreover we assume that 0u  

is always a steady state. In the paper (Sattinger,D.H. 1979), it is yet assumed that u~ is 
a stable steady state (fixed point) if all eigenvalues of the linearized operator 

(4.2)    )~;(' uFBL u    

has positive real parts, and u~  is unstable if at least one eigenvalue has negative real 

part. It is also assumed that 0)0;(' F  is valid. At the end it is supposed that for 

00    the trivial solution is stable, and the instability occurs as parameter   

crosses some value 0  (bifurcation point). 
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 Under the above conditions, which are rather general and include as particular 
cases the conditions of the models formulated in the previous section, the following 
can be proved: Besides the trivial solution, one of the following 3 different solutions 
also exists: 

(a) two stable solutions of (4.1) for 0  and no solutions for 0  ; 

(b) one stable solution for 0  and one unstable solution for 0  ; 

(c) two unstable solutions for 0   and no solutions for 0  ; 

Moreover, the non-trivial solutions tend to zero as   tends to 0 . The suitable 
conditions under which the physically interesting case (a) occurs, is treated in 
(Sattinger,D.H. 1979). These conditions in more concrete form are substantially 
considered in (Belintsev,B.N. et al., 1981) and applied to a formal model of a 
dissipative system with counteraction of local activation and an effective nonlocal 
inhibition. This system is a paradigmatic model of SOT, which is shown to be 
reducible to the equation 
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Here derivatives are denoted by indices. It is seen that (4.3) differs from (3.1.3) by 
parameter and variable notations only. The two equations are mathematically identical 
and differ only by the biomechanical sense involved in (4.3). So the results obtained 
in (Belintsev,B.N. et al., 1981) can be directly recomputed in terms of the one-
dimensional elasto-polarization model of placode formation formulated in section 3. 
More in detail this recalculation can be accomplished in the following way: 
 The initial state of (3.1.3) is 0w  presenting trivial steady state solution of 
this equation as it is required from the Sattinger theory. Every parameter 

 kRR pe ,,,  and their combinations play the role of the parameter   in the 
above outlined Sattinger theory. The initial state can be replaced by variation of these 

parameters to the critical point 0   of loss of stability as it is predicted by the 
theory. The presence of a Symmetry Breaking Instability (SBI) in the system 
described by (3.1.3) (or 4.3)) is due to the monotonic dependence of the time 

decrement   for the harmonic disturbance modes proportional to  xit  )(exp  . 
To prove this we follow (Belintsev,B.N. et al., 1981) by first defining the dispersion 
equation, which in our case has the form 
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 The condition of increasing decrement with the wave number is 

(4.5)    pe RR  . 

This means the characteristic length eR  of the elastic interaction must be sufficiently 

larger than the coherence length pR  of contact polarization. 
 In terms of the Sattinger theory, from (4.4) it follows that the threshold 
(bifurcation point) of the Turing instability is 

(4.6)   00   , where ep RR /2   . 
The wave number of the corresponding bifurcation (critical) mode is 
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5. SOT-Based Computation of Symmetry Breaking Instability of Two-
Dimensional Model of PCP. 
The formulas (4.4-7) are also valid for the two-dimensional elasto-polarization model 
presented by the system of equations (3.2.1) and (3.2.5), formulated in section (3.2). 
Following (Belintsev et al. 1987), this system of equations can be reduced to the 
integro-differential equation 
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Here 0G  is Green’s function of the Laplace operator. For the further bifurcation 
analysis of (5.1), it is essential to underline that the integral operator in (5.1) has the 
same eigenvalue functions as the Laplacian. Moreover, the dispersion equation 
corresponding to the linearized equation (5.1) coincides with that of the one-
dimensional model (4.4). And what is specific for the two-dimensionality of the 
considered case, in the bifurcation point of Turing instability only the absolute value 
of wave vector k


is determined, but it has many directions. 

 Under these conditions, a more particular bifurcation analysis can be provided 
directly from the SOT of reaction-diffusion systems available in the literature 
(Nitzan,A. and Ortoleva,P. 1980.) This theory accentuates on the application of 
scaling and Ginzburg criteria to critical bifurcation analysis in non-equilibrium 
reacting systems. Mathematically the theory is described in general terms allowing to 
be used for solving the problem of SBI in the two dimensional elasto-polarization 
model, presented by (5.1). The constructive discovery of the paper is the reduction of 
vast set of nonequilibrium physical and chemical systems near their transition points 
to the form analogous to the time-dependent Ginzburg-Landau) equation of critical 
phenomena. The very reduction of a given arbitrary complicated system (for example 
– of type (5.1)) to a simple equation of Ginzburg-Landau type is accomplished in a 
general form by a separation of temporal and spatial scales near the transition point. 
This approach is called scaling method and can be applied for the reduction of (5.1) to 
TDGL near its critical point (in this case – Turing bifurcation point). 
 A remarkable trait of the Turing bifurcation in a planar case is the existence of 
a degeneracy of the wave-vector (the multiple analog of wave number in one-
dimensional case) along its directions. It is known that only the absolute value of a 

wave vector for the normal perturbation mode rkie

is determined by Turing condition 

(Turing,A. 1952) while its orientation remains undefined. As it is shown in (Nitzan,A. 
and Ortoleva,P. 1980), when another kind of degeneracy, i.e. that of more than one 
wave numbers, is not superimposed, the solution of equation (5.1) near the critical 
point is presented in the following general form: 

(5.2)    



 rkieWrw


)( ,   k ck


 

The selection of a discrete number of directions in the sum (7.2) is performed by the 
nonlinearity of function )(wf . It can be shown that the second-order term in the  
power series expansion of the function )(wf selects the triads of plane waves 
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.)3,2,1(, le rki


, which wave vectors form an equilateral triangle (Nitzan,A. and 

Ortoleva,P. 1980): 

(5.3)    0
3

1




k . 

So, the two-dimensional patterns of cell polarization must be presented by regular 
hexagonal lattice, originated by a subcritical bifurcation ( 0 ), (Nitzan,A. and 
Ortoleva,P. 1980). This essential conclusion is valid also for (5.1), and it has a 
concrete biological concern to the recent experimental findings for pattern formation 
in imaginal discs of Drosophila (Aegerter-Wilmsen,T. et al. 2010; Aigouy, B  et al. 
2010; Classen,A. et al. 2005). In the paper of Aegerter-Wilmsen et al., it is 
experimentally shown that apical cell surfaces in discs metazoan epithelia of 
Drosophila, present polygons with different number of neighboring cells (including 6 
too). By corresponding theoretical considerations there it is established that “only 
scenarios that include mechanical-stress dependent growth rates are in agreement with 
the experimental data”. Our developmental model (5.1) principally confirms this 
conclusion with the result (5.3), showing the validity of hexagonal lattice. Other 
numbers of lattice polygons should correspond to modifications of (5.1) in a way 
compatible with a structural stability of the theoretical scheme proposed in (Nitzan,A. 
and Ortoleva,P. 1980). Such a type of structural stability for the developmental 
models is extensively discussed in the recent literature (Beloussov,L.V. 2001; 
Petrov,V.& Timmer,J. 2009). What is also of interest in this case is the role of planar 
cell polarity in the hexagonal packing of Drosophila wing epithelial cells, established 
in the paper of (Classen, A. et al. 2005). It is proposed there, that the specific 
“proteins polarize trafficking of Cadherin-containing exocyst vesicles during junction 
remodeling”, which can be “a common mechanism for the action of planar cell 
polarity proteins in diverse systems”. Such an assertion is in accordance with the 
principle introducing of a general polarization function )(wf  we made to determine 
the hexagonal pattern formation in the form (5.3). So, the obtained result (5.3) has a 
hopeful experimental and theoretical value to be used as a starting point in future 
investigations. 
 From (Nitzan,A. and Ortoleva,P. 1980) it follows that the subcritical character 
of such a polygonal pattern formation is a direct consequence of the orientation 
degeneracy of a Turing bifurcation point. If the latter is additionally degenerate with 

respect to wave number (this is the case if ep RR  , then the breaking of regularity 
occurs and low limitation appears for the polarization domain sizes (as well as for the 
distances between the domains). More detailed information about similar results can 
be found in (Meinhardt, H. 1982). In this book, the short-range mutual repression of 
two morphogenes is introduced, which is analogous to short-range polarization forces 
used in the Elasto-Polarization (EP) model in section 3.2. In this way two different 
scales of local activation and global inhibition are incorporated in the EP model. 
 
6. On the Universality of Elasto-Polarization Model of Biological Morphogenesis 
Equation (2.1) presented here is an universal mechanical model based on the 
assumption that the elasto-polarization processes are carried out in all epithelial layers 
with or without interaction by basal plate. In some cases such an interaction does not 
exist, but in others, the second layer is essential in the patterning mechanism as an 
elastic substrate which reacts to polarization forces. Then the universality of the 
Elasto-Polarization (EP) model is demonstrated in the possibility to simulate such 
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complex patterns as stripes and spots of epidermis modeled by well-known diffusion 
reaction models (Meinhardt, H. 1982). The applicability of EP both to somite and 
placode formation is based on the common existence of two feedback mechanisms 
that regulate all morphogenetic processes: The first positive one is that between single 
cell polarization activity and the contact transmission of polarization process. The 
second is negative between polarization and elastic forces. The EP model accounts for 
a number of embryonal patterns to which animal tissues are added in morphogenesis. 
The simulations of corresponding embryonal processes are reducible to the well-
known model of (Meinhardt, H. 1982), which is of high order of universality too. 
 There is quite a large number of mathematical (both mechanical and 
biochemical) models distinguishing with high universality in reproducing 
embryogenetic experimental results with equal success. Which one of them is 
preferable for the experimentalists is a question of pragmatic convention between 
them. In this review we presented two illustrations of the descriptive power of the 
model for somite and placode formations. In addition, in (Belintsev,B.N. et al. 1987), 
some other examples demonstrating the universality of EP model are presented. They 
include: (a) Induction of budding in marine hydrozoa; (b) Analysis of regulations in 
sea-urchin embryos; (c) Morphogenesis of skin and cuticular structures; (d) 
Comparison with the well-known Odell’s model (Odell,G.M. et al. 1981). The 
standpoint of Odell’s model is the proposition that elastic properties of cells and the 
epithelial tissues they form are considered as a whole. The EP model also originates 
from this point of view and is similar to Odell’s one in many respects. The only 
essential difference is that in EP model the elastic restoring forces have different 
signs. This means in Odell’s model, these forces have a positive sign, i.e. they help 
cell contraction, while in the EP model, elastic forces restrict the deformation 
(polarization) process. Other mathematically developed mechanical models consider 
mesenchymal tissues (Oster, et al. 1983; Murray et al. 1988). In the model of 
(Nagorska et al. 1987), reaction diffusion and cell traction mechanisms are combined 
in a way that cell traction, acting in the epidermis depends on morphogen 
concentration, produced in the epidermis.  
 A common advantage of the EP model is the circumstance that it gives 
quantitative estimations of different scaling; a regular macro-state on the one hand 
and the parameters of the cell material available to experimental control, on the other 

hand. Among them, the relative lengths of polarization coherence pR (polarization 

coherence length) and the elastic response of the embryonic material eR  (stress decay 
length) appear to be the most important. These two scales present local activation and 
global inhibition incorporated in the EP model by analogy with more general 
treatment of these notion in SOT (Belintsev,B.N. et al. 1981). Here, they are deduced 
from the other more elementary and in principle measurable parameters of the cell 

material. For example it can be shown that DRp  , and
q

E
Re  , where D  is a 

coefficient of polarization diffusion,   is characteristic time of polarization, E  is 
Young modulus, and q  is coefficient of elastic connection between epithelial and 
layer and basal plate. 
 In accordance with the above cited SOTs of (Sattinger,D.H. 1979; 
Belintsev,B.N. et al. 1987; Nitzan,A. and Ortoleva,P. 1980), when the two scales are 
of one and the same order, the initially inhomogeneous state transform in a regular 
long range ordered patterns. In the two dimensional case these patterns take the form 
of hexagonal lattice as the adherens junctions of imaginal discs of Drosophila are to a 
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certain extent. If the scaling relationship ep RR   is valid, the polarization process is 
self-restricted to a limited polarized domain as it is the case of somite formation. 
 In a more general context, mechanical laws were demonstrated to play an 
universal role in pattern formation and morphogenesis (Beloussov,L.V. 2008). The EP 
model is a theoretical example for the possibility to formulate robust macroscopic 
laws from which the observed shapes of concrete patterns (somites and placodes) 
could be derived. 

There are many experimental examples showing the universal role of 
mechanical stresses in developmental processes. The following sequence of 
establishments could be cited in this connection: Stretching of Xenopus 
suprablastopore zone perpendicularly to the anterior-posterior axis of the embryo 
leads to the formation of the axis, which is perpendicular to the future head-tail 
orientation (Beloussov,L.V. et al. 1998, Beloussov,L.V. and Ermakov,A.S. 2001); 
Induction of involution movements within ventro-lateral parts of Xenopus early 
gastrula results in the formation of axial rudiments in abnormal locations 
(Beloussov,L.V. and Snetkova,E.V. 1994); Similar mechanical manipulations lead to 
inversion of dorso-ventral polarity in the loach embryo Cherdantsev,V.G. 2003). In 
both cases, axis formation was induced on the side opposite to that of growth; 
Artificial alteration of mechanical stresses in the Drosophila embryo leads to change 
of gene expression profile (Farge,E. 2003); Dorso-ventral and animal-vegetative 
mechanical stresses in Xenopus blastula cause embryonic axis formation (de 
Robertis,E.M. et al. 2000, de Robertis,E.M. and Kuroda,H. (2004)); It is established in 
(Opas,M. 1994; Ingber,D.E. 2003) that cells and their genomes are able to respond 
upon mechanical influence in a specific manner; Alteration of gene expression in 
response to flow-induced forces was shown for both cardiac and vascular endothelial 
cells (Garcia-Cardena,G. et al. 2001; Hove,J.R. et al. 2003); Cells are able to 
distinguish between different mechanical stimuli, for example between uni-axial and 
multi-axial forces (Hornberger,T.A. et al. 2005). 
 
7. On the Specificity of Planar Cell Polarization in Terms of EP Model of 
Drosophila   Wing Disc Development 
As it was noted in section 5, from a universal point of view, the two-dimensional 
patterns of PCP in Drosophila wing development must be presented by a regular 
hexagonal lattice, originated by a subcritical bifurcation ( 0 ), (Nitzan,A. and 
Ortoleva,P. 1980). However, many experimental observations show the cells of 
Drosophila imaginal wing disc have different polygon numbers with corresponding 
different number of neighbors for every cell (Aegerter-Wilmsen,T. et al. 2010; 
Gibson,M. et al. 2006). This means that the wing epithelial lattice is not exactly 
hexagonal, but polygonal. This partial discrepancy between the SOT of elasto-
polarization and biological facts needs explanation. For this purpose, we need to take 
into account the fact of disc growth termination which should be derived as a 
consequence from the SOT model. Concerning this, we make the following 
considerations: 

(i) We accept the model proposed in (Aegerter-Wilmsen,T. et al., 2007) that 
growth is regulated by mechanical stresses and define them originated from cell 
polarization in accordance with the elasto-polarization model discussed in the 
previous sections. Similarly to (Aegerter-Wilmsen,T. et al., 2007; Hufnagel, L. et al. 
2007) we assume compression in the imaginal disc center as a cause of growth 
termination.  
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Figure 6. Principal scheme of growth termination model taken from (Aegerter-
Wilmsen,T. et al., 2007). 

 
The stretching in peripheral region induces compression in central zone (in analogy with the 

well-known Laplace formula). This type of radial distribution of stresses is analytically 
derived from the EP model considered here. 

 
 

We accept the compression in the disc center as playing role of mechanical 
control of the growth. Moreover, we concretize this control, by analyzing an idealized 
mathematical statement of this model. 

 (ii) We consider a hexagonal lattice as self-organizationally predetermined by 
the PCP process at inter-cellular level and inducing a hexagonal form of the cells too. 
In addition, we accept the idea of (Aegerter-Wilmsen,T. et al. 2010) to explain the 
breaking of hexagonal cell forms by cell division and rearrangements. Moreover, we 
consider the center possibly inducing polygon distribution at inter-cellular level. 

An idealized model of wing disc growth dynamics can be presented by the 
equation 

(7.1)     PS
dt

dS   . 

Here ,2RS  )(tRR   is the variable radius of the wing disc, 0  is an effective 
coefficient presenting the rate constant of food consumption, under condition of 

unrestricted food supply through the disc area, 
R

Th
P   is the well-known Laplace 

formula for the central pressure P  and peripheral tension T  ,   is a 
phenomenological coefficient, h  is the thickness of the peripheral ring of the disc.  
This is a highly simplified version of the model discussed in (Aegerter-Wilmsen,T. et 
al., 2007).  
After replacing the mentioned formulas in (7.1) and accomplishing some 
transformations we obtain 

(7.2)     
222 R

Th
R

dt

dR




  . 

This nonlinear differential equation (7.2) has a single steady state  

(7.3)     
3

1









Th

Rs . 

It can be rigorously proved to be asymptotically stable. The steady state radius sR  we 

call the termination radius. It is seen that a sufficiently large value of the tension 
(stretching) T  leads to large pressure P , terminating the growth (the increase of R ), 
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which is a main assertion in the works (Aegerter-Wilmsen,T. et al., 2007; Hufnagel, 
L. et al. 2007). 
 
 

 
 

Figure 7. Schematic presentation of polygon distribution processes in epithelial 
layer, taken from from (Aegerter-Wilmsen,T. et al., 2010). 

 
In terms of EP model, the nature of circumferencial tension T  we use in 

equation (7.2) must be considered as a passive mechanical reaction to the active 
tension of polarization. So, we can consider the passive mechanical tension T  is equal 

to the active one presented by the term   



 
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 in (7.4) below. 

Thus, the polarity w  is a cause of the circumferencial tension discussed in (Aegerter-
Wilmsen,T. et al., 2007; Hufnagel, L. et al. 2007) and equation (7.2) depends on the 
PCP model (7.4) below. We underline this circumstance by writing the governing 
equation of PCP (3.2.1) in a form appropriate for our case of wing disc epithelium as 
it is done in (Belintsev,B.N. and Savich,D. 1985): 

(7.4)    .21
1
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1
))(1(

2

2





 














wwm
m

k

r

w
D

r

w

r

D
www

t

w 



  

Here m  is a coefficient of Poisson and EmmqR /)21)(1(  . Moreover, w is the 
average polarization, and u is the displacement of the wing epithelium with respect to 
the basal lamina we mentioned in previous sections. On the other hand, the growth 
model (7.2) plays the role of movable boundary of (7.4). The experimental findings in 
(Classen,A. et al. 2005) allow us to consider the PCP variable w  as a fast variable 
with respect to the slow variable R . That is why, the steady state value of w  can be 
used in (7.2) as a parameter and the slow variable R  can be used as a fixed boundary 
in (7.4). Thus every one of (7.2) and (7.4) can be analyzed separately by using the 
information for the behavior of the other one. 
 The results show that, the second term in equation (7.1) has a negative sign 
only in the case that the elasto-polarization w  is positive in the center of the wing 
disc. This means the polarization process propagates from the center to the periphery. 

 15



Then the peripheral tension of the disc has a character of stretching one, as it is 
established in the paper of (Belintsev,B.N. and Savich,D. 1985). Therefore, this PCP 
model has a crucial role in defining the applicability of Laplace stretching-
compression relationship to mechanical control of growth termination. This 
theoretical prediction of the inhomogeneous distribution of mechanical stresses in the 
wing disc is in accordance with experimental findings (Nienhaus,U. et al. 2009). 
 
8. Discussion on the PCP Model of Drosophila Wing Pattern Formation 
In order to model pattern formation in the Drosophila wing, we consider both a one-
dimensional and a two-dimensional model of planar cell polarization in the wing 
epithelium, elastically connected with the basal plate (Sections 3 and 4). We accept 
this statement as a prospective one. Our understanding is that while the considerations 
in one dimension have more exhaustive general sense, the two dimensional statement 
allows more concrete insight into the process. Thus both approaches have their 
scientific values. 
 We consider in the wing discs, pattern formation develops as a result of the 
interactions of epithelial cells with a basal plate. They start to develop as epidermal 
thickenings (placodes) over the basal plate (extra cellular matrix). In the literature, 
similar processes are described as existing in various kinds of skin (Sengel,P. 1976). It 
is noted that these events determine the program of the prospective development. 
 The experimentally observed types of spatial patterns of Drosophila wing 
structures present regular lattices (for example – hexagonal distributions) of cells 
(Aigouy, B et al. 2010; Classen,A. et al. 2005) or irregular ones. Both regular and 
irregular structures can be predicted in terms of EP model analyzed in this review. 
The irregular case cannot be characterized as “chaotic” because of possible restriction 
underneath of distances between the cells (Meinhardt,H. 1982). In the frame work of 
PCP model the mechanical nature of the well-known “inhibition region” around every 
placode (Meinhardt,H. 1982) is revealed. It consists in the circumstance that in the 
vicinity of every placode the appearance of another one is inhibited by the existing 
tangential tensions (stresses). 

 The ratio between the two scales DRp   and 
q

E
Re   in the EP model 

determines the type of macroscopic order of placode distributions. When the 

characteristic length of polarization pR , and the length of elastic interaction eR  
(between epithelium and basal plate), are of one and the same order (scaling equality), 
then hexagonal lattice of placodes takes place. This circumstance is both a theoretical 
result in terms of PCP model and observed experimentally. But another theoretical 

and experimental fact is also the circumstance that if eR  is essentially larger than pR  
then irregular distributions of placodes appear. 
 On the basis of the above accomplished analysis of PCP model we conclude 
that the leading role in forming hexagonal or irregular distributions of placodes in 
wing disc is due to the PCP activity of the epithelial cells. This can be achieved by the 
parameter q  describing the elastic interaction between epithelial and basal plate. It is 

involved in the scale eR  (characteristic length of distant interactions) and is 
sufficiently large in case of regular patterns and small enough for irregular ones. So, 
the increase of parameter q leads to regularization of epithelial pattern formation. A 
second role of parameter q  is that if it is large enough then the peripheral stress of the 
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layer is stretching one. In this way the central zone of the layer is under compression 
controlling the growth and terminating it. 

 The ratio 2

2

e

p

R

R
 is equal to

E

qD
. When this ratio is near 1 we have regular 

pattern formation and mechanical control on the growth termination. For small ratio, 
the pattern formation is irregular and the termination is uncontrolled mechanically. It 
is a question of experimental convenience and possibilities to choose which ones of 
the parameters EDq ,,, can be determined. However, at first glance, it seems 

reasonable to determine the scale pR  as approximately equal to the intermediate zone 
between compressed (central) and stretched (peripheral) regions of the wing disc. This 

zone is possibly measurable. Supposing that the ratio ep RR /  is of order of 1, the 
parameters   and E  seem to be measurable, thus using the above formulas for the 
scales, D  and q  can be also evaluated.  
 
9. Conclusions 
PCP model of SOT predicts the following two basic events in Drosophila wing: 
  1. Distribution of type central compression – peripheral stretching and 
mechanical control of the wing growth (Aegerter-Wilmsen,T. et al. 2010; Aegerter-
Wilmsen,T. et al., 2007; Hufnagel, L. et al. 2007). 
 2. Transition from irregular to regular pattern formations (Classen,A. et al. 
2005; Fahradifar,R. et al. 2007) under the following relationships: 

 (i) In case of irregular pattern formation, the inequality 1/ ep RR  is valid, 
and the coefficient of elastic interaction q  between the epithelium and basal plate can 

be theoretically estimated by the relationship 2
pR

E
q  . 

(ii) For the regular pattern formation, the ratio ep RR /  is of order of 1, and 
the coefficient of elastic interaction q , between the epithelium and basal plate, can be 

evaluated by the formula 2
pR

E
q  , where E  and pR  are experimentally measurable. 

In this way, PCP model of SOT suggests the pattern regularization is caused 
either by an increase of mechanical interaction between epithelium and basal plate, or 
by decrease of epithelium elastic modulus. How to verify this causal prediction is a 
question of future experimental investigations concerning the cell-molecular 
mechanisms of Drosophila wing mechanical properties. 
 
Acknowledgment One of the authors (V.Petrov) expresses his gratitude to Swiss 
National Science Foundation for the financial support (Grant IZKOZ2 133943/1) to 
accomplish this work during his stay in Irchel University of Zurich in Year 2010. 
 
References 
Aegerter-Wilmsen,T., Smith,A., Christen,A., Aegerter,C., Hafen,E. and Basler,K. Exploring  

the effects of mechanical feedbach on epithelial toplogy, Development 137, 
 p.499-506 (2010) 

Aegerter-Wilmsen,T., Aegerter,C.M., Hafen,E. and Basler,K. Model for the regulation of size 
 in the wing imaginal disc of Drosophila. Mech. Dev. 124, p.318-326 (2007) 

Aigouy, B., Farhadifar, R., Staple, D. B., Sagner, A., Röper, J.-C., Jülicher, F., and Eaton, S. 
Cell Flow Reorients the Axis of Planar Polarity in the Wing Epithelium of Drosophila, 
Cell 142, 773 (2010) 

 17



Belintsev,B.N., Livshits,M.A. and Volkenstein,M.V. Pattern Formation in Systems with
Nonlocal Interactions, Z. Phys. B – Condensed Matter 44, p.345-351 (1981) 

 

Belintsev,B.N. and Savich,D. Physical Mechanism of Spatial Organization at Epithelial 

Belintsev, B.N., L.V.Beloussov and A.G.Zaraisky, Model of pattern formation in epithelial 

Beloussov,L.V. Mechanically based generative laws of morphogenesis. Physical Biology 5 , 

Beloussov,L.V. Somitogenesis in Vertibrate Embryos as a Robust Macromorphological 

Beloussov,L.V. The Dynamic architecture of developing organism. Dordrecht, Kluwer 

Beloussov,L.V. and Ermakov,A.S. Artificially applied tensions normalize development of 

Beloussov,L.V. and Snetkova,E.V. The dependence of the differentiation potentials of 

Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of 

Cherd
KMK (2003) 

. Developmental Cell, vol.9, 

De Robertis,E.M. and Kuroda,H. Dorsal-ventral patterning and neural induction in Xenopus 

De Rob
 rning of the vertebrate embryo. Nature Rev.Gen. 1, 

Farge,E stomodeal primordium). 

M  Interactions, and Proliferation on Epithelial Packing. Current 

Fitzhu in Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43, 

Fitzhu l states in theoretical models of nerve membranes. 

Morphogenesis, Biophyzika, v.30, No.5, p. 888-893, (1985), Russ. 

morphogenesis, J. Theor. Biol., 129, 369-394. (1987) 

1-20, (2008) 

Process. In: The Origin and Fate of Somites, Eds. E.J.Sanders et al. IOS Press. (2001) 

Academic Publishers. (1998) 

relaxed Xenopus Laevis embtyos. Russ.J.Dev.Biol., v.32, p.288-294. (2001) 

fragments of the marginal zone in early gastrulas of the clawed toad on their 
morphogenetic movements. Ontogenez, v.25, p.63-71 (Russ.) (1994) 

Caussinus,E., Colombelli,J., Affolter,M., Tip-Cell Migration Controls Stalk-Cell Intercalation 
during Drosophila Tracheal Tube Elongation, Current Biology 18, p.1727-1734. 

cell life and death. Science 276, 1425–1428 (1997) 
atsev,V.G. Morfogenez i evolyutsiya (Morphogenesis and evolution), Moscow,  

Classen,A., Anderson,K., Marois,E., Eaton,S. Hexagonal Packing of Drosophila Wing 
 Epithelial Cells by the planar Cell Polarity Pathway
 December, p.805-817 (2005) 

 embryos. Annu.Rev.Cell Dev.Biol. 20, p.285-308. (2004) 
ertis,E.M., Larrain,J., Oelgeschlager,M. And Wessely,O. The establishment of  
Spemann’s organizer and patte
 p.171-181. (2000) 
. Mechanical induction of Twist in the Drosophila foregut (

 Curr.Biol. 13, p.1365-1377. 
Farhadifar,R., Roper,J.Ch., Aigouy,B., Eaton,S. And Julicher,F. The Influence of Cell 

echanics, Cell-Cell
Biology 17, p.2095-2104, (2007) 
gh,R. Tresholds and plateaus 

  867-896. (1960) 

gh.R. Impulses and physiologica
Biophys. J., 1, 445-446. (1961) 

 18



Garcia-Cardena, G., Comander,J., Esron,K.R., Blackman,B.R. and Gimbrone,M.A.Jr. 
Biomechanical activation of vascular endothelium as a determinant of its functional 
phenotype, PNAS, 98, p.4478-4485. 

Gibso
re 442, p.1038-1041, (2006)  

aling. Dev. Dynam. 
236: 1495-1508, (2007) 

Hama
udaoud,A., Meyerowitz, E., Couder,Y. and Traas,J. 

Developmental Patterning by Mechanical Signals in Arabidopsis. Science 12 December 

Held,L
Hornb ng,D.D., Koh,T.J., Burkholder,T.J. and Esser,K.A. Intracellular 

signaling specificity in response to uniaxial vs. multiaxial stretch: Implications for 
94. (2005) 

sm 
 104,  

t 

Ingber,D ology and diseases of mechanotransduction. Ann.Med. 35, p.564-577, 

Keller, that shape embryos: physical aspects of 

n,M., Patel,A., Nagpal,R. And Perrimon,N. The emergence of geometric order in 
proliferating metazoan epithelia. Natu

Goldbeter, A., Gonze, D. and Pourquie, O. Sharp developmental thresholds defined through 
bistability by antagonistic gradients of retinoic acid and FGF sign

nt, O., Heisler, M.G., Jönsson, H.,  Krupinski,P., Uyttewaal,M., Bokov,P., 
Corson,F.,Sahlin,P., Bo

2008: 1650-1655.  

.I.,Jr. Models for Embryonic Periodicity. Basel: Karger. (1992) 
erger,T.A., Armstro

 mechanotransduction. Am.J.Physiol.Cell.Physiol. 288, p.185-1
Hove,J.R., Koster,R.W., Forouhar,A.S., Acevedo-Bolton,G., Fraser,S.E. and Gharib,M. 

 Intracardiac fluid forces are an essential epigenetic factor for embryonic 
 cardiogenesis. Nature. 421, p.172-177. (2003) 

Hufnagel,L., Teleman, A.A., Rouault,H., Cohen,S.M. and Shraiman,B.I. On the mechani
 of wing size determination in fly development. Proc. Natl. Acad. Sci. USA
p. 3835-3840. 

Ingber, D. E. Mechanical control of tissue morphogenesis during embryological developmen
. Int. J. Dev. Biol. 50, 255–266 (2006).  
.E. Mechanobi

 (2003) 
R., Shook, D. & Skoglund, P. The forces 
 convergent extension by cell intercalation. Phys. Biol. 5, 15007 (2008) 

Landau,L.D.&Lifshitz,E.M. Elasticity. New York; John Wiley (1960) 

Lecuit, T. & Lenne, P. F. Cell surface mechanics and the control of cell shape, tissue patterns 
 and morphogenesis. Nature Rev. Mol. Cell Biol. 8, 633–644 (2007).kkkk 

Meinhardt,H. Models of Biological Pattern Formation. Academic Press. New York. (1982).  
Murray,J.D.&Myerscough,M.R. Pigmentation pattern formation on snakes. J. Theor. Biol. 88, 

 161-199, (1991) 
Nagorcka, B. N., Manoranjan, V. S.. & Murray, J. D. Complex spatial patterns from tissue 

 interactions – an illustrative model. J. Theor. Biol. 128, 359-374, (1987) 
Nienhaus,U., Aegerter-Wilmsen,T., Aegerter,C.M. Determination of mechanical stresses 

 distribution in Drosophila wing discs using photoelasticity. Mechanisms of  
Development 126, p.942-949 (2009) 

Nikolov,S., Yankulova,E., Nikolova,A. & Petrov,V. Stability and Structural Stability 
 ademy of 
 

., Heisenberg,C-P. Quantitative approaches in 

ogenesis. I. 

   (Robustness) in Computational Systems Biology. Journal of Bulgarian Ac
 Sciences, 413-433, (2006) 

Nitzan,A & Ortoleva,P. Scaling and Ginzburg criteria for critical bifurcations in non- 
 equilibrium reacting systems. Physical Review A, vol.21, No.5, (1980) 
Oates,A.C., Gorfinkel,N., Gaitan,C.P
  developmental biology. Nature Reviews Genetics 10, 517-530 (August 2009) 
Odell,G.M., Oster,G., Alberch,P. & Burnside,B. The mechanical basis of morph
  Epithelial folding and invagination. Devl. Biol. 85, 446-462, (1981) 

 19



 20

. (1994) 

970) 

 the 

y.  

pression 
 itogenesis, Cell 
9

 

Petrov,V., Nikolova, E. & Wolkenhauer, O. Reduction of Nonlinear Dynamic System With 

Sattin
 (1971) 

Opas,M. Substratum mechanics and cell differentiation. In. Rev. Cytol., 150, p.119-137
Oppenheimer,J.M. Hans Driesch and the theory and practice of embryonic 
  transplantation. Bulletin of the history of medicine 44 (4), 378–82. (1
Oster,G.F., Murray,J.D. & Harris,A.K. Mechanical aspects of mesenchymal 
  morphogenesis. J. Embryol. Expl. Morph. 78, 83-125, (1983) 
Oster,G.F., Murray,J.D. and Maini,P.K. A model for chondrogenic condensations in
  developing limb: the role of extracellular matrix and cell tractions. 
  J.Embryol.Exp.Morph. 89, p.93-112, (1985) 
Oster, G.F., Shubin,N., Murray,J.D. and Alberch, P. Evolution and Morphogenetic  
 Rules: The Shape of the Vertebrate Limb in Ontogeny and Phylogen
 Evolution, 42 (5), p.862-884, (1988) 
Palmeirim, I., Henrique, D., Ish-Horowicz, D. and Pourquie, O. Avian hairy gene ex

 identifies a molecular clock linked to vertebrate segmentation and som
1: 639-648, (1997). 

Petrov,V.& Timmer,J. One-dimensional model of somatic cells polarization in a bistability
window of embryonic mesoderm. J.Mechanics in Medicine&Biology. Vol.9, No.3, 
p.259-272. (2009) 

Petrov,V., Pfeifer,M.&J.Timmer. Bistability and Self-Oscillations in Cell Cycle Control. 
Int.J.Bif&Chaos. Vol.16, No.4, p.1057-1066 (2006). 

An Application to Signal Transduction Pathways. IEE Proceedings Systems Biology. 
Vol.1, pp.2-9, (2006)  

Sengel,P. Morphogenesis of Skin. Cambridge University Press, Cambridge, (1976) 
ger,D.H. Stability of Bifurcating Solution by Leray-Shauder Degree. Arch. Rational 
Mech. Anal. vol.43, 154

Singhvi, R. et al. Engineering cell shape and function. Science 264, 696–698 (1994).  
Turing, A. M. The Chemical Basis of Morphogenesis. Phil. Trans. Roy. Soc. B, London, 

 Vol.237, p.37- 71 (1952) 
 


	References

