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Abstract

Radiotherapy plays a major role in the treatment of oral cavity squamous cell carcinoma
(OCSCC). Because of the frequent spread to regional lymph nodes in the head and
neck region, some parts of the neck are irradiated prophylactically in addition to the
primary tumor and macroscopic lymph node levels. Current guidelines define this clinical
target volume based on overall prevalences of lymph node metastases in the lymph
node levels (LNL) and only partially consider the patient-specific clinical diagnosis.
This work describes the observed lymph node involvement patterns and dependence on
clinicopathological factors such as T-category and extension of the primary tumor over
the mid-saggital plane, it further models the lymphatic metastatic progression in OCSCC
patients with the help of a previously developed but further enhanced hidden Markov
model that can estimate the risk of microscopic disease in the LNLs given a individual
patient’s clinical diagnosis. Based on the model’s risk predictions a more personalized
elective target volume definition is supported. Our analysis showed the possibility of
sparing ipsilateral LNL III for a clinically classified N0 patient and contralateral LNLs in
patients without a primary tumor extending over the mid-saggital plane. Additionally,
LNL IV is rarely involved on the ipsilateral and contralateral side. Therefore, the model
may support future clinical trials on volume de-escalation strategies in radiotherapy of
OCSCC patients.
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Chapter 1

Introduction

This thesis extens previous work on modelling lymphatic metastatic progression in head
and neck squamous cell carcinomas (HNSCCs). The Hidden Markov Model (HMM)
proposed by Ludwig et al., which previously was applied to oropharyngeal HNSCC and
was shown to allow risk estimation of microscopic LNL involvement [1]. In this thesis
we now applied it to oral cavity HNSCC for a first time.

Head and neck cancer (HNC) includes tumors arising from the mucosal surfaces
of the nasal and oral cavity, oropharynx, larynx and hypopharynx [2]. HNSCCs account
for up to 90% of these tumors [3], making it the sixth most prevalent cancer worldwide
[4]. Treatment of patients with HNSCCs is complex and is often done by combined
modality therapy, including surgery, radiotherapy and chemotherapy [5]. Despite this
multidisciplinary approach, 25% of patients develop recurrent cancer within 5 years [6].
Additionally, the impact of treatment on the quality of life is of crucial importance in
HNSCCs, as it can include functional disturbances such as speech, swallowing, hearing
and breathing [7].

As mentioned, radiotherapy plays a major role in the treatment of HNSCCs. However,
the definition of the clinical target volume in the lymph node levels (CTV-N) is of-
ten based on general guidelines, which are mainly obtained from overall prevalences
of lymph node involvement in large cohorts of a given primary tumor location and
stage. [8, 9, 10, 11]. The stage is determined by the tumor-node-metastasis system
(TNM) that categorizes the patient based on the size of the primary tumor (T-category:
T1-T4), the involvement of the regional lymph nodes (N-category: N1-N3) and the
presence of distant metastases (M-category: M0/M1). However, no information about
the location of lymph node metastases is available based on the TNM classification.
Therefore, a personalized approach for irradiation of HNSCC patients is only partly
present in current guidelines and correlations between the lymph node involvement
of different levels is not included. For example, with a prevelance of 12% on the
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ipsilateral side, level III is irradiated in most cases for OCSCC patients. However, for
different clinical diagnoses, the risk of occult disease in level III can be expected to
vary strongly. For a clinically diagnosed N0 neck and a primary tumor in the gums for
example the risk is expected to be much lower compared to a patient with clinically
diagnosed metastases in LNL II and a primary tumor on the tongue. Low risk scenarios
for occult disease could be identified by incorporating the patient’s detailed clinical
diagnosis for lymph node involvement in addition to the TNM classification and the
primary tumor location. In a further extension, other patient specific risk factors like the
extension of the tumor over the mid-sagittal plane (midline extension) could be included.

To quantify the risk of occult disease given a specific clinical diagnosis and in the
consequence better individualize the CTV-N definition, a probabilistic Bayesian network
model was developed by Pouymayou et al. [12]. Ludwig et al. [1] extended and
improved the model by Pouymayou et al. [12] by modelling the lymphatic metastatic
progression using HMM and including more patient information and primary tumor
characteristics [13]. The ultimate goal is an application of such a model in clinical
practice by being an aid for clinicians in safely reducing the extent of elective nodal
treatment [14]. This could lead to quality of life improvement for the patients by
reducing the probability of side effects [14].

The goal of the following work is to analyze the lymph node involvement of OC-
SCC patients and definining the differences for the different locations of the primary
tumor (tongue, gums and cheek and floor of mouth) and involvement patterns as this
information is only available to this extent for oropharyngeal squamous cell carcinoma
(OPSCC) [15]. By applying the hidden Markov model by Ludwig et al. [1] to the oral
cavity primary tumor location, analogous guidelines as for OPSCC patients could be
proposed [13]. Additionally, possible model extensions could be developed based on
specific data characteristics and relevant findings in a cohort of OCSCC patients.



Chapter 2

Patterns of lymph node
involvement

The basis of this thesis on a data level is formed by a multicentric dataset of 348 retro-
spectively analyzed patients with newly diagnosed oral cavity squamous cell carcinoma
treated at two institutions. Both, the Inselspital Bern and the Centre Léon Bérard
in Lyon provided us a dataset including various tumor subsites including oral cavity,
oropharynx, hypopharynx and larynx. Since only the prevalence for the involvement
of individual LNLs has been reported for OCSCC up until now, it is important to also
quantify the details of lymphatic progression patterns depending on the involvement of
upstream LNLs, T-category, midline extension and extracapsular extension (ECE). Due
to the additional fact that the Hidden Markov Model by Ludwig et al. [1] was never
applied to the data of oral cavity squamous cell carcinoma patients, I will focus on the
included 348 patients with a diagnosed primary tumor located in the oral cavity.

Additonally, this overview of the available information makes limitations in the data
more clearly visible and could help to develop possible model extension ideas.

2.1 Head and neck squamous cell carcinoma

Epithelium, a pervasive tissue found on body surfaces and in cavities, including the skin
and lungs, comprises three fundamental cell types: squamous, cuboidal, and columnar
epithelial cells. Squamous cells are flat and thin, cuboidal cells are roughly as thick as
they are wide, and columnar epithelial cells are tall and often hexagonal when viewed
from above, densely packed with minimal intercellular space. [16]

Squamous cell carcinomas (SCCs) are malignancies originating from squamous cells
within the epithelium as a result of specific mutations in epithelial stem cells responsible
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for generating functional squamous cells. These cancers typically initiate in the basal
lamina, where epithelial stem cells attach, as shown in figure 2.1. [13]

Given the prevalence of epithelium throughout the human body, SCCs can develop in
various locations, including the lungs, skin, or cervix. However, they can also manifest
within the mucosa of the oral and upper respiratory tract, resulting in head and neck
squamous cell carcinoma (HNSCC). [13]

Figure 2.1: Schematic drawing ot the oral mucosa with its layers including the epithelium.
[17]

2.2 Lymph system of the head and neck region

The lymphatic system is a vital component of the human body’s circulatory system,
running alongside the blood vessels in most tissues except for example the brain. It
consists of a network of thin-walled capillaries that are highly permeable, allowing
extracellular fluid, carrying waste products from cells, to drain into them. This fluid is
transported back into the bloodstream through the thoracic duct. [18, 19, 20]

In addition to capillaries, the lymphatic system includes organs and structures crucial to
the immune response. Lymph nodes, situated at junctions of afferent lymphatic vessels,
play a central role. Incoming fluid passes through these nodes, where immune cells like
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lymphocytes and macrophages come into contact with particles carried by the fluid.
Ultimately, the fluid exits through efferent lymphatic vessels at the lymph node’s hilus.
[18, 21]

In the head and neck region, the lymphatic system consists of around 300 lymph
nodes [22], categorized into lymph node levels (LNLs) for standardized reference. These
boundaries, defined by identifiable anatomical landmarks such as bones, muscles, blood
vessels, or nerves, serve as a reference for medical procedures, including neck dissections
and radiotherapy [23, 24].

Head and neck squamous cell carcinoma (HNSCC) tumors have the potential to
shed live cells into the lymphatic fluid. These cells can enter lymph nodes, where factors
unique to SCCs allow them to evade programmed cell death processes [25]. Once inside
a lymph node, these cells may proliferate, forming metastatic lesions. Subsequently,
metastatic lesions can shed more tumor cells that can flow further downstream within
the lymphatic system, leading to additional growth.

Figure 2.2: Schematic drawing of the head and neck region and its lymphatic network.
The lymph nodes and vessels are shown in green, the primary tumor subsites (e.g oral
cavity) in blue and the LNLs in orange. [13]

The presence of lymph node metastasis significantly impacts the prognosis of HNSCC
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patients, with a notably lower survival rate. Therefore, it is considered one of the most
critical prognostic factors for HNSCC. [26, 27, 28]

This comprehensive understanding of the lymphatic system’s role in HNSCC pro-
gression and metastasis is invaluable in clinical diagnosis, staging, and the development
of treatment strategies for this type of cancer.

2.3 Modalities

For all 348 patients, the lymph node involvement was recorded based on pathology
following neck dissection. When possible, the involvement was specified for every
individual level from I-V. However, the patient cohort from the Inselspital Bern contained
179 patients that had at least two levels dissected together while this was not the case
for the cohort from Lyon. Additionally, the Inselspital Bern provided clinical diagnoses
of lymph node metastases based on CT, MRI and PET scans for its 202 patients. In
the table 2.1 an overview over the available data is given.

Table 2.1: Overview of the available modalities and the number of patients they are
available for in the respective cohort.

Modality Center

Bern Lyon

CT 24 (12%) 0 (0%)
MRI 173 (86%) 0 (0%)
PET 112 (55%) 0 (0%)
Pathology 202 (100%) 146 (100%)

Total 202 (100%) 146 (100%)

One can see, that only pathology information is available for all patients in both datasets.
Clinical diagnoses based on CT scans are only provided for 24 patients in the cohort
from Bern, while involvement information based on MRI and PET scans includes the
majority of 202 patients (86% and 55%). For the cohort from Lyon, only pathology
information is recorded for all patients. Since both datasets include comprehensive
information for lymph node level involvement based on pathology (after neck dissection),
they are believed to be comparable and therefore are combined into a larger cohort for
further analysis. This decision is also supported by section 2.4
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2.4 Comparison of datasets

As shown in table 2.2, the CLB dataset has approximately the same number of early
(T1/T2) and late (T3/T3) T-category tumors (early: 51%, late: 49%) while the
ISB dataset has significantly more early T-category tumors with 74%. The largest
difference can be observed for T1 which is observed way less in the CLB dataset (14%
vs. 43%). The opposite case is then observed for T4 where there are fewer tumors in
the ISB dataset. The differences may be explained by patient selection due to referral
patterns. This possibly leads to the larger cohort of N+ patients in the CLB dataset
(57%) compared to the ISB dataset (46%). Consistency over the two datasets can be
observed for the involvement of the lymph node levels. The individual comparisons for
the datasets regarding the involvement patterns can be looked at on LyProX [29]. The
dataviewer with the selected patients can be seen in figure 2.3.

Table 2.2: Comparison of the dataset from the Inselspital Bern (ISB) and the Centre
Léon Bérard (CLB)

Dataset

Staging ISB CLB

T1 86 (43%) 21 (14%)
T2 64 (32%) 54 (37%)
T3 17 (8%) 28 (19%)
T4 35 (17%) 43 (29%)

Early 150 (74%) 75 (51%)
Late 52 (26%) 71 (49%)

N+ 87 (43%) 83 (57%)

Total 202 146
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Figure 2.3: LyProX online interface to visualize the patterns of lymphatic progression
in head and neck squamous cell carcinoma.

2.5 Subsites and T-stage

In addition the T-stage and the subsite in the oral cavity are available for all patients.
In table 2.3, the T-stage distribution for every T-stage is shown.

Table 2.3: Patient cohort stratified for subsite and T-stage.

T-stage Subsite

Tongue Gums & Cheek Floor of Mouth Total

T1 55 (35%) 24 (26%) 28 (28%) 107 (31%)
T2 72 (46%) 15 (16%) 31 (31%) 118 (34%)

Early 127 (80%) 39 (43%) 59 (60%) 225 (65%)

T3 27 (17%) 6 (7%) 12 (12%) 45 (13%)
T4 4 (3%) 46 (51%) 28 (28%) 78 (22%)

Late 31 (20%) 52 (57%) 40 (40%) 123 (35%)

Total 158 (45%) 91 (26%) 99 (28%) 348 (100%)

The subsite with the most patients is tongue (C021) with almost 50% of all patients,
while gums and cheek (C03, C061) and floor of mouth both include approximately 25%.

1Definition of the primary tumor location according to the international classification of diseases for
oncology: ICD-O [30]
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In total, there are more early than late T-stage tumors. However, when looking at the
subsites, this is not the case for gums and cheek where the majority of the patients has
a T4 tumor. While tumors in the tongue region almost never reach T4 before being
diagnosed, T3 is rarely observed in the gums and cheek subsite. For floor of mouth
(C041), the distribution among the T-stages is more uniform.

2.6 Lymph node involvement

2.6.1 Involvement of individual LNLs

0102030405060

contralateral
Late (123)
Total (348)
Early (225)

0 10 20 30 40 50 60

Ia

Ib

II

III

IV

V

ipsilateral
Late (123)
Total (348)
Early (225)

Prevalence of involvement [%]

Figure 2.4: Contralateral and ipsilateral prevalence for the individual LNLs (I-V) stratified
by T-category (early: T1/T2, late: T3/T4, total: T1-T4)

In figure 2.4 the prevalence of LNL involvement is compared for all oral cavity patients
based on their T-category (early: T1/T2, late: T3/T4) for both the ipsilateral and
contralateral side. Additionally, the overall prevalence, independent of the T-category,
is included. As expected, the involvement on the contralateral side is in all LNLs
significantly lower than on the ipsilateral side. For late T-category patients, the same is
ovserved on both sides for levels with high involvement (Ib, II and III). The prevalences
for level Ib, II and III increased from 12%, 23% and 11% to 34%, 38% and 15% on
the ipsilateral side and from 4%, 4% and 2% to 11%, 6% and 4% on the contralateral
side. Levels Ia, IV and V with overall lower prevalence showed smaller differences. The
overall prevalence shows the weighted average of the prevalence for the early and late
T-category.
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(a) Tongue

0102030405060

contralateral
Late (52)
Total (91)
Early (39)

0 10 20 30 40 50 60

Ia

Ib

II

III

IV

V

ipsilateral
Late (52)
Total (91)
Early (39)

Prevalence of involvement [%]

(b) Gums and cheek
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(c) Floor of mouth

Figure 2.5: Contralateral and ipsilateral prevalence for the individual LNLs (I-V) stratified
by T-category (early: T1/T2, late: T3/T4, total: T1-T4) for the three subsites ((a):
Tongue, (b): Gums and cheek, (c): Floor of mouth) of the oral cavity.
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Table 2.4: Prevalence of the individual LNLs for all patients, stratified by T-category,
tumor subsite, extracapsular extension and N+ staging.

Total I II III IV V

Value Value % Value % Value % Value % Value %

ip
si

all 348 73 21 99 28 43 12 11 3 10 3
T1/T2 225 30 13 52 23 25 11 8 4 7 3
T3/T4 123 43 35 47 38 18 15 3 2 3 2
tongue 158 23 15 55 35 26 16 10 6 8 5

gums & cheeks 91 28 31 21 23 3 3 1 1 0 0
floor of mouth 99 22 22 23 23 14 14 0 0 2 2

N+ 172 73 42 99 58 43 25 11 6 10 6
ECE+ 81 38 47 52 64 27 33 8 10 7 9
ECE- 91 35 38 47 52 16 18 3 3 3 3

co
nt

ra

all 348 22 6 15 4 10 3 5 1 4 1
T1/T2 225 9 4 8 4 5 2 3 1 2 1
T3/T4 123 13 11 7 6 5 4 2 2 2 2
tongue 158 8 5 6 4 5 3 3 2 2 1

gums & cheeks 91 4 4 3 3 1 1 1 0 0 0
floor of mouth 99 10 10 6 6 4 4 1 1 2 2

N+ 172 22 13 15 9 10 6 5 3 4 2
ECE+ 81 8 10 9 11 7 9 5 6 3 4
ECE- 91 14 15 6 7 3 3 0 0 1 1

Based on the differences observed T-stage distributions for the different subsites, the
involvement of the individual lymph node levels should additionally be looked at on a
subsite level and not for the oral cavity in total. In figure 2.5 the same analysis can
be seen for the subsites tongue, gums and cheek and floor of mouth. It can be seen
that the involvement patterns show some differences. On the ipsilateral side, Level II
is more often involved for the subsite tongue (early: 29%, late: 58%) than for gums
and cheek (early: 15%, late: 29%) and floor of mouth (early: 15% , late: 35%). The
differences are smaller on the contralateral side but it can be said that gums and cheek
shows the lowest involvement and almost none for early T-category patients.
In the table 2.4 the exact values from figure 2.4 and 2.5 are shown. Additonally, the
involvement for the N+ patients, so the one with lymph node metastasis, is shown.
The number of patients with involvement in a level naturally corresponds to the one in
the category with all patients but the prevalence is approximately twice as high due to
the fact that only 49% of all patients have an N+ staging. The last two rows of the
ipsilateral and contralateral table 2.4 show the prevalence stratified for extracapsular
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extension (ECE) in any level. ECE refers to the growth of a nodal cancer metastasis
beyond the confines of the capsule of a lymph node into adjacent tissues [31]. ECE
was only looked at for N+ patients as the N0 stage by definition has no extracapsular
extension. One patient had no ECE information and was counted as negative. One
can see that patients with ECE have a higher involvement on the ipsilateral side for all
levels and the relative difference increases for level III, IV and V. As expected, on the
contralateral side the involvement is lower and similar for ECE+ and ECE- in levels I
and II. Again, for level III, IV and V, the relative difference between the two subgroups
increases.

2.6.2 Patterns of lymph node involvement

In the previous subsection 2.6.1, the focus was layed on the prevalence in the individual
LNLs. However as previously mentioned, even more important are the patterns of
lymph node involvement that will be analysed in this subsection. It will be looked at
how the presence of lymph node metastases in one level is affected by healty or involved
adjacent and upstream levels.

0.02.55.07.510.012.515.017.520.0

contralateral
Late (123)
Total (348)
Early (225)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

I/II/III

I/II

I/III

I

II/III

II

III

ipsilateral
Late (123)
Total (348)
Early (225)

Prevalence of involvement [%]

Figure 2.6: Contralateral and ipsilateral prevalence for the different involvement patterns
of level I-III stratified by T-category (early: T1/T2, late: T3/T4, total: T1-T4). The
labels show the involved levels (I-III). Level IV and V can be positive or negative.

In figure 2.6 the prevalence of the possible involvement patterns of levl I-III is shown
for the ipsilateral and contralateral side stratified by T-category. The involvement of
level IV and V is not considered since overall prevalence in these two levels is low as it
has been shown in figure 2.4 and as downstream levels of level I-III their influence on
the involvement on them is very limited.
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It can be seen that the most common scenario for early T-category patients is to
have involvement only in level II (14%) on the ipsilateral side and only in level I (2%)
on the contralateral side. For late T-category patients, the cases where only level I or
level II are equally prevalent (16%) on the ipsilateral side. On the contralateral side,
only involvement of level I (8%) is the most frequent diagnosis. So there is substantial
direct spread from the primary tumor to level I without level II or III being involved.
However, there is still a substential co-involvement, especially with level II (I/II: 22
(30%)). The same applies to level II where overall on the ipsilateral side (early and late
T-category) more than half (52 cases, 53%) of all patients with metastases in level II
have no involvement of level I and III and 22% have co-involvement with level I (only I
and II involved). For patients with metastases in level III co-involvement with level I
and/or II is more often the case (29 cases, 67%). The full breakdown of co-involvement
can be seen in table 2.5.

Additionally, the involvement of level I to III on the contralateral side is shown stratified
for midline extension, as higher involvement is expected on the contralateral side when
a tumor crosses the midline. This can be obsered when comparing the percentage of
patients with no involvement in level I to III on the contralateral side for the two groups.
76% of all patients with midline extension hat no metastases in level I to III while for
patients without midline extension it was 92%. As it shown in table 2.5, this difference
is mainly because of higher involvement of level I individually when the tumor crosses
the midline. So it can be said that midline extension is the most important risk factor
for contralateral involvement.
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Figure 2.7: Simultaneous involvement of level I-III stratified by T-category (early:
T1/T2, late: T3/T4, total: T1-T4). The labels show the involved levels (I-III). Level
IV and V can be positive or negative.

The dependence of the ipsilateral involvement on the ECE can be seen in figure 2.7.
ECE means that extracapsular extension was found in any level on the ipsilateral or
contralateral side. Only N+ patients are included as per definition only these can have
ECE. It can be seen that for patients with ECE states with more advanced lymph node
involvement (more than one level involved) are more often observed while for patients
without ECE, the states with only one lymph node level involved are more frequent
(e.g I: pos, II/III: neg). The state with all three lymph node levels involved (I-III) is
only observed for patients with ECE.
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Figure 2.8: Involvement in the contralateral level I-V stratified for involvement of
ipsilateral level II (left) and midline extension (right).

In figure 2.8 the involvement in the contralateral levels can be seen given involvement
or no involvement of ipsilateral level II (left) and given midline extension or no midline
extension (right). One can see that given involvement of ipsilateral level II, the
contralateral involvement is higher in every level except level I compared to the case
where ipsilateral level II is not involved. So contralateral involvement for levels II to
V is reare when ipsilateral level II is not involved. The same applies even for midline
extension. For the involvement of contralateral level I, midline extension even increases
the prevalence of metastases by over 10%. In the levels II to IV the difference is smaller
but still present. In total 33 (17%) out of 202 patients had a tumor extending over the
midline. For 146 patients, namely the patients in the CLB dataset, the midline extension
was unknown. The prevalence in the contralateral levels I, II and IV for patients with
unknown midline extension is in between the prevalence of midline extension and no
midline extension. This is expected as the CLB dataset that has no midline extension
information assumingly contains approximately a similar percentage of patients with
tumors extending the midline. Higher involvement in contralateral level III and especially
V could be explained by the more late T-category patients in the CLB dataset.

2.6.3 Positive versus investigated lymph nodes

In figure 2.9 the number of pathologically positive lymph nodes can be seen in depen-
dence of the number of dissected lymph nodes. It is shown for the levels Ib, II and III. Ia
and Ib are separated since they show different involvement as already mentioned (2.4).
For level Ia there is not enough pathological data available for a sophisticated analysis.
This is due to the fact that in many patients several lymph node levels are dissected
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together, making it impossible to assign the lymph nodes to the correct level. Therefore,
also in the level II and III the respective patients are excluded, leading to different
number of included patients for every level. The analysis for the contralateral side is
not separately shown but has similar characteristics as the here described ipsilateral
side.

The most apparent characteristic is the large variability in the number of lymph
nodes observed between patients. The largest span is observed in level II with 0 to
42 lymph nodes. For level III the span is smaller with 0 to 30, while level Ib shows
the smallest range including 0 to 16. This leads to a difference in the mean number
of investigated lymph nodes between the levels (Ib: 4, II: 13, III: 8). Looking at the
histograms next to the y-axis in figure 2.9, one can see that in most cases a patient
has only 1 positive lymph node in the involved level. No more than 6 positive lymph
nodes are observed in any patient in level Ib and II, while for level III the maximum was
4. More than 1 positive lymph node was observed for 22 patients (7%) in level Ib, 35
patients in level II (11%) and only 11 patients in level III (3%).

The analysis on wheter the probability of having at least one positive lymph node
increases with the number of lymph nodes present in a patient, can be seen in figure
2.10. Patients with zero lymph nodes are excluded and the analysis is based on a linear
regression with the binary predicted variable (y) being involvement/no involvement.
The explanatory variable is the number of lymph nodes investigated. One can see
that an increase in lymph nodes is associated with a slightly higher probability of
involvement in level Ib, II and III on the ipsilateral side. However, when looking at
the 95% confidence interval of the slope parameter that represents the increase of the
probability of involvement per additional lymph node, one can see that also negative
slopes are included for level II and III. Only for level Ib there is a possibility of a slight
positive correlation between the probability of involvement and the number of lymph
nodes. However, overall there is no significant evidence present that the probability
of involvement increases with the number of lymph nodes a patient has and the 95%
confidence intervals include the average involvement for every number of dissected
lymph nodes.
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Figure 2.9: Histogram of the number of pathologically investigated and positive lymph
nodes in the levels Ib, II and III on the ipsilateral side. Patients were excluded level-wise
if there was no pathological information.
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Figure 2.10: Linear regression with 95% confidence interval for the prediction of the
probability of involvement in dependence of the number of lymph nodes in a level and
patient. The blue dots represent the observed involvement. The median line shows the
median number of lymph nodes found in a patient and LNL.
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2.7 Conclusion

The goal of this chapter was to analyze the level wise lymph node involvement for OC-
SCC patients. The dependence on the primary tumor subsite, T-category, involvement
of adjacent and nearby lymph node levels, ECE and extension of the primary tumor
over the midline has been shown. Additionally, the available raw pathology data was
presented in figure 2.9.

The most important findings include:

• Differences in the T-catergory distributions for the different oral cavity
subsites. Especially gums and cheek has a majority of patients with a T4 tumor.
This indicates a longer time span of tumor growth until the time of diagnosis.

• Involvement on the contralateral side is much lower than on the ipsilateral
side and increases with higher ipsilateral involvement and midline extension. This
can be explained by the increase in possible spread from the primary tumor.

• Late T-category patients tend to show higher involvement on the ipsilateral
and contralateral side. Involvement in lymph node level Ib and II shows the
highest prevalence for involvement. Level Ia, IV and V show very low involvement.

• ECE shows no significant difference in level I and II. For level III, IV and V the
relative differences of involvement increase. However, states with more advanced
lymph node involvement are more frequent in patients with ECE.

• There is substantial co-involvement in between levels I, II and III, as level I is
frequently involved in combination with level II (22%) and level III is co-involved
with level I and/or II in 67% of the cases.

• There is a large variability in the number of lymph nodes between patients.
However, there is no significant evidence for an increased risk of involvement
when a patient has more lymph nodes. Additionally, the mean number of
investigated lymph nodes varies between the levels.

In comparison with previous studies, the reported prevalences in the individual lymph
node levels (2.4) are similar to the ones reported in the study by Grégoire et al. [32] that
reported 15%, 28%, 6%, 2% and <1% for level Ib, II, III, IV and V on the ipsilateral
side in 787 OCSCC patients. The differences, for example in level III, could arise
due to variations in the patient selection such as different subsite compositions and
T-stage distribution. This is supported by similar patterns observed for the lymph node
involvement in the different subsites (tongue, gums and cheek and floor of mouth)
(figure 2.5, [32]).
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2.7.1 Limitations and bias

Limitations in the datasets include possible difference in the surgical differentiation of
the lymph node levels at the two institutions. Especially in level II and III the mean
number of lymph nodes varies between the datasets (CLB: 4, 11 ISB: 9, 17). This could
lead to differences in the allocation of metastases to the lymph node levels, resulting in
different involvement patterns.

A potential bias in both datasets is that contralateral neck dissection is not per-
formed for all patients. This could induce an underestimation of microscopic metastasis
on the contralateral side resulting in too low prevalences for the lymph node involvement.

2.7.2 Potential impact on elective nodal irradiation and neck
dissection

The data presented in the previous chapter shows a low occurrence of lymph node
metastases in levels IV and V, thereby advocating for the consideration of excluding
these levels in neck dissection and elective nodal irradiation. Specifically, in cases
where level III is not involved, the likelihood of level IV involvement is considerably low.
The described low contralateral involvement could support the unilateral treatment of
the neck in patients with tumors not crossing the midline (Mid-) and low ipsilateral
involvement.

The analyzed dependencies of the involvement of level I-III on T-category, metas-
tases in adjacent lymph node levels and tumor subsite could also have an influence
on the elective treatment. However, to give statistically significant treatment recom-
mendations, probabilistic models are needed to quantify the conditional risk of occult
disease in a level for specific clinical diagnoses of lymph node involvement and other
clinicopathological factors. To obtain these results, the hidden Markov model proposed
by Ludwig et al. [1], that also implements specificity and sensitivity for the clinical
diagnoses, will be applied to the described multicentric dataset.



Chapter 3

Unilateral hidden Markov model

Following chapter 2 and the conclusions that the involvement and elective treatment
decision of lymph node level I-III could be dependent on the T-category and metastases
in adjacent lymph node levels, the mentioned hidden Markov model [1] will now be
applied to the OCSCC dataset. In a first step a unilateral model that only considers and
predicts ipsilateral involvement will be trained and analyzed. In the following sections,
this base model will be introduced and optimized.

3.1 Mathematical description

Before treatment, a patient is always clinically diagnosed. Based on imaging modalities,
such as MRI, CT and PET, the primary tumor and possible lymph node metastases are lo-
cated. However, the clinical diagnosis can include false positive and false negative cases.
This means that for example a metastasis can be clinically diagnosed even though in
reality there is no involvement present in this lymph node level. Therefore the true state
is not observable and hence hidden. An advantage of the hidden Markov model is, that
it can model these observed and hidden states of the LNLs with binary random variables.

For the hidden (true) state we have:

Xv ∈ {0, 1} for v ∈ {1, 2, . . . , V } (3.1)

Where v indexes the V included LNLs. Xv = 0 corresponds to a healthy LNL, while
Xv = 1 represents involvement in LNL v.

For the observed states the representation follows the same principle but now we have
an observed random variable ZO

v for every available modality O ∈ {MRI,CT, . . .}.

ZO
v ∈ {0, 1} for v ∈ {1, 2, . . . , V }, O ∈ {MRI,CT, . . .} (3.2)

22
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The observed random variable states if given Xv the used modality O with specificity
sOP and sensitivity sON results in observing metastases (ZO

v = 1) or not (ZO
v = 0).

For convenience, we write the random variables in a vector:

observed vector Z = (Zv) → {0, 1}V

hidden vector X = (Xv) → {0, 1}V
(3.3)

The conditional probabilities of observing a diagnosis Z = z for a given state X = x of
a lymph node level are then:

P (Z = 0 | X = 0) = sP

P (Z = 1 | X = 0) = 1− sP

P (Z = 1 | X = 1) = sN

P (Z = 0 | X = 1) = 1− sN

(3.4)

A second advantage, compared for example to a Bayesian Network model, is that
the lymphatic progression over time can be defined by a hidden Markov model. The
previously defined hidden random vector (eq. 3.3) is therefore time dependent:

X[t] = (Xv[t]) for t ∈ {0, 1, 2, . . . , tmax} (3.5)

The time-steps are discrete and reach tmax. For the diagnosis Z on the other hand,
there is just an observation at the point of the cancer diagnosis, hence making a time
differentiation unnecessary.

With the time dependence of the hidden state and the conditional probabilities of
observing a diagnosis given the true state of the lymph node level, we can fully describe
the hidden Markov model starting in a state X[t = 0] := π. The starting state π is
the point where the patient is still healthy. Therefore we have:

π =


0
0
...
0

 (3.6)

The conditional probability of the progression from state X[t] to a state X[t+ 1]:

P (X[t+ 1] | X[t]) (3.7)
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and the probability of an observation given the true hidden state of the LNL:

P (Z | X[t]) (3.8)

To model the transition probabilities from one state to another, we have to introduce a
graph that defines our hidden Markov model. It reflects the lymphatic system with its
defined LNLs and the resulting tumor spread patterns. An example of such a graph
can be seen in figure 3.1

Figure 3.1: Hidden Markov model represented as a graph to show lymphatic spread in
the LNLs.

The graph is represented by edges and directed arcs. The edges represent the primary
tumor T and the hidden binary variables Xv specifying the involvement of LNL v. The
directed arcs are a surrogate of the lymphatic flow and the parameter next to each arc
represents the probability rate for lymphathic spread in this direction. These parameters
can be used to explicitly write down the conditional probabilities introduced in eq. 3.7:
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P (Xv[t+ 1] = 0 | Xpa(v)[t] = 0) = Q(Xv[t+ 1] = 0;Xv[t])× (1− bv)
1−Xv [t]

P (Xv[t+ 1] = 1 | Xpa(v)[t] = 0) = Q(Xv[t+ 1] = 1;Xv[t])× (bv)
1−Xv [t]

P (Xv[t+ 1] = 0 | Xpa(v)[t] = 1) = Q(Xv[t+ 1] = 0;Xv[t])

× ((1− bv)(1− tpa(v)→v))
1−Xv [t]

P (Xv[t+ 1] = 1 | Xpa(v)[t] = 1) = Q(Xv[t+ 1] = 1;Xv[t])

× (1− (1− bv)(1− tpa(v)→v))
1−Xv [t]

(3.9)

Where pa(v) is the parent node of v and Q is a term formalizing the fact that a
metatastatic LNL cannot become healthy again as time progresses. Therefore, Q is
always 1, except for the case where Xv[t+ 1] = 0 and Xv[t] = 1, where it is 0. Using
one minus the node’s previous value ensures thath the probability of the node to stay
involved is 1.

Following the same principle, the probabilities in eq. 3.9 can be extended for the
more general case where a LNL has multiple parent nodes:

P (Xv[t+ 1] = xv |{Xr[t] = xr, trv}r∈pa(v), bv)
=Q(Xv[t+ 1] = xv;Xv[t])× (xv + (−1)xv

(1− bv)
∏

r∈pa(v)

(1− trv)
xr)1−Xv [t]

(3.10)

In order to receive the probability of the whole patient state X[t+ 1], we can simply
take the product over all individual LNLs that are each described by eq. 3.10. For
simplicity, from now on we will mostly write P (X = x) as just P (x).

P (x[t+ 1] | x[t]) =
∏
v≤V

P (Xv[t+ 1] = xv | {Xr[t] = xr, trv}r∈pa(v), bv) (3.11)

Evaluating eq. 3.11 for all possible combinations of the states (x) creates a square
matrix A, called the transition matrix. It contains the probability of all individual state
transitions during a timestep. Because of the forbidden self-healing, many entries of
the transition matrix are 0.

As our main goal is to learn the probability rates assigned to the arcs in figure 3.1,
we need to calculate the likelihood function. The likelihood tells us how likely it is to
observe the given data based on the assigned probability rates. Therefore, we have to
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define an observation matrix B that can include the patients clinical diagnosis. The
calculation of this observation follows the same principle as the transition matrix and is
specified via sensitivity and specificity as shown in eq. 3.4.

B = P (Z = ζi | X[t] = ξi) (3.12)

Since we only have an observation of the patient state at the point of diagnosis, we
don’t know the evolution of the patient’s disease. So we have to marginalize over
all possible paths that could lead to the observed diagnosis. In the hidden Markov
formalism this is automatically obtained when multiplying the transition matrix with
itself, followed by a multiplication with the observation matrix. The probability of
observing a given diagnosis z = ζj at a fixed time-step can be therefore calculated as
followed:

P (Z = ζj | t) = [πT · (A)t ·B]j (3.13)

Where π is the vector for the healthy starting state. The index j ensures that the com-
ponent corresponding to the diagnosis Z = ζj is taken from the resulting row-vector.
This means that in this vector calculated with eq. 3.13 includes the probabilities for all
possible diagnoses.

The next problem is, that the number of time-steps until the diagnosis is not known.
So we have to marginalize over the discrete number of time-steps at which the cancer
could be diagnosed. In order to do this. a time-prior p(t) has to be introduced, that
describes the prior probability that the diagnosis happens at a specific time-step t. In
our case this discrete distribution over the finite number of time-steps is a binomial
distribution.

Implementing this time-prior also directly allows us to incorporate the T-category
of the patients into the likelihood function. The importance of this has been shown in
the previous chapter where a difference in involvement between early and late T-category
patients was observed. By taking the sum over the defined number of time-steps and the
product over all T-categories, we can eventually write down the likelihood function:

P (Z | θ) =
Tmax∏
T=1

[
tmax∑
t=0

pT (t) · π⊤ · (A)t ·B

]
· fT (3.14)

We no longer have a single diagnosis Z = ζj but the dataset Z including all patients
diagnosis. These diagnoses correspond to the observational state ζj in eq. 3.13. That is
also the reason why the index j is omitted to read out the probability for a specific state
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and the column-vector fT is added. fT is defined separately for each T-category and
specifies the number of patients that were diagnosed with the respective observational
state and the given T-category. θ simply represents the model parameters, which are
the probability rates shown in figure 3.1.

For computational reasons, mostly the log-likelihood is calculated instead of the likeli-
hood. It can easily be obtained by taking the elementwise log of the sum-elements of
the marginalization over the time-steps and summing over the T-categories:

logP (Z | θ) =
Tmax∑
T=1

log

[
tmax∑
t=0

pT (t) · π⊤ · (A)t ·B

]
· fT (3.15)

A more sophisticated mathematical description, also including handling of incomplete
diagnoses and multiple diagnostic modalities can be found in [13].

3.1.1 Sampling process

This subsection will shortly describe Markov-Chain Monte Carlo (MCMC) sampling
that was also used in the sampling process of the model. A more sophisticated in-
troduction into the topic can be found in Bishop [33], MacKay [34] or Gelman et al. [35].

We already derived the likelihood function P (Z | θ) shown in eq. 3.14 but given the
dataset with its diagnoses, we want to know how th probability distribution P (θ | Z)
looks like. We can write this posterior distribution of the parameters using Bayes’ rule:

P (θ | Z) =
P (Z | θ)P (θ)∫

P (Z | θ′)P (θ′) dθ′
(3.16)

where P (θ) is the prior over these parameters. Since we have no information about the
distribution of these parameters and are all probability rates, we choose a uniform prior
that is defined on the inverval [0, 1] ∈ R:

P (θ) =

{
1 if θa ∈ [0, 1];∀a ≤ E

0 otherwise
(3.17)

E is the number of edges in the graph shown in figure 3.1. The problem is that the
normalization constant in the denominator can not be calculated analytically. MCMC
sampling methods are an alternative to sample from the posterior P (θ | Z) without
calculating this normalization constant explicitly. We start constructing a Markov chain
of samples θ1, θ2, . . . , θτ by drawing a new proposal θ⋆ to add to the Markov chain.
The proposal is drawn from the proposal distribution q(θ⋆ | θτ ) that depends on the
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previous sample. The Metropolis algorithm is the easiest way to do this since the
proposal distribution is symmetric (q(θ⋆ | θτ ) = q(θτ | θ⋆)) in this case. This new
proposal is then accepted with a probability given by:

A (θ⋆, θτ ) = min

(
1,

P (Z | θ⋆)P (θ⋆)

P (Z | θτ )P (θτ )

)
(3.18)

In this case we have the unnormalized posterior and do not need to calculate the normal-
ization constant. If the proposal is accepted, θτ+1 = θ⋆ and otherwise the last sample
is re-added to the chain θτ+1 = θτ . By letting τ approach infinity and therefore re-
peating the described steps, the produced samples are distributed like the posterior P (θ).

The sampling implemented for the described model uses the emcee package [36]
that uses a combination of two differential evolution algorithms [37] [38]. These refined
methods, which determine the selection of the subsequent sample during the process,
are primarily aimed at improving overall performance. The result of this process yields a
collection of parameter samples θ̃, whose density within the parameter space accurately
represents the posterior distribution.

3.2 Application to OCSCC

In this section we apply the introduced model based on the graph in figure 3.1.

3.2.1 Data and model assumptions

As of now, we have a unilateral model that only considers the ipsilateral side of the
patient where the primary tumor is located. Therefore, we include all 348 OCSCC
patients, using the maximum likelihood consensus for their ipsilateral nodal involvement
of the LNLs I to V. The maximum likelihood consensus considers the most likely state
for a lymph node level based on all available diagnostic modalities and their respective
sensitivity and specificity. A mathematical description for this consensus can be found
in [13]. For this consensus the specificity (sP ) and sensitivity then (sN) are fixed to 1,
since pathological data is assumed to be the ground truth. For the risk predictions in
section 3.2.3, the sensitivity was set to (sN=81%) and the specificity to (sP=76%),
which represent the values for CT imaging according to Pouymayou et al. [12]. In order
to give the model a sufficient number of time-steps to evolve and not let the probability
rates be too small, tmax was set to 10. Regarding the T-category, we only distinguish
between early (T1/T2) and late T-category (T3/T4) patients. The time prior p(t) is a
binomial distribution. In order to model the difference in involvement between early
and late T-category patients, we have two binomial distributions each described by the
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number of time-steps and the probability plate and pearly. plate > pearly as we expect
a late T-category patient to be diagnosed at a later time-step on average. Sampling
of both parameters (plate, pearly) is not possible because there would be no unique
optimal choice. Therefore, pearly = 0.3 is fixed and only plate is learned. The choice
of this fixed value is somewhat arbitrary as mainly the relation of the two parameters
is important. A visualization of the priors for the fixed pearly and an example for a
sampled plate can be seen in figure 3.2

The chosen graph described in figure 3.1 was shown to be the winning graph that can
describe SCC patients the best by [13]. For the simple reason that there is no data
available for LNL VII in the OCSCC dataset, connections to level VII are omitted.
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Figure 3.2: Visualization of the binomial time-priors for early and late T-category,
showing the probability of a diagnosis at the specific time-steps.

3.2.2 Sampled parameters and predicted prevalences

In figure 3.3 you can see a corner plot of the sampled hidden Markov model parameters.
On the diagonal, the histograms show the 1D marginals and on the lower triangle
all possible combinations of 2D marginals for the model parameters are shown. The
isolines enclose 20%, 50% and 80% of the sampled points respectively. Correlations
between the parameters are low overall but can be seen for plate with the spread from
the primary tumor to the levels I, II and III. Additionally, there is a weak correlation
between the parameter for the spread from level II to level I and the parameter for the
spread from the primary tumor to level I. The exact absolute values of the parameters
are not that important as they are dependent on the number of chosen time-steps and
therefore also the fixed time prior for early T-category patients. However, we can now
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model the evolution of the state of lymph node involvement over the time-steps. This
allows us to calculate the probability of every possible state at every time-step. By
marginalizing over the time-steps via the time-priors and summing over the relevant set
of states, we can predict the prevalence for every possible involvement pattern or also
involvement in an individual level.
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Figure 3.3: Corner plot of the sampled parameters with the 1D (histograms) and 2D
marginals (isolines).

In figure 3.4 the distributions of these predicted prevalences are shown for the individual
lymph node levels I to IV and the N0 state by the histograms. This means that they
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show the predicted percentage of patients that has involvement in the specified level
independent of the prediction for all other levels. The N0 histogram represents the
percentage of patients with no nodal involvement at all. The results are marginalized
over the T-category, so the model predicts a total prevalence for the combined cohort of
late and early T-category patients. The solid lines show the beta-posterior distribution
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Figure 3.4: Predicted and observed prevalences for the individual lymph node levels
and the N0 staging. The histograms show the model predictions while the solid lines
show the beta posterior of the observed data.

of the the prevalences observed in the dataset. One can see that the model is able to
predict the prevalence for all shown scenarios accurately as the peak of the histograms
and their width align with the distribution of the observed prevalences. In the legend the
number of patients out of 348 with the specified involvement can be seen. The predicted
prevalences are around 21%, 28%, 12%, 3% and 55% respectively for level I to IV and N0.

The same predictions can also be made for the prevalence of specific involvement
patterns. This means we can predict the percentage of patients that for example exactly
have involvement in LNL I and II but no involvement in level III on the ipsilateral side.
Three possible scenarios, again marginalized over T-category, can be seen in figure 3.5.
For ipsilateral level I, II and III involved we predict around 3% with this diagnosis, while



3.2. APPLICATION TO OCSCC 32

for involvement of level II and III but not in level I the prevalence is calculated to be
around 4%. For level I and II but not level III involved the prediction is 6%. Again,
the predictions of the hidden Markov model fit the observed prevalences well, which
shows that also specific involvement patterns and patient’s evolutions can be modelled
precisely. This is of great value since the risk predictions in the next section are based
on specific clinical diagnoses for the lymph node involvement on the ipsilateral side of
the patient.
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Figure 3.5: Predicted and observed prevalences for a selection of involvement patterns
in level I-III. The histograms show the model predictions while the solid lines show the
beta posterior of the observed data.

In figure 3.6 the prevalences for the same involvement patterns as in figure 3.5 are
shown but in this case the prevalence is stratified for the T-categories early (T1/T2)
and late (T3/T4). This stratification is possible due to the time priors and the sampled
parameter for the late T-category. As previously shown, the model predictions for the
overall patient cohort are very precise. Stratified for T-category, the model can still
give a good estimate but in some cases also over- (3.6 (b)) or underestimates (3.6
(c)) the difference in the prevalence between early and late T-category. However, the
deviations are usually relatively low and can be explained by the fact that there is only
one parameter trained to account for the difference in diagnose times. Introducing



3.2. APPLICATION TO OCSCC 33

for example level specific time priors would increase the complexity of the model and
could lead to overfitting. A possibility would be to not only include T-category as a
criteria for the diagnose times and time prior but also the progress of the lymph node
involvement. These mentioned limitations have to be kept in mind when doing risk
predictions stratified for T-category.
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(a) Correctly estimated difference in preva-
lence between early and late T-category
patients
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(b) Overestimated difference in prevalence
between early and late T-category patients
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(c) Underestimated difference in prevalence
between early and late T-category patients

Figure 3.6: Predicted prevalences for various patterns on the ipsilateral side stratified
for T-category early (T1/T2) and late (T3/T4).
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3.2.3 Risk assessment of microscopic involvement

The goal of the risk assessment is to predict the probability that a new patient with
a given clinical diagnosis z has microscopic and hence not detectable lymph node
metastases in a LNL. This risk for a LNL v can be written as followed using Bayes’ law:

R
(
Xv = 1 | z, θ̂

)
=

P
(
Z = z | Xv = 1, θ̂

)
P
(
Xv = 1 | θ̂

)
P (Z = z | θ̂)

=
∑

i:ξiv=1

P
(
Z = z | ξi, θ̂

)
P
(
ξi | θ̂

)
P (Z = z | θ̂)

(3.19)

Again, we have a parameter set θ̂ =
({

b̃v

}
,
{
t̃rv
}
r∈pa(v)

)
∀v ≤ V , representing the

probability rates in our graph. The denominator can be calculated using eq. 3.14 for
just one T-category and patient. ξi are all hidden states that that have LNL v involved.
We therefore write ξiv for the state of LNL v in the state ξi.

In the computational risk prediction that is used in the next section for the results, a
large number of parameter sets θ̂ is drawn using Markov chain Monte Carlo (MCMC).
This allows us to approximate the real probability density of the respective risk, also
providing uncertainties.

Compared to the prevalence prediction, the risk prediction has the advantage that not
only the risk for the general patient cohort is quantified but one can specify the risk
based on the clinical diagnosis, which can have a big influence on the probability of
metastases in a lymph node level. For example a clinically N0 neck can be expected
to have a much lower risk of occult disease in a lymph node level compared to a
patient that has clinically diagnosed metastases in neighboring LNLs. However, current
guidelines only consider the prevalence in the lymph node levels or even advocate the
long-standing convention to irradiate a majority of HNSCC on both sides of the neck
and include at least LNL I-III [39, 40]. In the next section we first quantify the risk of
occult disease in the levels on the ipsilateral side for different clinical diagnoses and
question clinical practice if treatement of level I-III is needed in every case.

Risk of occult disease in level III

Following eq. 3.19, we can now determine the risk for occult metastases in LNL III
for different clinical diagnoses based on the sensitivity and specificity of CT imaging
(sN=81%, sP=76%) according to Pouymayou et al. [12]. The risk of occult disease
in LNL III is the most interesting one due to the lower prevalence of metastases in
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the pathological evaluation. So the probability to allow exclusion of LNL III from
the Clinical Target Volume (CTV) in the case of certain clinical diagnoses is higher
compared to level I and II.
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Figure 3.7: Predicted risks of occult disease in level III for a selection of involvement
patterns in level I-III (clinical diagnoses). The histograms show the model predictions
while the solid lines show the beta posterior of the observed data.

In figure 3.7 one can see the risk of occult disease in LNL III for various scenarios. This
means that in the clinical diagnosis no metastases were found in level III and we quantify
the risk that there are some microscopic metastases, which were not deteced by the
imaging modalities, given a specific clinical diagnosis. Namely, we see for example the
risk given a N0, early T-category diagnosis, which is predicted to be around 1.5% with
a narrow confidence interval. Also for a clinical diagnosed involvement of ipsilateral
level I or II and early T-category patients with level I and II involved, the predicted risk
is at 5% or below. Only for late T-category patients with level I and II involved the risk
is higher than 5% with approximately 7%. So if we say a threshold and residual risk of
5% would be clinically acceptable, one could leave out treatement of LNL III in the
mentioned cases. This would be differ from the current guidelines and support a less
aggressive treatement of ipsilateral level III.
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Risk of occult disease in level II
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Figure 3.8: Predicted risks of occult disease in level II for a selection of involvement
patterns in level I-III (clinical diagnoses). The histograms show the model predictions
while the solid lines show the beta posterior of the observed data.

In level II the predicted risks for microscopic metastases are higher than in level III
when no or the neighboring levels are involved. This was expected to the way higher
observed prevalence of involvement in level II compared to level III. Even in the case of
a clinical N0 diagnosis, the risk of microscopic metastases in level II is already slightly
higher than the discussed threshold of 5%. Given involvement of adjacent levels, the
risk is already at 10% and above and reaches 20% for late T-category patients with
level I and III involved. However, it shows that the model can predict the expected high
risk scenarios based on the involvement and T-category.
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Risk of occult disease in level I
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Figure 3.9: Predicted risks of occult disease in level I for a selection of involvement
patterns in level I-III (clinical diagnoses). The histograms show the model predictions
while the solid lines show the beta posterior of the observed data.

For LNL I we have a similar scenario. As soon as a late T-category tumor or level II is
clinically diagnosed, the risk is above the set threshold of 5%. Only in the case of a N0
clinical diagnosis or only involvement of level III combined with an early T-category, the
risk is below the threshold at around 4%. Not irradiating level I in the case of clinical
involvement in level III or also an N0 diagnosis would be a radical step towards volume
de-escalation since level I is currently always treated [41]. However, the availability of
pathological data in almost all patients here that represents the ground truth, makes
the risk predictions more credible and less prone to underestimations. This could be
the case when the model is trained with a sensitivity and specificity of 1 but mainly
based on imaging data and therefore clinical diagnoses.

In the next chapter, also the contralateral risks and the influence of midline extension
and advanced ipsilateral involvement will be analyzed and discussed together with the
here presented ipsilateral risks.



Chapter 4

Bilateral model including midline
extension

4.1 Mathematical description

In this chapter, we will extend our previously described model to the contralateral neck.
The formalism and model described in chapter 3.1 only deals with one side of the neck,
the ipsilateral side where the primary tumor is located. However, metastatic spread to
the contralateral side of the neck also occurs depending on the tumor’s location and
lateralization [13]. So this spread on the contralateral side has to be included in the
model. Recent studies have shown that treatment could be limited to the ipsilateral side
for many patients [11, 42], however in current clinical practice, a bilateral irradiation or
neck dissection is still recommended in most cases [43]. The extension of the hidden
Markov model to the contralateral neck could support the selection of patients that are
suitable for reduced or even no contralateral neck irradiation.

As previously shown, the involvement on the contralateral side is much lower than on
the ipsilateral side. However, the contralateral involvement is not independent of the
ipsilateral involvement and the lateralization of the primary tumor. The incidence of
contralateral metastases is significantly higher for more advanced ipsilateral involve-
ment and patients where the primary tumor extends over the midline. Therefore, the
base probability rates bcv for the contralateral side that are expected to be lower than
the ipsilateral rates and their dependence on the ipsilateral involvement and midline
extension of the primary tumor has to be incorporated into the model.

The new joint conditional probability of the ipsilateral and contralateral side can
be written the following way:

38
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P
(
Xi,Xc | Zi,Zc

)
=

P
(
Zi,Zc | Xi,Xc

)
· P
(
Xi,Xc

)
P (Zi,Zc)

(4.1)

where the superscripts i and c indicate the ipsilateral and contralateral side. Since the
likelihood directly can be factorized, we can rewrite eq. 4.1 the following way:

P
(
Xi,Xc | Zi,Zc

)
=

P
(
Zi | Xi

)
· P (Zc | Xc) · P

(
Xi,Xc

)
P (Zi,Zc)

(4.2)

This means that given the true but hidden states of involvement in both sides of the
neck, the respective clinical diagnoses are independent. As introduced in eq. 3.12,
P
(
Zi | Xi

)
and P (Zc | Xc) are given by the observation matrices Bi and Bc.

To describe the joint probability of the hidden states P
(
Xi,Xc

)
, we assume that

there is no direct spread between ipsilateral and contralateral LNLs. This means that
the only arcs to the contralateral LNLs originate from the primary tumor, modelling
the origin of the contralateral spread. Therefore, the only correlation of the probability
for involvement of the ipsilateral and contralateral side is via the diagnose time t. This
means we can write the joint probability as a sum over the time-steps, again including
the time prior for the diagnose times.

P
(
Xi,Xc

)
=
∑
t∈T

p(t) · P
(
Xi,Xc | t

)
=
∑
t∈T

p(t) · P (Xc | t) · P⊤ (Xi | t
) (4.3)

Using the notation from chapter 3.1 and

Λ := P (X | t) =


π⊤ · (A)0

π⊤ · (A)1

...
π⊤ · (A)tmax

 (4.4)

we can write P
(
Xi,Xc

)
for the specific states Xc = ξn and Xi = ξm as followed:

P
(
Xc = ξn,X

i = ξm
)
=
[
Λ⊤

c · diag p(t) ·Λi

]
n,m

(4.5)

The rown n and column m are taken to find the exact probability of being in the given
state.
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Taking equation 4.5 and following the same principle as in 3.13 by multiplying the
observation matrices B onto both sides, we get:

P
(
Zc = ζn,Z

i = ζm

)
=
[
B⊤ ·Λ⊤

c · diag p(t) ·Λi ·B
]
n,m

(4.6)

Based on eq. 4.5 and 4.6 we do now have all necessary terms to perform the parameter
inference and the risk prediction (introduced in eq. 3.14 and eq. respectively 3.19) also
for the bilateral case. The likelihood function is then defined followingly:

P (Z | θ) =
Tmax∏
T=1

[
B⊤ ·Λ⊤

c · diag pT (t) ·Λi ·B
]
· fT (4.7)

The model parameters θ are now divided into θi and θc, as both sides now have their own
set of spread probabilites that are used to parametrize the transition matrices Ai and Ac.

As already mentioned, the spread probabilites from the primary tumor for the ip-
silateral and contralateral side (bi and bc) are assumed to be different. However, the
spread probabilites among the LNLs should be equal based on the assumption that the
lymphatic network in the head and neck region is symmetric. This still does not allow
us to account for a higher involvement on the contralateral side when the tumor crosses
the midline as it has been shown in the table 2.5. Therefore, we introduce two sets of
spread probabilites from the primary tumor to the LNLs on the contralateral side:

• bc,ev : Contralateral spread probabilities when the primary tumor extends over the
mid-sagittal plane.

• bc,�ev : Contralateral spread probabilities when the primary tumor extends over the
mid-sagittal plane.

The assumption we make is, that a linear mixing parameter α can define the contralateral
spread from the primary tumor to the LNLs as a linear superposition between the
ipsilateral spread parameters, which represents the maximum, and the contralateral
spread probabilites for tumors without midline extension, which represents the minimum:

bc,ev = α · biv + (1− α) · bc,�ev (4.8)

This mixing parameter is a new model parameter and must be inferred from the data.
It comes with the strong assumption that the base probability rates from the primary
tumor to the contralateral side follow the same linear increase for all LNLs when the
tumor crosses the midline. Although this assumption is probably not strictly true, it
helps to account for differences in the involvement patterns on the contralateral side
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between tumors with and without midline extension by adding just one parameter to the
model. By adding this midline extension information, we now have an update likelihood
function accounting for the changed base spread probabilities:

P (Z | θ) =
∏

m∈{e,�e}

[
Tmax∏
T=1

[
B⊤ ·Λ⊤

c,m · diag pT (t) ·Λi ·B
]
· fT,m

]
(4.9)

where m = 0 represents tumors without midline extension and m = 1 tumors with
midline extension. Since the contralateral transition matrix changes is dependent on
the spread probabilities, we now have a dependence on the midline extension in the
matrix Λc.

A challenge we face for the OCSCC dataset from Lyon is, that we do not have
any midline extension information available. So we can not simply apply the likelihood
function described in eq. 4.9 as we have to incorporate an approach for patients without
available midline extension information. In the following two sections we will discuss
and describe the two approaches to account for this missing information. Later, both
model extensions will be tested with the real datasets.

4.2 Model extensions

4.2.1 Marginalization over midline extension states

The idea of marginalizing over the midline extension states includes a new parameter
inferred from the data. This parameter is the probability of a patient to have a primary
tumor that extends over the mid-sagittal plane P (m = 1). For patients with known
midline extension state, either the part of the likelihood accounting for midline extension
or the part accounting for no midline extension is calculated. For patients with no
information about the midline extension both parts are calculated. To then marginalized
over the midline extension state, the separate parts of the likelihood function have to
be weighted by the probability of midline extension or no midline extension and the
number of the corresponding patients. We can write the likelihood in the following
way to show the different contributions of the three possible patient cohorts (midline
extension: Nm=1, no midline extension: Nm=0 and unknown midline extension: Nm=?):
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P (m = 1)Ne ·
Ne∏
i=1

∑
X

P (Zi | X)P (X | θ,m = 1)

· P (m = 0)
N
�e ·

N
�e∏

i=1

∑
X

P (Zi | X)P (X | θ,m = 0)

·
N?∏
i=1

[
P (m = 1)

∑
X

P (Zi | X)P (X | θ,m = 1)

+ P (m = 0)
∑
X

P (Zi | X)P (X | θ,m = 0)

]
(4.10)

For the patient cohorts with known midline extension, the log-likelihood can be easily
obtained by taking the logarithm of the sum of all hidden states and summing over all
patients in this cohort. However, for the patient cohort with unknown midline extension
(N?)this can not be done so easily for the two contributions (midline extension, no
midline extension) and the logarithm of the whole contribution of a patient has to be
taken.

This is the first approach and a possible solution to include also patients without
midline extension information and still include their valuable information about the
pathological involvement in the LNLs on the ipsilateral and contralateral side. The
model predictions are shown and analyzed in section 4.3.1.

4.2.2 Time evolution of midline extension states

The limitation of the approach presented in the previous section is the time indepen-
dence of the midline extension state. In the case of a tumor extending the midline it
only holds the information that there was a midline extension at the point of diagnosis.
However, it does not consider the patient’s evolution over time. The following method
accounts for that evoultion of the midline extension and tracks the probability of the
midline extension state at every time step. This generalizes the approach to include
the midline extension information into the hidden Markov model and can at the same
time deal with missing information as it is the case in the CLB dataset.

A possibility would be to just add the midline extension information to the exist-
ing transition matrix A. However this would lead to double the number of states since
every existing state for the possible combinations of lymph node involvement would then
be represented twice. Once with midline extension and once without midline extension.
This would increase the number of entries in the transition matrix from 22V , V being
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the number of included lymph node levels, to 22(V+1) and hence increase the size by a
factor of 4. As a result, the training time of the model would be significantly increased.
Therefore it makes sense to track the midline state on its own since it can be sep-
arated quite easily. We are going to show this newly introduced formalism in this section.

To track the midline extension state, we need the same tools as for the lymph
node involvement. Therefore, we introduce a midline state vector that represents
the probabilites for the midline extension states at a certain time-step t:

ω[t] =

[
P (m = 0 | t)
P (m = 1 | t)

]
(4.11)

Additionally, we need a transition matrix for the midline extension state to evolve the
state vector ω over the time.

AM =

[
P (m[t+ 1] = 0 | m[t] = 0) P (m[t+ 1] = 1 | m[t] = 0)

0 1

]
(4.12)

We can call the probability P (m[t+ 1] = 1 | m[t] = 0) the midline extension probability
rate. It describes the probability that a tumor has a midline extension from one timestep
to the next one. This midline extension transition rate is the only additional model
parameter that has to be sampled and therefore this model extension comes with a
low cost but also introduces a more precise way to model the true state of the midline
extension at any time point. The diagnose matrix that contains the probabilities to see
the provided diagnosis, given any possible hidden state, is defined separately for the
midline extension state and the lymph node involvement. The diagnose matrix for the
midline extension DM,T is defined as:

DM,T =

[
1−m1 . . . 1−mN

m1 . . . mN

]
(4.13)

Where T stands for the respective T-category and mi is the midline extension state
of patient i out of N patients. mi = 0 means that patient i has no midline extension
while mj = 1 means that patient j has midline extension. If the midline extension
is unknown for a patient k, 1−mk and mk are set to 1 since we have no additional
information tending to one or the other state. The diagnose matrix for the ipsilateral
side DT,i and the contralateral side DT,c follow the same principle where the most
likely state is set to one. The number of columns of the matrix therefore is the same
and corresponding to the number of patients. The number of rows is not just two as
for the midline extension diagnose matrix but 2V , since this is the possible number of
states for V LNLs. The most likely state is determined by the maximum likelihood
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consensus diagnosis method described in chapter 4 of [13].

Due to the fact that the midline extension can occur in every timestep, the total
probability of a midline extension up to a certain timestep is not constant. Therefore we
have to evolve the state vectors recursively over time. We have our midline extension
state vector ω[t] that evolves simply with the midline extension transition matrix:

ω[t+ 1] = ω[t] ·AM (4.14)

For the state vector containing the state probabilities given without midline extension of
the tumor, it is again a simple multiplication with the transition matrix Am=0. However,
for state vector considering midline extension of the tumor, we need a linear combination
with the entries of the midline extenstion state vector as weights:

φ
�e
[t+ 1] = φ

�e
[t] ·A

�e

φe[t+ 1] = ω1[t] ·φ�e
[t+ 1] + ω2[t] ·φe[t] ·Ae

(4.15)

where ω1 denotes the first entry of the midline extension state vector (no midline
extension) and ω2 the second entry (midline extension). φ

�e
[t+1] and φe[t+1] denote

the state vector with the probabilities for all possible states at time point t+1 cosidering
no midline extension respectively midline extension.

These evolved state vectors can then be written in the form of the matrix Λ that was
described in 4.4 and are used to define the joint diagnose probabilities of no midline
extension (J

�e
) and midline extension (Je):

JT,�e
=
∑
k

[
DT,i ⊙

[
Λ⊤

i,�e
· diag(pT (t)) ·Λ⊤

c,�e
·DT,c

]]
k

JT,e =
∑
k

[
DT,i ⊙

[
Λ⊤

i,e · diag(pT (t)) ·Λ⊤
c,e ·DT,c

]]
k

(4.16)

where T stands for the T-category, k denotes the kth column of the matrix, ⊙ represents
the Hadamard product and i and c stand for the ipsilateral and contralateral side. DT,c

and DT,i are constructed in the same way as the matrix for the midline extension but
do not contain the observed midline extension state. They hold the information of the
observed state of lymph node involvement for every individual patient. So the observed
state is denoted by a 1 while the other states are represented by a 0.

By combining the two joint diagnose probabilities for midline extension and no midline
extension, we can write down the complete likelihood function by taking the product
over the T-categories:
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P (Z | θ) =
Tmax∏
T=1

[∑
l

[
JT ·D⊤

M,T

]
l

]
, JT =

[
JT,�e
JT,e

]
(4.17)

where l again is the lth column of the matrix. With this function, finally the likelihoods
of all patients in the combined dataset can be computed when splitted into T-categories
corresponding to the different time priors.

4.3 Application to OCSCC

The model assumptions for this section are the same as for the unilateral model described
in subsection 3.2.1. However, now not only the data for the ipsilateral side but also all
available data for the contralateral side of the neck is included.

4.3.1 Sampled parameters and predicted prevalences

In figure 4.1 and 4.2 the trained model parameters are displayed with the 1D (his-
tograms) and 2D marginals (isolines). Figure 4.1 is based on the model with the simple
marginalization over the midline extension as described in section 4.2.1, while figure 4.2
shows the parameters of the model considering the evolution of the midline extension
state over time as described in the previous section 4.2.2. As expected, the ipsilateral
base parameters are sampled to the same values as with the unilateral model shown
in figure 3.3. Also the transmission probabilities between the lymph node levels are
very similar to the unilateral model in both bilateral models. This makes sense as no
difference in spread between the LNLs should be observed when extending the model
to the contralateral side of the neck. The contralateral base parameters are very low,
explaining the low prevalence of involvement on the contralateral side and are equivalent
for both midline marginalization approaches. So overall both approaches lead to very
similar probability rates respectively model parameters as also the diagnose time for
late T-category patients is expected to be distributed equally. Minor differences occur
for the mixing parameter α but due to the very broad distribution of the parameter in
both models (visible in the histogram), no significant difference can be observed.

The most relevant parameter in this case is the midline extension probability, as
it was newly added to the model and implement with the two mentioned methods. The
different approaches are also the reason for the different values that are trained for this
parameter. In the case where we simply marginalize over the midline extension (figure
4.1) an average probability of 0.17 gets sampled. This is the total probability for a
patient to have a tumor extending over the midline at the point of diagnosis. This is
in agreement with the value observed in the dataset where 16% (33 patients) out of
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the 202 patients with known midline extension state have a tumor extending over the
mid-saggital plane. Therefore, also a similar or slightly higher percentage of midline
extensions is expected for the patient cohort of the CLB dataset, for whom the midline
extension state is unknown.

In the approach where we evolve the midline extension state over time, the sam-
pled midline extension parameter is not the probability for a patient to have midline
extension at the point of the diagnosis but has to be interpreted analogously to the
other parameter as a probability rate. So it is the probability that a midline extension
occurs from one time step to the next one. In our case a value of 0.05 gets trained. To
calculate the predicted probability that a tumor extends over the midline at the point
of diagnosis, we have to marginalize over all time-steps and calculate the product over
all possibilities of the diagnose point and time point of the midline extension. We can
write that in the following way for a given T-category T :

P (m = 1) = 1−
N∑
t=1

(
t−1∏
i=1

(1− P (m[i] = 1 | m[i− 1] = 0)) · pT [t]

)
(4.18)

where N is the number of time-steps and pT [t] is the probability for a patient with
T-category T to be diagnosed at time-point t. P (m[i] = 1 | m[i− 1] = 0) is the
probability that a midline extension occurs from the i− 1th to the ith time-step. In
our case this is a constant value and the sampled model parameter mentioned earlier.

In our case we have early and late T-category patients, the two correspoinding bino-
mial distributions as the prior and P (m[i] = 1 | m[i− 1] = 0) = 0.05. The priors are
visualized in figure 3.2 and are mathematically described by:

early: = B(10, 0.30)

late: = B(10, 0.48)
(4.19)

where B(, ) denotes the binomial distribution and 10 is the number of time-steps. 0.3
and 0.48 means that, on average, early T-category patients are diagnosed in the third
time step and late T-category patients around the fifth time step. As mentioned earlier,
the probability for the early T-category is fixed and the value for the late T-category is
learned by the model. We can now calculate the probability of a midline extension at
the point of diagnosis separately for early and late T-category patients:

P (m = 1 | T = early) = 0.140

P (m = 1 | T = late) = 0.236
(4.20)

These values are in agreement with the values observed in the ISB dataset where 13.3%
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(20 out of 150 patients) and 25.0% (13 out of 52 patients) were observed respectively.

So it has been shown that both introduced model extensions can predict the midline
extension probability reliably. The approach where the time evolution of the midline
extension is incorporated, we have the advantage that it can also predict the probability
separately for every T-category that is specified in the model.
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Figure 4.1: Corner plot of the sampled parameters with the 1D (histograms) and 2D
marginals (isolines) for the bilateral model including marginalization over the midline
extension
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This advantage of the midline extension time evolution model could also have a positive
effect on the model performance in the prevalence and risk predicition. We will further
analyze this in the following sections.
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Figure 4.2: Corner plot of the sampled parameters with the 1D (histograms) and 2D
marginals (isolines) for the bilateral model including time evolution of the midline
extension state

In figure 4.3 the predicted prevalences for all ipsilateral LNLs can be seen in the form
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of histograms for both model approaches ((a): marginalization over midline extension,
(b): time evolution model). The beta posteriors of the observed prevalences are shown
by the solid lines. We have already shown these prevalences predicted by the unilateral
model in figure 3.4. Both bilateral models predict the prevalences equal and as good as
the unilateral model on the ipsilateral side when not stratified for T-category.
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Figure 4.3: Predicted and observed prevalences for the ipsilateral involvement in the
individual LNLs of the model with (a): marginalization over the midline extension and
(b): time evolution of the midline extension state.

Looking at figure 4.4 we can see the same comparison and predictions of the bilateral
models for the contralateral LNLs. Overall, both models again are able to describe the
observed prevalences well but some minor differences arise. While the marginalization
model predicts the prevalence in contralateral level II slightly better, the time evolution
model is closer to the observed data for level I. This can partially be explained by the
higher transmission rate from level II to I in the time evolution model. The other reason
could be a minor difference in the spread from the primary tumor to level II.
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Figure 4.4: Predicted and obvserved prevalences for the contralateral involvement in
the individual LNLs of the model with (a): marginalization over the midline extension
and (b): time evolution of the midline extension state.
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The prevalence predictions again can not only be made for individual levels but also for
specific involvement patterns. The results for both models are displayed in figure 4.5.
Three of the four displayed scenarios are described well by both models, also including
the contralateral case. However, a deviation is observed for both models when we look
at combined involvement of ipsilateral and contralateral level I.
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Figure 4.5: Predicted and observed prevalences for various involvement patterns in
level I-III (ipsilateral and contralateral) of the model with (a): marginalization over the
midline extension and (b): time evolution of the midline extension state.

A possible explanation is that this scenario is very rare and therefore it makes sense that
the model puts less attention to it. This can also be observed in figure 4.6. Stratified
for T-category in the same scenario, the prevalence for early T-category patients is
estimated quite precisely but for late T-category patients it is underestimated by a
relatively large margin in both models. So it is not the known case where either the
early or late T-category gets underestimated and the other gets overestimated as it
is seen for example when ipsilateral level II and III but not I is involved ( 4.6b, 4.6d).
To model it correctly, the sampled parameter for the late T-category would have to
be much larger, associating late T-category patients to a much later time of diagnosis.
This would lead to larger deviations in many cases with higher prevalence, resulting
in a worse value of the likelihood function. So the model has not enough degrees of
freedom to correctly describe all these scenarios. Therefore we especially have to be
aware of the fact that risks for late T-category patients with contralateral involvement
could be underestimated. However, regarding current clinical practice with mostly
bilateral treatment, we are mostly interested in the cases where we only have ipsilateral
involvement.
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Figure 4.6: Predicted and observed prevalences for two scenarios stratified for T-category
of the model with (a,b): marginalization over the midline extension and (c,d): time
evolution of the midline extension state.

Another important risk factor is midline extension. So it makes sense to also look at the
prevalences for contralateral levels stratified for midline extension. The results for both
bilateral models and involvement of contralateral level II can be seen in figure 4.7. One
can see that the prevalence in contralateral level II is described well by the model when
no midline extension is present. Both bilateral models predict a strong increase for the
involvement of contralateral level II when midline extension occurs. These predictions
are higher than what is observed in the data. However, it has to be said that in both
T-categories there was each only one patient with midline extension. This can also
be seen by the very wide posterior of the observed data in these cases. Therefore the
discrepancies should not be weighted too strongly and the fact that a clean separation
of patients with and without midline extension is possible should be highlighted.
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Figure 4.7: Predicted and observed prevalence in contralateral level II stratified for
T-category and midline extension of the model with (a): marginalization over the
midline extension and (b): time evolution of the midline extension state.

4.3.2 Risk assessment of microscopic involvement

For the ipsilateral side, as previously mentioned, the two tested bilateral models show
almost identical results to the unilateral model discussed in chapter 3. Therefore, we
are only going to show and discuss the risks for occult disease in contralateral levels
based on the bilateral model including midline extension. From now on, all results are
generated by the model considering the time evolution of the midline extension since it
follows a more general and sophisticated approach and has shown to be at least equal
in performance to the model with simple marginalization over the midline extension.

In figure 4.8 the risks of occult disease in contralateral level I and II are shown
for various possible clinical involvements on the ipsilateral side. Cases where only the
ipsilateral side shows clinical diagnosed metastases are of most interest since current
guidelines suggest bilateral treatment of the neck for at least level I, II and III in every
case [39, 40]. So the potential for volume de-escalation of the CTV could be the largest
when only ipsilateral levels are clinically involved.

One can see that the risk for occult disease in level I and II on the contralateral
side of the neck is very low for all selected involvement patterns on the ipsilateral side.
In level I the risk does not increase above 2% even for the very improbable clinical diag-
nosis of late T-category and involvement of all ipsilateral levels I to V. In contralateral
level II the risk even is expected to be below 1% given the same diagnosis. Also to
be mentioned is, that the expected risk of microscopic metastasis on the contralateral
side does only marginally increase with advanced ipsilateral involvement and also the
influence of the T-category is insignificant. Therefore, assuming a clinically relevant
threshold risk of 5%, unilateral treatment of the neck could be a possibility when the



4.3. APPLICATION TO OCSCC 53

clinical diagnosis only includes ipsilateral involvement of the LNLs.
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Figure 4.8: Histogram showing the risk of occult disease on the contralateral side
in (a): level I and (b): level II for various clinical diagnoses (lymph involvement and
T-category)

However, we have to consider the midline extension as an important risk factor. The
predicted risk of occult disease in contralateral level I and II, additionally stratified for
midline extension, is displayed in figure 4.9. The risks when no midline extension is
diagnosed are very low and almost equal to the overall risks shown in 4.8 as only around
17% of all tumors extend over the midline. As soon as the clinical diagnose includes
midline extension of the tumor, the risk of occult disease in the contralateral levels I
and II increases drastically to around 4-5%. So neither the ipsilateral involvement nor
the T-category is predicted to have a significant influence on the risk but the midline
extension does. Summarizing, it can be said that a patient without midline extension
and only clinical diagnosed ipsilateral involvement could be suitable for unilateral neck
treatment. For patients with midline extension, caution is advised due to the significant
increase in risk for contralateral microscopic metastases.

0 1 2 3 4 5 6 7 8
risk [%]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 N0 | late | ext
N0 | early | noext
N0 | late | noext
ipsi I/II | late | ext
ipsi I/II | late | noext

(a)

0 1 2 3 4 5 6 7 8
risk [%]

0.0

0.5

1.0

1.5

2.0

2.5 N0 | late | ext
N0 | early | noext
N0 | late | noext
ipsi I/II | late | ext
ipsi I/II | late | noext

(b)

Figure 4.9: Histogram showing the risk of occult disease in (a): level I and (b): level II
on the contralateral side for various clinical diagnoses also including midline extension.
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4.4 Model evaluation and comparison

The bilateral models, one incorporating simple marginalization over midline extension
and the other accounting for the possible time evolution of the midline extension,
showed negligible differences in the prevalence and risk predictions analyzed in the
previous section 4.3. However, to compare the model approaches in a mathematical
way, the model evidence provides the needed information. The higher the value of the
model evidence the better a model describes the given data. This does not give us the
possibility to independently rate a model but to compare it to other.

So mathematically speaking, we want to know which model M has the highest
probability given the dataset Z. In Bayesian terms we can write this probability the
following way:

P (M | Z) =
P (Z | M)P (M)

P (Z)
(4.21)

Since we only have two models in the described case we can compute the Bayes factor
to compare them if we assume a uniform prior P (M). A uniform prior means that we
a priori consider all models to have the same probability. The formula for the Bayes
factor is:

K1v2 =
P (M1 | Z)

P (M2 | Z)
=

P (Z | M1)P (M1)

P (Z | M2)P (M2)
=

P (Z | M1)

P (Z | M2)
(4.22)

On the right hand side of the equation we now have the model evidences of the
two models we want to compare. We can write them as their respective likelihoods,
marginalized over all parameters:

P (Z | M) =

∫
P (Z | θ,M)P (θ | M)dθ (4.23)

Normally, no analytical solution exists for this integral and due to the number of
model parameters it is also almost impossible to brute force calculate the integral. So
several approximation methods to calculate the model evidence have been developed.
In this case we will use thermodynamic integration that is possible in the context of
Markov-Chain Monte Carlo sampling used for the training process of our model. We
will not introduce the mathematical background here but a short introduction of the
concept can be found in [13] and for further background [44] is recommended.

In table 4.1 the log-evidence and its standard deviation can be found for the two
models.
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Model log-evidence standard deviation

Simple marginalization -952.00 1.87
Time evolution -936.93 1.98

Table 4.1: Log-evidence and the standard deviation for the two compared models that
incorporate the marginalization over the midline extension and the time evolution of
the midline extension.

Using eq. 4.22 we get a Bayes factor in the order of ∼ 106. According to [45] a
Bayes factor of larger than 102 is decisive. So in our case this means that the time
evolution model is more strongly supported by the data under the consideration of the
simple marginalization model with decisive strength. Therefore we can conclude that
the advantage of the model including the time evolution of the midline extension can
not visually be determined to be more strongly supported by the data but a statistical
analysis shows the expected benefits of the more general and sophisticated approach to
model and include the midline extension state.

However, this evaluation has to be regarded with suspicion as further analysis is
needed on the exact comparability of the likelihood of the two models as the midline
extension information is not handled in the same way.



Chapter 5

Discussion of model-based results

In the previous chapter 4 we have shown that the hidden Markov model proposed by
Ludwig et al. [1] can be extended to also deal with missing midline extension information.
Additionally, a general approach to model the midline extension evolution over time has
been introduced and incorporated into the existing model. The bilateral model with
the proposed extensions regarding the midline extension and also the existing unilateral
model have been tested on the whole OCSCC dataset including pathological information
of lymph node involvement for LNL I-V for 348 patients treated at the Centre Léon
Bérard and the Inselspital Bern. All three tested models showed good capability to
describe the lymphatic metastatic progresseion respectively the patient’s evolution
over time for the ipsilateral (unilateral and bilateral model) and contralateral (bilateral
model) side of the neck. Therefore, we have the ability to reliably predict the prevalence
for the involvement of individual LNLs or patterns of lymph node involvement that was
also observed in the multicentric dataset. It is also possible to quantify the influence
of the patient’s T-category and midline extension state on the progression of the
lymph node involvement, however, also because of the restricted flexibility of the model
regarding the number of model parameters, some Limitations arise. These include over-
or underestimation of the observed prevalence for early and late T-category patients.
A combination of the T-category with clinically diagnosed involvement (N-category)
could be a possible solution to this by reducing the sole dependence on the T-category.
The influence of the midline extension on the contralateral spread seems to be slightly
overestimated as well but because of the limited available data further testing with a
larger dataset would be needed to further elaborate on this matter. Nonetheless, the
T-category and midline extension are important risk factors regarding the lymph node
involvement and therefore are also valuable for a subsequent risk prediction based on
different clinical diagnoses.

The most important capability of the hidden Markov model is the possibility of risk
predictions for occult disease in the individual LNLs given a specific clinical diagnosis.
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This allows a highly diagnosis specific assessment of the CTV-N definiton that is not
implemented in current guidelines that are mainly based on the TNM classification
[40]. The performed risk predictions for the contralateral and ipsilateral neck indicate
the possibility of a more elective CTV-N definition than recommended by current
guidelines which at least support irradiation of level I, II and III on both sides of the
neck [40]. Specifically, on the ipsilateral side treatment of level III could possibly be left
untreated if a patient has no clincally diagnosed lymph metastases or even in the case
of clinical involvement of level I (risk < 3%). On the contralateral side an even larger
deviation from the recommended irradiation of level I-III is supported by the model’s
risk predictions for occult disease. The predicted risks are below 2% given any clinical
diagnosis on the ipsilateral side when the tumor is not extending over the mid-saggital
plane. Therefore, a unilateral treatment for OCSCC patients without diagnosed midline
extension of the primary tumor could be taken into account.

Training the model on a dataset that mainly includes pathological data increases
the credibility of the model’s training process and it’s predictions. However, there
are still some limitations and potential sources of bias regarding the data. At both
institutions some patients received modified neck dissections which means that for
example contralateral neck dissection was not performed in all patients. This could
potentially lead to an underestimation of the prevalence of occult metastases in these
contralateral levels. Additionally, it has to be mentioned that the dataset is based on
information acquired during routine clinical treatment and could therefore be inherent
across the institutions including uncertainty in the separation of individual LNLs. An
evidence for this could be the difference in involvement of level III and V between the
ISB and CLB dataset. Patients from the Inselspital Bern have lower involvement in level
V than in the CLB dataset but higher involvement and more investigated lymph nodes
in level III, indicating the mentioned inaccuracies. Finally, both datasets only contain
patients who received neck dissection and patients treated with definitive radiotherapy
are excluded. Since the primary treatment at both institutions included surgery, this
should not lead to a strong patient selection bias.

The introduced time evolution of the midline extension provided a more general
approach to model the patient’s evolution and deal with missing midline extension
information. In addition, an extension of the model to take the various subsites into
account would be an interesting next step. This could improve the model by being
able to account for the shown systematic differences in the lymphatic spread from the
individual subsites. Finally, a redefinition of the T-category dependence by additionally
including some lymph node involvement information into the time prior could adress
the limitation of over- or underestimating the prevalence in certain scenarios stratified
for T-category.



Chapter 6

Conclusion

This thesis presents an extensive analysis of the lymph node involvement patterns
of OCSCC patients and e.g presented primary tumor location specific spread pattern
characteristics or the dependence on various clinicopathological risk factors such as
T-category, extracapsular extension or midline extension. The subsequent application
of a hidden Markov model to model and describe the lymphatic metastatic progression
including the developed model extensions could be analysed in detail on the basis of
these descriptive statistics. However, it also includes a general overview that future
studies could benefit from by giving additional information for example about the
influence of ECE on the lymph involvement.

The application and testing of the hidden Markov model showed that it can also
describe a OCSCC patient’s evolution via lymphatic spread over time well. Based on
the model’s risk predictions for occult disease given a specific clinical diagnosis a more
personal CTV-N definition can be made, potentially allowing volume de-escalation
strategies by e.g sparing ipsilateral LNL III for a clinically classified N0 patient and
contralateral LNLs in patients without a primary tumor extending over the mid-saggital
plane.
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