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1 Introduction

Hyperbolic lattices constitute a novel experimental platform with an emergent negative curvature.

These lattices are regularly tiled by p-sided polygons that meet with q identical copies at each

corner, denoted by {p,q} in the Schlä�i notation, with (p − 2)(q − 2) > 4, [3]. Recent experi-

mental realizations triggered a staidly growing interest for experimental and theoretical studies,

which aim to investigate emergent physical properties. These physical phenomena range from

elasticity considerations to quantum gravity. The intrinsic negative curvature of these systems

may facilitate quantum error correction codes [4], shed light on the holographic principle [5, 6],

enable the engineering of new meta-materials and provides an intriguing new playground for the

study of topological phases in condensed matter physics [7�13].

This �eld of research has been fueled by experimental works of two principal set-ups. A. J. Kollár

et al. [14] have constructed the �rst experimental realization of a two-dimensional quantum hy-

perbolic lattice. They have built a hyperbolic circuit quantum electrodynamical network through

the use of interconnected superconducting resonators, which exhibit �at bands in the density of

states. This set-up enables the study of quantum mechanical properties in curved spaces through

photonics. Further, an electric circuit network emulating classical hyperbolic lattices was built by

P. M. Lenggenhager et al. [15]. They have demonstrated that signals propagating in the electric

circuit travel on the geodesics of hyperbolic space. These experimental realizations have elevated

two-dimensional hyperbolic lattices from purely theoretical academic concepts to physically real-

izable systems for the study of emergent physical phenomena on curved spaces.

The intrinsic negative curvature of hyperbolic lattices gives rise to remarkable features that are in

a sharp distinction with Euclidean lattices. Recall that the Bloch theorem is induced when endow-

ing a crystal lattice on regular tessellated 2D Euclidean space with periodic boundary conditions.

As such, the unit cell is compacti�ed on a closed Riemann surface of genus-one and the Brillouin

zone (BZ) can be understood as a 2D torus. As a result, the Euclidean lattice and its associated

BZ torus have the same physical dimension. The corresponding Hilbert space is separable and

is decomposed into blocks corresponding to various momenta in the BZ torus, which drastically

improves the computational di�culty.

In contrast, periodic boundary conditions and the corresponding notion of the Bloch theorem

become more subtle and involved in the hyperbolic lattice. The unit cells of a hyperbolic lattice

cannot be compacti�ed on a closed Riemann surface of genus-one, but on higher genus surfaces.

Additionally, translations in hyperbolic spaces do in general not commute, thus the Bloch theorem

has to be generalize in order to properly incorporate the non-Abelian translation groups [16�19].
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1 Introduction

1.1 State of the art

A generalization of the Bloch theorem is of fundamental importance for any fruitful attempt at

a theoretical or computational characterization of models on lattices in the hyperbolic plane. J.

Maciejko et al. [19] have developed such a theory, denoted as hyperbolic band theory (HBT), for

the {8, 8}-lattice. It generalizes the Abelian Bloch theorem by means of algebraic geometry. They

have considered a large class of Hamiltonians obeying the symmetry of the underlying hyperbolic

lattice. The construction of collections of Bloch eigenstates was shown to be feasible. Further,

I. Boettcher et al. [16] have generalized the notions of Euclidean crystallography to hyperbolic

lattices. The study of hyperbolic geometry on higher genus Riemann surfaces reveals that {p,q}-

hyperbolic lattices of regular Bravais lattices can be classi�ed into sets of common properties.

They have derived a list of example hyperbolic lattices by using this classi�cation methodology,

which lays the foundation for the application of concepts in condensed matter studies on hyperbolic

lattices.

In a subsequent work conducted by D. M. Urwyler et al. [13], exact digitalization (ED) and

HBT was used in order to study the Haldane model [20] and a simpli�ed Kane-Mele model

on the {8, 3}-lattice. By applying the classi�cation of the hyperbolic lattices of Ref. [16] they

were able to implement the models on hyperbolic lattices and have revealed topological phases by

means of non-vanishing �rst Chern numbers. Additionally, the bulk-boundary correspondence was

demonstrated by comparing the bulk and boundary density of states. Further, higher dimensional

topological invariants, like the second Chern numbers, were calculated but turned out to be trivial

in the models considered.

Independently of one another Z.-R. Liu et al. [8] and Y.-L. Tao et al. [10] were able to show

manifestations of a higher-order topological phases in a selection of hyperbolic {p,q}-lattices.

To this end, they used almost identical models, both related to the Kane-Mele model in [13].

They explicitly break time reversal symmetry T through a nearest neighbor hopping term, which

renders the edge modes massive. Although the required rotational symmetry Cp is broken too,

the Hamiltonian remains invariant under the combined TCp symmetry and in combination with

the remaining symmetries of the system, corner modes can be veri�ed in �nite �akes.

Localized states can be revealed in non-Hermitian models too as demonstrated by J. Sun et al.

[9]. The inclusion of an additional complex staggered on-site potential in the Haldane model,

together with the irregular boundary of hyperbolic lattice �akes, gives rise to corner modes. By

modeling the boundary as 1D Zigzag chain enmeshed with the appropriate on-site and hopping

terms, they were able to show that the complex on-site terms, acting as gains and losses, drive

the localization of the boundary states due to their irregular distribution on the edge.
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1 Introduction

Real-space topology can also be considered in order to study the extreme localization of states in

�at bands. Hyperbolic kagome- and Lieb-lattices were used by T. Bzdu²ek et al. [12] for a limited

set of hyperbolic lattices. In analogy to the Euclidean case, they constructed compact localized

states in real-space and extended noncontractible-loop states in order to show the characteristics

of �at-band degeneracy. The analysis of Abelian as well as the �rst non-Abelian Bloch state

characterization was shown to be in agreement with their proposed properties of �at bands in

hyperbolic lattices.

Strong correlations in hyperbolic lattices, besides from �at bands, may also be used to study the

interplay of general relativity (GR) and quantum �eld theory (QFT) in Minkowski space. The 2D

hyperbolic spaces can be thought of as stereographical projections of hyperboloids embedded in

2+1 dimensional Minkowski space projected onto the 2D unit disk [15]. The holographic principle

proposes that D+1 dimensional gravitational systems are equivalent to D dimensional QFT with-

out gravity [6]. P. Basteiro et al. [5] have made a step towards a discrete holographic principle.

They have applied an XXZ spin chain model to the boundaries of 2D hyperbolic lattices and stud-

ied the considered parameters of the model using renormalization group (RG) techniques. The

holographic principle proposes that the translation symmetries of the bulk extend to the bound-

ary. Although some aspects of the bulk-boundary correspondence were subject of their study,

they propose that further studies will be needed.

Furthermore, the tools of QFT can also provide insights into challenges posed by the non-Abelian

Bloch theorem. The non-Abelian gauge theories, known as Yang-Mills theories, in the minimal

Standard model couple gauge bosons, like gluons in QCD, to quarks and leptons. QCD is en-

forced by a local SU(3) invariance of its Lagrangian, which enforces the aforementioned coupling

by promoting the derivative to a covariant derivative. The gauge �eld coupling in hyperbolic lat-

tices can be seen in the hyperbolic band theory, which reveals Bloch factors valued in U(N) [19].

G. Shankar et al. [21] have established a connection between HBT and Yang-Mills theories. They

showed that the volume of the non-Abelian BZ is equal to the discretized path integral of the

U(N) gauge �eld kinetic term. Further, they showed that the moments of the density of states of

hyperbolic tight-binding models correspond to expectation values of Wilson loops in the BZ torus.

In combination, these relations reveal the exact spectrum in the large-N limit. E�ectively, this

proves that the density of states computed by an appropriate random sampling method captures

the thermodynamic limit exactly. However, they did not o�er a method for implementing such a

random sampling procedure.

Recently, P. M. Lenggenhager et al. [3] have developed a supercell-based Abelian hyperbolic

band theory (AHBT) which provides a sampling strategy. Their approximative method enables

the systematic access of non-Abelian Bloch states by utilizing group theory. They were able to

demonstrate the convergence of their method to the thermodynamic limit, and by extension the

work of Ref. [21] may yield the necessary tools providing deeper explanations.
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1 Introduction

1.2 Motivation and goals

Deriving Abelian as well as non-Abelian Bloch theorems requires the construction of �nite clusters

of lattice sites and the imposition of periodic boundary conditions (PBC), called PBC clusters

[18]. However, for hyperbolic lattices the construction of PBC clusters is highly non-trivial and

requires advanced notions from group theory. Besides one-dimensional irreducible representations

the elements in the hyperbolic translation groups admit higher-dimensional irreducible represen-

tations, for which there is no explicit parameterization, making analytical descriptions challenging

[3]. Previous studies have used AHBT on the primitive cell which do in general not capture the

thermodynamic limit. Alternatively, they have used brute force exact digitalization, which is

computationally costly. Therefore, these circumstances motivate the application of approximative

methods.

As aforementioned, P. M. Lenggenhager et al. [3] have very recently developed a method that

computationally outperforms the previous approaches. Through the application of the supercell

method they were able to access non-Abelian Bloch states by considering one-dimensional irre-

ducible representations of reduced translation groups. Speci�cally, they suggested to apply AHBT

to a appropriately constructed sequence of supercells, assembled as increasingly large aggregates

of the primitive cells to supercells, and showcased the convergence of this method by selected hy-

perbolic tight-binding models. In conjunction, P. M. Lenggenhager has implemented the supercell

method within a Mathematica and GAP package [1, 2].

As such, the main objective of this thesis is the study of diverse aspects of topology and band

theory in hyperbolic lattices accessed through the use of the supercell method. We aim to explore

and broaden some of the recent studies in these systems such as higher-order topological phases

[3, 8, 10], anomalous quantum Hall e�ects [7, 13], �at bands in realizations of Lieb lattices [12,

22, 23] and non-Hermiticity driven topological phenomena [9].

4



2 Symmetries of regular Euclidean lattices

Lattices in the Euclidean plane present vast and diverse platforms for the study of condensed

matter physics. A substantial amount of progress in understanding emergent physical properties

and their topological characterization [24�26] has been conducted. In this chapter we will review

the fundamental notions for the description of lattices in the Euclidean plane, followed by a review

of the Bloch theorem in order to study bulk properties in these systems. We will do this through

the application of group theory in preparation for the description of lattices in the hyperbolic

plane.

2.1 Euclidean spaces

The Euclidean plane is a two-dimensional metric space R2 with metric ηijE = δij ,

where i, j ∈ {1, 2}. Spatial symmetry operations such as rotations and translations in the

Euclidean plane are intuitive, as these operations commute, rendering their symmetry groups

Abelian. We can use this fact to establish a �rst comprehensive basis for our future studies in the

hyperbolic plane.

2.2 Euclidean lattices

In this section, we will review some of the basic group theoretical notions for the study of regular

lattices in two spatial dimensions, based largely on [27] and [16, 28, 29]. These tools will play

an essential role in our pursuit of understanding and modeling regular lattices in hyperbolic spaces.

The symmetry operations that leave a regular lattice invariant form an in�nite group called space

group S. In two dimensions they take the form:

S =
⋃
i

{Ri|vi}T, (2.1)

where Ri ∈ O(2), vi ∈ R2 and T is the group of translations. As such, the translation group

T constitutes translation vectors t that leave the regular lattice invariant. These vectors can be

decomposed into a set of linearly independent vectors ai, the Bravais vectors, with i = 1, 2

which generate the translation group T:

T =
{
{1|t} | t =

2∑
i=1

niai , ni ∈ Z
}
∼= Z2. (2.2)

The multiplication of two elements in S, and as a special case of elements in T, is de�ned as:

{R2|v2}{R1|v1} = {R2R1|R2v1 + v2}. (2.3)

5



2 Symmetries of regular Euclidean lattices

A general vector x ∈ R2 and some function f(x) are de�ned to transform under a general

symmetry {R|v} as:

{R|v}x = Rx + v,

{R|v} f(x) = f({R|v}−1x) = f(R−1(x − v)).
(2.4)

The inverse of an element {R|v} ∈ S is:

{R|v}−1 = {R−1| −R−1v},

then {R|v}{R|v}−1 = {RR−1|R(−R−1v) + v} = {1|0}.
(2.5)

where 1 ∈ O(2) and 0 ∈ Z2 are the corresponding identity elements. Given the de�nition of the

space group S, it is apparent that the translation group T is a subgroup of S, denoted as T<S.

Furthermore, T exhibits another property constraining the subgroup relation. Given an element

{R|v} ∈ S and an element {1|t} ∈ T we see:

{R|v}{1|t}{R|v}−1 = {R|v}{1|t}{R−1| −R−1v}

= {1| −RR−1v + Rt + v}

= {1|Rt},

(2.6)

therefore, {R|v}{1|t}{R|v}−1 ∈ T. This implies that the translation group T is a normal

subgroup of S, denoted as T ◁ S. Consequently, the quotient S/T forms a group:

S̃ ≡ S/T = {{Ri|vi}T | {Ri|vi} ∈ S}. (2.7)

The elements in the quotient group S̃ consists of the set of cosets {Ri|vi}T. We are free to choose

an element {Ri|wi} of each coset as a representative of that coset. A coset with a representative

{Ri|wi} is then denoted as:

[{Ri|wi}] ≡ {Ri|vi}T ∈ S/T. (2.8)

The set of coset representatives {Ri|wi} is called a transversal TS(T). It is de�ned as a subset

of the space group TS(T) ⊂ S such that for any coset {Ri|vi}T the intersection TS(T)∩{Ri|vi}T
contains only one element, the chosen {Ri|wi}.

If the space group is symmorphic, it is possible to choose the transversal to be a group. Further,

we can de�ne a reference unit cell by choosing the representatives in the transversal TS(T) ap-

propriately, such that C = ∪{R|w}∈TS(T)w. Furthermore, subgroups of the space group can be

identi�ed whose elements leave a point x invariant called the stabilizer subgroup:

Sx = {{Ri|vi} ∈ S | {Ri|vi}x = x , x ∈ R2}. (2.9)

6



2 Symmetries of regular Euclidean lattices

The stabilizer subgroups, also referred to as little groups, are in general not normal subgroups of

the space group. We may interpret space groups as de�ning in�nite lattice with translated copies

of the reference unit cell C by the coset decomposition:

S =
⋃

{R|w}∈TS(T)

{R|w}T. (2.10)

Further, we can de�ne a group that is isomorphic to the quotient group S̃, called the point group

P:

P =
⋃

{R|v}∈S

R ∼= S̃. (2.11)

Hence, the point group consists of all rotations and re�ections devoid of their translation com-

ponent. If the space group S is symmorphic, the point group is a subgroup of the space group

P<S and S is the semi direct product of P and T, i.e. S = P⋉T.

Further, let ϕ be a group homomorphism ϕ : S → P. The kernel of ϕ is given by ker(ϕ) =

{{1|t} ∈ T | ϕ({1|t}) = 1}, and thus it only consists of elements in the translation group. This,

once again, implies that T ◁ S since for any element x ∈ ker(ϕ) and s ∈ S:

ϕ(s x s−1) = ϕ(s)ϕ(x)ϕ(s−1) = ϕ(s)ϕ(s)−1 = 1. (2.12)

The kernels of a group homomorphisms are always normal subgroups, which we will use extensively

in order to construct hyperbolic lattices. However, before we discuss their construction, let us

dwell in the Euclidean space to review the Bloch theorem and its manifestation in a selection of

Euclidean models.

2.3 Bloch theorem

The usual derivation of Bloch theorem relies on the realization that the set of translation operators

in T mutually commute, implying that they can be diagonalized simultaneously. The correspond-

ing Hilbert space is rendered separable such that the individual blocks are labeled by irreducible

representations of the translation group. The periodicity of the lattice then suggests to impose

periodic boundary conditions on the reference unit cell boundaries. We then call the set of

sites within the reference unit cell a periodic-boundary-condition cluster, or PBC cluster for

short, [18]. The corresponding eigenstates, the Bloch eigenstates, span the Hilbert space.

However, we may as well use group theory in order to perform these classi�cations of eigenstates

7



2 Symmetries of regular Euclidean lattices

and eigenvalues in periodic systems. Therefore, let us review the Bloch theorem with the notions

reviewed in Section 2.2.

To this end, let us impose periodic boundary conditions in two dimensions. This amounts to

requiring the eigenstates ψ(x) of the Hamiltonian to be constrained as:

{1|N1a1 + N2a2}ψ(x) = ψ({1|N1a1 + N2a2}−1x)

= ψ(x − (N1a1 + N2a2)) = ψ(x)
(2.13)

where N1, N2 ∈ Z. The translation operators {1|N1a1}, {1|N2a2} generate a group:

TPBC =
{
{1|ni1N1a1 + ni2N2a2} | ni1 , ni2 ∈ Z

}
∼= N1Z×N2Z. (2.14)

We see by Eq. (2.6) that TPBC is a normal subgroup of T, i.e. TPBC ◁ T, and thus the quotient

of T/TPBC forms a group. Recall that T ∼= Z2, then:

T/TPBC ∼= ZN1 × ZN2 (2.15)

where ZNj = Z/NjZ = {0, 1, .., Nj − 1}. Analogous to the coset decomposition of the space

group S in Eq. (2.10), the translation group T is given by:

T =
⋃

{1|t}∈TT(TPBC)

{1|t}TPBC (2.16)

where the transversal TT(TPBC) is the set of chosen representatives of each coset in T/TPBC.

The number of elements in the quotient is called the index |T : TPBC| and in this case it is

|T : TPBC| = N1N2, also note that it is equal to the order of the quotient group denoted

|T/TPBC|. The imposition of PBCs thus amounts to the determination of normal subgroups TPBC

of the translation group T [18].

The cosets of T/TPBC are sets of translations that act non-trivially on the PBC cluster. Each

representative of a coset in the transversal TT(TPBC) may be chosen such that it is associated

with a translation within the cluster. The number of sites within the PBC cluster corresponds to

the index N = |T : TPBC|, for this reason we may at times also refer to PBC clusters as size-N

clusters. The translation vectors in PBC clusters are thus:

t =
2∑

i=1

niai, ni ∈ {0, 1, .. Ni − 1}. (2.17)

Since T/TPBC is isomorphic to direct product of cyclic groups ZNi , the irreducible represen-

tations of the elements in the cosets are one-dimensional [28]. Using the notation in [28] we

8



2 Symmetries of regular Euclidean lattices

�nd that the irreducible representations are given by:

Dk({1|t}) = e−ik·t (2.18)

with

k =
2∑

i=1

kibi, ki =
mi

Ni
, mi ∈ {0, 1, .., Ni − 1} (2.19)

and

bi · aj = 2πδij i, j = 1, 2 (2.20)

where bi are reciprocal vectors and k is the crystal momentum. Note, since the character of

the irreducible representation of elements in the group ZN1 × ZN2 coincides with the irreducible

representation, we will denote it as:

χk({1|t}) ≡ Dk({1|t}). (2.21)

In the thermodynamic limit N1 , N2 → ∞, k becomes dense such that the Brillouin zone (BZ)

becomes continuous:

BZ =
{
k ∈ R2 | k =

2∑
i=1

kibi, ki ∈ [0, 1)
}
. (2.22)

The thermodynamic limit is thus the culmination of constructing an in�nite sequence of suitable

normal subgroups TPBC ◁ T with increasing size-N clusters. Further, note that k ∈ (R/2πZ)2

therefore the BZ can be associated with two-dimensional torus since (R/2πZ)2 ∼= T2, which

we denote as the Brillouin zone torus, or BZ torus. On the other hand, the imposed periodic

boundary conditions on the refernce unit cell can be seen as a compacti�cation on a closed two-

dimensional Riemann-surface Σ with one hole isomorphic to a torus T2, where closed means Σ

has no boundary. As such, the dimension of the BZ tours coincides with the dimension of the

compacti�ed unit cell [18].

Let us explicitly label the eigenstate ψ(x) transforming in the representation (2.18) as ψk(x).

Under a general translation {1|t} ∈ T the state ψk(x) transforms as:

{1|t}ψk(x) = ψk(x − t)

= χk({1|t})ψk(x) = e−ik·tψk(x).
(2.23)

Let uk(x) = e−ik·xψk(x) then:

uk(x − t) = e−ik·xeik·tψk(x − t)

= e−ik·xψk(x) = uk(x).
(2.24)

9



2 Symmetries of regular Euclidean lattices

thus:

ψk(x) = eik·xuk(x), uk(x + t) = uk(x) (2.25)

which is the statement of Bloch's theorem. The function uk(x) is known as the cell-periodic

Bloch state.

2.4 Symmetries of Euclidean lattices

In the last section we have seen that the imposition of periodic boundary conditions reveals the

transformation behavior of Bloch states ψk(x) = eik·xuk(x) and the periodicity of uk(x) under a

general translation {1|t} ∈ T. We are now interested in the remaining symmetry operations of

the space group S, which will be useful in our pursuit of understanding topological phenomena in

the Euclidean and hyperbolic space. Thus, let us brie�y review how Bloch states transform under

symmetry transformations of the space group S following Ref. [3].

A general symmetry transformation {R|v} ∈ S transforms a Bloch state as:

{R|v}ψk(x) = ψk(R
−1(x − v))

= eik·R
−1

(x−v)uk(R
−1(x − v)).

(2.26)

The transformed state then transforms under a general translation {1|t} ∈ T as:

{1|t}{R|v}ψk(x) = {R|v + t}ψk(x)

= eik·R
−1

(x−v− t)uk(R
−1(x − v − t))

= e−ik·R−1
teik·R

−1
(x−v)uk(R

−1(x − v) − R−1t)

= e−ikR
−1·t{R|v}ψk(x).

(2.27)

We know that R ∈ O(2) and thus R−1 = RT. Using index notation, we see that:

k ·RTy = kiR
i

j y
j = R i

j kiy
j = (Rk) · y (2.28)

thus:

{1|t}{R|v}ψk(x) = e−iRk·t{R|v}ψk(x) = χRk({1|t}){R|v}ψk(x). (2.29)

The momenta k of a transformed state {1|t}{R|v}ψk(x) are therefore rigidly rotated by R and

the transformed state thus transforms as a Bloch state. In conclusion, the symmetries of the

lattice constrain the Hilbert space spanned by the Bloch states, which enables us to study how

lattice symmetries are manifested.

10



2 Symmetries of regular Euclidean lattices

2.5 Bloch Hamiltonian

The Bloch theorem implies that the Hamiltonian is block-diagonal in the quasiparticle basis

{|k, α⟩}k,α with each block spanning the Bloch states ⟨x |k, α⟩ = ψk,α(x), where α captures

additional degrees of freedom within the unit cell and k ∈ T2, [27, 30]. As such, the Hamiltonian

can be written as:

H =
∑

k,k′,α,β

⟨k, α|H |k′, β⟩|k, α⟩⟨k′, β| =
∑

k,k′,α,β

Hαβ(k)δk,k′ |k, α⟩⟨k′, β|, (2.30)

where H(k) is known as the Bloch Hamiltonian. There are two most natural choices for the

quasiparticle basis, which we will use in this thesis. Let us motivate why we will use both of them,

by following the description in Ref. [27]. Consider a general tight-binding model on a lattice with

N sites, written in second quantization:

H =
∑

i,j,α,β

hα,βij cα
†

i c
β
j , (2.31)

where α, β captures additional degrees of freedom within the unit cell and i, j are site indices.

Further, consider an orbital |j, α⟩ = cα
†

j |0⟩ in the lattice localized at rαj = Rj + δα, where Rj

denotes the unit cell position at the site j in the lattice and δα the position of the orbital relative

to the site j in the unit cell. The elements of the quasiparticle basis can be written as the Fourier

transform of orbitals [31]:

|k, α⟩B =
1√
N

N∑
j=1

eik·Rj |j, α⟩ , |k, α⟩P =
1√
N

N∑
j=1

eik·r
α
j |j, α⟩, (2.32)

where B stands for Bloch convention and P for periodic convention. They can be written in terms

of the creation operators:

cα
†

B,k =
1√
N

N∑
j=1

cα
†

j e
ik·Rj , cα

†
P,k =

1√
N

N∑
j=1

cα
†

j e
ik·rαj . (2.33)

where |k, α⟩ = cα
†

k |0⟩. The rewritten tight-binding Hamiltonian is:

H =
∑
k∈T2

∑
α,β

cα
†

k H
αβ(k)cβk , (2.34)

with Bloch Hamiltonians given by:

Hαβ
B (k) =

∑
l

hαβl e−ik·(l+δα−δβ) , Hαβ
P (k) =

∑
l

hαβl e−ik·l. (2.35)

The Bloch convention depends on the choice of unit cell, while the periodic convention does not.

We will exclusively use the convention P for Euclidean lattices and convention B for hyperbolic

lattices. The unit-cell independent convention P is more appropriate for the description of

topological aspects [31]. On the other, convention B is a convenient choice for hyperbolic lattices

as it is easier to construct corresponding Bloch Hamiltonians as we will see in the subsequent

chapter.
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3 Symmetries of regular hyperbolic lattices

The extension to lattices in the hyperbolic plane reveals subtle and unprecedented features, that

are in a sharp distinction with lattices in the Euclidean plane. In recent years the interest to study

these lattices has been growing, [3, 5, 7�12, 16�18, 21, 27, 32�34], fueled by the experimental

realizations of hyperbolic lattices in Ref. [14, 15]. In this chapter, we will review the methodology

to construct hyperbolic lattices through group theory. This enables us to comprehend and apply

Abelian hyperbolic band theory on symmetrical aggregates of primitive cells to supercells.

This method, called supercell method, developed in Ref. [3], will be the central tool to study

hyperbolic lattices in this thesis. As such, our review will be largely based on Ref. [27] and [3].

3.1 Hyperbolic spaces

Before we describe the construction of hyperbolic lattices, let us illustrate the emergent negative

curvature of the hyperbolic plane by reviewing selected aspects in Ref. [27, 35, 36]. Consider a

metric space in R2+1. The metric in a 3 dimensional Euclidean space is given by the identity

matrix ηµνE = δµν , where µ, ν ∈ {0, 1, 2} with squared distance from the origin x2 = ηµνE xµxν =

x20 + x21 + x22. In order to identify the hyperbolic plane we modify the Euclidean metric and

abandon the Euclidean space. A modi�cation by ηµνM = diag(−1, 1, 1), with x2 = −x20 + x21 + x22,

leads us to the metric in a 3 dimensional Minkowski space, the Minkowski metric.

Figure 1: Minkowski space in 2 + 1 dimensions. Left: Illustration of hyperboloids, dark

violet, spanned by a set of points in R2+1 with constant squared distance from the

origin. The set of null vectors ηµνM xµxν = 0 are depicted as cones enveloping the

hyperboloids. Figure reproduced from Ref. [36]. Right: Schematics of Poincaré disk

model via stereographic projection.

We identify the hyperbolic plane with the upper violet hyperboloid depicted on the left of Fig. 1,

which is the set of points with constant squared distance from the origin
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3 Symmetries of regular hyperbolic lattices

{x ∈ R2+1 | ηµνM xµxν = −κ2} , where 0 < κ2 ∈ R. We can de�ne the so-called hyperboloid

model H2:

H2 = {x ∈ R2+1 | ηµνM xµxν = −κ2 with x0 > 0}. (3.1)

In analogy to the unit sphere {x ∈ R2+1 | ηµνE xµxν = 1} one can think of a hyperboloid

{x ∈ R2+1 | ηµνM xµxν = −1} as a "sphere" with imaginary radius. However, unlike the sphere

which is an embedding in R3 with constant positive curvature, a hyperboloid with constant nega-

tive curvature can not be embedded in R3 by Hilbert's theorem [37]. As such, we choose to work

in the Poincaré disk model. This is the stereographic projection of the hyperboloid model (3.1)

onto the unit disk parameterized by points in the complex plane [35], schematically depicted on

the right of Fig. 1. The Poincaré disk D is de�ned as the set of points z = x1 + ix2:

D = {z ∈ C : |z| < 1}. (3.2)

In order to obtain the corresponding metric, we need to construct the coordinate maps from

the hyperboloid model H2 to the Poincaré disk model D. This is given by the aforementioned

stereographic projection which preserves the angles at which curves in the hyperboloid meet. It

is de�ned as the mapping of a point in H2 to a point in D as, [35]:

z =
κ

κ + x0
(x1 + ix2). (3.3)

Following [27] we perform a hyperbolic parameterization of the coordinates x0, x1, x2, such that:

x0 = κ cosh(φ),

x1 = κ sinh(φ)cos(θ),

x2 = κ sinh(φ)sin(θ).

(3.4)

Let αi ∈ {φ, θ}, such that the reparameterized squared line element is given by:

ds2 = ηµνM dxµdxν = ηµνM
∂xµ
∂αi

∂xν
∂αj

dαidαj ≡ gijMdαidαj , (3.5)

therefore:

gijM = ηµνM
∂xµ
∂αi

∂xν
∂αj

= κ2

[
1 0

0 sinh2(φ)

]
. (3.6)

Let zk ∈ {z, z∗} where z∗ is the complex conjugate coordinate. Rescaling the hyperbolic

parametrization by κ−1 and substituting the coordinates in Eq. (3.3):

z =
sinh(φ)

1 + cosh(φ)
eiθ (3.7)

13



3 Symmetries of regular hyperbolic lattices

and:

ds2 = gijMdαidαj = gijM
∂αi

∂zk

∂αj

∂zl
dzkdzl ≡ gklD dzkdzl. (3.8)

The metric in the Poincaré disk model is thus given by:

gklD = gijM
∂αi

∂zk

∂αj

∂zl
=

2κ2

(1 − |z|2)2

[
0 1

1 0

]
. (3.9)

It can be shown that the distance between two points z, z′ in the Poincaré disk is [16, 35]:

d(z, z′) = κ arcosh
(
1 +

2|z − z′|2

(1− |z|2)2(1− |z′|2)2
)
. (3.10)

The curvature, explicitly twice the Gaussian curvature, of the hyperbolic plane can be computed

via the Ricci scalar R. To this end, we will compute the Christo�el symbols Γi
jk as well as the

Riemann tensor Ri
ikl and the Ricci tensor Rjl = Ri

jil, a detailed discussion on these objects can

be found in [38] for example. The parameterization of the metric in terms of x1 and x2 coordinates

gives:

gklD =
(2κ)2

(1 − x21 − x22)
2

[
1 0

0 1

]
. (3.11)

The entries in the Christo�el Symbols are:

Γx1
x1x1

= −Γx1
x2x2

= Γx2
x1x2

= Γx2
x2x1

=
2x1

1 − x21 − x22

Γx1
x1x2

= Γx1
x2x1

= −Γx2
x1x1

= Γx2
x2x2

=
2x2

1 − x21 − x22

(3.12)

and thus the non zero entries in the Riemann tensor and Ricci tensor are:

Rx1
x2x1x2

= −Rx1
x2x2x1

= −Rx2
x1x1x2

= Rx2
x1x2x1

= − 4

(1 − x21 − x22)
2

Rx1x1 = Rx2x2 = − 4

(1 − x21 − x22)
2

, (3.13)

Finally, the Ricci scalar is:

R = Rl
l = glkDRkl = − 2

κ2
< 0 . (3.14)

We see that the curvature in the Poincaré disk model is negative, which leads to remarkable

features that we will explore in the subsequent sections. From now on, let κ = 1/2 such that the

Gaussian curvature K is given by K ≡ R/2 = −κ−2 = −4.
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3 Symmetries of regular hyperbolic lattices

3.2 Hyperbolic lattices

In this section, we will build the necessary framework for the construction of hyperbolic lattices by

following the treatment of P. M. Lenggenhager et al. in Ref. [3]. This will allow us to build models

in hyperbolic lattices and enable us to set up the proper descriptions for the HyperCells and

HyperBloch package tutorials. Our considerations in the Euclidean lattice will play a crucial

role to facilitate the understanding of the group theoretical aspects in these lattices.

Hyperbolic lattices are regularly tiled by p-sided polygons meeting with q identical copies of

themselves at each corner, denoted by {p, q} in the Schlä�i notation, with (p − 2)(q − 2) > 4

[3]. These lattices are most naturally described using the notion of triangle groups. As such, a

triangle group constitutes a set of operations such that a triangle, called fundamental Schwarz

triangle sf , after repeated actions of the elements in the triangle group tessellates the (Euclidean

or hyperbolic) plane. The internal angles of sf are thus π
2 ,

π
q and π

p . The space group for

hyperbolic {p, q}-lattices is given by the presentation:

∆(2, q, p) =
〈
a, b, c | a2, b2, c2, (ab)2, (bc)q, (ca)p

〉
. (3.15)

The generators a, b, c are re�ections of the fundamental Schwarz triangle sf across its sides,

depicted in Fig. 2. Rotations can be constructed by applying the re�ections in succession, such

that x = ab, y = bc and z = ca as illustrated in Fig. 2. The relators, appearing on the right of

the generators in Eq. (3.15), form the set of constraints for the generators. Each relator is equal

to the identity.

sf

x

y

z

c

a b

Figure 2: Symmetries in the {6, 4}-lattice. Symmetries of the tessellated hyperbolic plane

with 6-sided polygons meeting with 4 identical copies at each corner. The polygons are

subdivided into a set of copies of the fundamental Schwarz triangle sf . The symmetry

operations are indicated and constitute re�ections a, b, c across a corresponding axes

and rotations x, y, z around corresponding points indicated by matching colors, cf. [3,

7].
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3 Symmetries of regular hyperbolic lattices

As aforementioned, we can tessellate the hyperbolic plane, which can be achieved by constructing

the orbit of the fundamental Schwarz triangle under a group action, we here make the canonical

choice of taking right actions:

S = sf · ∆ . (3.16)

Instead of using re�ections as generators we may as well choose to work with orientation-

preserving elements, such as the rotations x, y and z. The group that contains these orientation-

preserving elements is a normal subgroup of the triangle group ∆, called the proper triangle

group ∆+(2, q, p) and is given by:

∆+(2, q, p) =
〈
x, y, z | xyz, x2, yq, zp

〉
, (3.17)

where x = ab, y = bc and z = ca. Since the proper triangle group ∆+ is a normal subgroup

∆, the quotient of them is a group as well isomorphic to a re�ection group Z2. We see that

Z2 ∩ ∆+ = 1 with 1 ∈ ∆ and thus the triangle group ∆ is the semidirect product of the

re�ection group and the proper triangle group ∆ = ∆+ ⋊ Z2.

Analogous to our discussion in the Euclidean plane, the space group ∆(2, p, q) of hyperbolic

{p, q}-lattices can be decomposed into translated copies of a unit cell via the coset decom-

position. Let Γ(2, q, p) be the translation group consisting of translations γ as orientation

preserving elements without a �xed-point. The translation group Γ must be a normal subgroup

of ∆, analogous to our discussion in the Euclidean case of Section 2.2. Further, let T∆(Γ) be a

right transversal, containing the set of coset representatives gj ∈ T∆(Γ), then:

∆ =
⋃

gj∈T∆(Γ)

gjΓ. (3.18)

The proper triangle group ∆+ can be decomposed analogously:

∆+ =
⋃

gj∈T∆+ (Γ)

gjΓ. (3.19)

The number of elements in the right transversal T∆(Γ) is equal to the number of cosets in the

quotient group ∆/Γ, which is called the index |∆ : Γ| of Γ in ∆ and is equal to the order of the

quotient group denoted |∆/Γ|.

The unit cell is then de�ned as the image of of the fundamental Schwarz triangle sf under the

right action of the transversal:

C = sf · T∆(Γ). (3.20)

The choice of representatives in the right transversal thus de�nes the unit cell. The orbit S may

also be written in terms of the unit cell explicitly:
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3 Symmetries of regular hyperbolic lattices

S = sf · ∆ =
⋃

gj∈T∆(Γ)

sf · gjΓ =
⋃
γ∈Γ

sf · T∆(Γ)γ =
⋃
γ∈Γ

C · γ. (3.21)

In order to construct the orbit S we have to identify the translation group Γ. The construc-

tion of the translation group requires us to search for normal subgroups of the proper triangle

group ∆+. This can be achieved by so-called low-index-normal-subgroup algorithms that identify

normal subgroups with lowest index |∆ : Γ|. We circumvent the calculation by using tabulated

quotient groups ∆+/Γ as we may as well use the property of kernels of a group homomorphisms

to construct them, recall Eq. (2.12). Thus, the group homomorphism Φ from the proper triangle

group to the quotient group Φ : ∆+ → ∆+/Γ has a kernel ker(Φ) that is a normal subgroup of

∆+ and is isomorphic to the translation group Γ.

The point group G is isomorphic to the quotient ∆/Γ:

G ∼= ∆/Γ. (3.22)

We may as well choose to work with the orientation preserving proper triangle group ∆+ again,

such that the proper point group G+ is given by:

G = G+ ⋉ Z2, G+ ∼= ∆+/Γ. (3.23)

Let us now make an example reviewing some of the key concepts for the {6, 4}-lattice, using the

HyperCells package. The presentations of the triangle group and the proper triangle group have

the following form:

∆(2, 4, 6) =
〈
a, b, c | a2, b2, c2, (ab)2, (bc)4, (ca)6

〉
,

∆+(2, 4, 6) =
〈
x, y, z | xyz, x2, y4, z6

〉
.

(3.24)

The quotient group of the proper triangle group and the lowest index subgroup is retrieved from

Ref. [39]. Its presentation is isomorphic to the proper point group:

G+
{6, 4}

∼= ∆+(2, 4, 6)/Γ{6, 4} =
〈
x, y, z | xyz, x2, y4, z6, (yz−1)2

〉
, (3.25)

by using the kernel of the group homomorphism Φ : ∆+(2, 4, 6) → G+
{4, 6} we �nd the corre-

sponding translation group Γ{6, 4}:

Γ{6, 4} =
〈
γ1, γ2, γ3, γ4 | γ4γ1γ3γ4−1γ3

−1γ2
−1γ1

−1γ2
〉
,

where γ1 = (zy3)2 , γ2 = (y3z)2 , γ3 = yz2y3z2 , γ4 = z5yz3yz4
(3.26)

and the representatives within the right transversal of the proper triangle group can be chosen as:

T∆+(Γ{6, 4}) =
{
yizj | y, z ∈ ∆+(2, 4, 6) , i ∈ {0, 1, 2, 3} , j ∈ {0, 1, 2, 3, 4, 5}

}
. (3.27)
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3 Symmetries of regular hyperbolic lattices

The corresponding hyperbolic {6, 4}-lattice is depicted in Fig.3. The Schwarz triangles within the

unit cell, shaded dark gray, correspond to copies of the fundamental Schwarz triangle upon the

action of elements in the right transversal T∆+(Γ{6, 4}) in Eq. (3.27). The actions of generators

of the translation group Γ{6, 4} in Eq. (3.26) are indicated with colored arrows that follow the

hyperbolic geodesics.

γ1

γ1
-1

γ2

γ2
-1

γ3 γ3
-1

γ4

γ4
-1

γ3
-1γ1

-1

γ1 γ3

γ4
-1γ2

-1γ2 γ4

γ3
-1γ3

γ4
-1

γ4

γ1 γ3

γ3
-1γ1

-1

γ2 γ4 γ4
-1γ2

-1

γ1
-1

γ1

γ2
-1

γ2

Figure 3: A unit cell of the {6, 4}-lattice together with associated translations. The

hyperbolic {6, 4}-lattice together with a choice of a unit cell. The Schwarz triangles

within the unit cell, shaded dark gray, correspond to copies of the fundamental Schwarz

triangle upon the action of elements in the right transversal T∆+(Γ{6, 4}). The action of

generators of the translation group Γ{6, 4} is indicated with colored arrows that follow

the hyperbolic geodesics.

Modeling lattices in the hyperbolic plane requires the identi�cation and labeling of Wycko� po-

sitions. We thus proceed by reviewing the labeling procedure developed in [3] in detail, since this

will be of fundamental importance for understanding the labeling and construction of Hamiltoni-

ans for models on hyperbolic {p, q}-lattices.

The three rotation generators x, y, z are symmetry operations associated with three corresponding

vertices in the fundamental Schwarz triangle sf . Each copy of these vertices, within the tessellated

hyperbolic plane, is left invariant under a corresponding stabilizer subgroup of the proper trian-

gle group ∆+ called the on-site symmetry group. As such, the set of Wycko�-positions of the

hyperbolic lattice V lat decays into a union of three sets of distinct vertices V lat = V lat
x ∪V lat

y ∪V lat
z ,

labeled according to the rotation generators that leave these points invariant.
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3 Symmetries of regular hyperbolic lattices

Therefore, the on-site symmetry groups are:

∆+
x = {g ∈ ∆+ | wx · g = wx, wx ∈ V lat

x } =
〈
x | x2

〉
,

∆+
y = {g ∈ ∆+ | wy · g = wy, wy ∈ V lat

y } = ⟨y | yq⟩ ,

∆+
z = {g ∈ ∆+ | wz · g = wz, wz ∈ V lat

z } = ⟨z | zp⟩ .

(3.28)

The orbit vw ·∆+ = V lat is again the set of all Wycko� positions in the lattice, with vw ∈ V lat
w

and w = x, y, z. The orbit stabilizer theorem then states that for all on-site symmetry groups

there exists bijective maps ∆+/∆+
w → vw · ∆+. This implies that each vertex vw is associated

with a coset in ∆+/∆+
w and thus with a coset representative in the right transversal T∆+(∆+

w).

Therefore:

V lat
w

∼= T∆+(∆+
w), w = x, y, z. (3.29)

Now let h be a representative in the transversal h ∈ T∆+(∆+
w), such that the right coset decom-

position for any w = x, y, z is given by:

∆+ =
⋃

h∈T∆+ (∆+
w)

∆+
wh . (3.30)

Further, let [h]w denote a coset such that [h]w ∈ ∆+/∆+
w associated with the corresponding

Wycko� position, then:

V lat ∼=
{
(w, [h]w) | w ∈ {x, y, z}, h ∈ T∆+(∆+

w)
}
. (3.31)

Let us restrict the set of vertices to the unit cell C. The set of these vertices V cell is invariant

under the action of the proper point group G+ in Eq. (3.23). This implies that the proper point

group is the stabilizer subgroup of vertices V cell. Analogously, V cell decays into the union of three

sets of distinct vertices V cell = V cell
x ∪ V cell

y ∪ V cell
z with corresponding stabilizers G+

w .

As such, let δ be a representative in the transversal δ ∈ TG+(G+
w), such that the right coset

decomposition for any w = x, y, z is given by:

G+ =
⋃

δ ∈TG+ (G+
w)

G+
wδ . (3.32)

Further, let [δ]w be a particular coset such that [δ]w ∈ G+/G+
w associated with the corresponding

Wycko� position, then:

V cell ∼=
{
(w, [δ]w) | w ∈ {x, y, z}, δ ∈ TG+(G+

w)
}
. (3.33)
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3 Symmetries of regular hyperbolic lattices

Recall, that by de�nition an on-site symmetry group ∆+
w contains elements in terms of a single

rotation generator, and thus it can only contain the trivial translation. This implies that the

subgroup of the proper point group G+
w is isomorphic to the on-site symmetry group G+

w
∼= ∆+

w .

The decomposition of the proper point group G+ (3.32) implies that the elements of the proper tri-

angle group ∆+ can be written in terms of the established constituents. It follows from Eq. (3.19)

that an arbitrary element t ∈ ∆+ can be written as:

t = gjγ
′ , (3.34)

where gj ∈ T∆+(Γ) and γ′ ∈ Γ. The proper point group G+ is isomorphic to the quotient group

∆+/Γ, Eq. (3.23), thus there exists an isomorphism i : ∆+/Γ → G+ which maps elements in the

cosets ∆+/Γ to the elements in G+. As such, the image of the coset [gj ] ∈ ∆+/Γ can be written

as:

i([gj ]) = i([wn])δk, (3.35)

with wn ∈ TG+(G+
w) and δk ∈ TG+(G+

w) which follow from Eq. (3.32). We see that elements

in the coset [gj ] are identi�able with speci�c Wycko� positions in the unit cell associated with

a particular w ∈ {x, y, z}. Let i−1(δk) = [guw ] with [guw ] ∈ ∆+/Γ such that the inverse

isomorphism of Eq. (3.35) is:

[gj ] = [wn]i−1(δ) = [wn][guw ]. (3.36)

Then, by Eq. (3.19) we �nd:

gj = wnguwγ
′′ , (3.37)

where γ′′ ∈ Γ, n ∈ {0, 1, ..., |G+
w | − 1} and n depends on the choice of representative gj , therefore:

t = wnguwγ, (3.38)

where γ = γ′′γ′ ∈ Γ, this implies that an arbitrary element t has a representative wn ∈ TG+(G+
w).

Note that the representative wn appears to the very left by the orbit stabilizer theorem.

Therefore, for the isomorphism i : ∆+/Γ → G+, the Wycko� positions in the unit cell C are

labeled by:

C =
{
u = (w, [guw ]w) | guw ∈ T∆+(Γ), i([guw ]) ∈ TG+(G+

w)
}
. (3.39)

Further, let us relabel the Wycko� positions in V lat, Eq. (3.31), such that it is apparent that V lat

consists of translated copies of the Wycko� positions in the unit cell C:
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3 Symmetries of regular hyperbolic lattices

V lat ∼=
⋃
γ∈Γ

{
(u, γ) | u ∈ C

}
. (3.40)

Once again, let us make an example reviewing some of the newly acquired key concepts for the

{6, 4}-lattice with the HyperCells package. Recall, that the on-site symmetry groups ∆+
w , given

in Eq. (3.28), are isomorphic to the subgroups G+
w , and that we have chosen the representatives

in the right transversal T∆+(Γ{6, 4}) in Eq. (3.27). The right transversals TG+(G+
w) are given by:

TG+(G+
x ) =

{
zi, y3zi | i ∈ {0, 1, 2, 3, 4, 5}

}
,

TG+(G+
y ) =

{
zi | i ∈ {0, 1, 2, 3, 4, 5}

}
,

TG+(G+
z ) = {1, yz, y2z, yz2}.

(3.41)

The representatives in the right transversals TG+(G+
w) coincide with the number and kind of

representatives in the vertices such that (w, [guw ]w) = (w, guw) and thus:

V cell
x

∼=
{
(x, gux) | gux ∈ TG+(G+

x )
}
,

V cell
y

∼=
{
(y, guy) | guy ∈ TG+(G+

y )
}
,

V cell
z

∼=
{
(z, guz) | guz ∈ TG+(G+

z )
}
.

(3.42)

3.3 Graph theory and compacti�cation

Analogous to the Euclidean case, we now want to impose periodic boundary conditions in order

to describe the bulk properties of hyperbolic lattices. Recall that in the thermodynamic limit of

in�nite lattices in the Euclidean plane, the imposed PBCs on the boundary of the unit cell, lead

to a compacti�cation on the surface of a two-dimensional torus T2, cf. section 2.3.

Dissimilar to the compacti�cation of lattices in the Euclidean plane, taking the thermodynamic

limit after imposing PBCs in hyperbolic lattices is highly non-trivial. The non-Abelian translation

groups imply the existence of higher dimensional irreducible representations of elements in the

translation groups such that in general Dk(γ) ̸= χk(γ), where γ ∈ Γ. This implies that general

hyperbolic Bloch states are non-Abelian [18]. Amidst these complications, the normal subgroups

ΓPBC ◁ Γ that identify the PBC clusters, recall section 2.3, are generated by a growing number of

translation operators. Thus, imposing PBCs on the boundaries of PBC clusters requires a growing

number of identi�cations of translations associated with the corresponding boundaries.

For now, let us postpone the discussion of how we work around these features of hyperbolic lattices.

Instead, let us review aspects of graph theory in order to understand what a compacti�cation of

a lattice in the hyperbolic plane amounts to, following [16, 27, 35]
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3 Symmetries of regular hyperbolic lattices

Consider for example the primitive cells as shown in Fig. 4, the cell boundaries are colored accord-

ing to speci�c translation operations that indicate the transition to a copy of the primitive cell.

Each pair of identically colored boundary segments can be identi�ed with each other such that

crossing these boundaries, indicated with red lines, amounts to returning to the same primitive

cell on a related side, resulting in periodic boundary conditions.

Figure 4: Graph representations of hyperbolic lattices with primitive cells endowed

with PBCs. Left: {6, 4}-lattice. Center: {8, 3}-lattice. Right: {12, 3}-lattice.

The imposed periodic boundary condition can be seen as a tessellation of a closed Riemann surface

Σg, where closed means Σg has no boundary [27]. The number of holes in that surface, called the

genus, is denoted as g. For each {p, q}-lattice, the unit cell, primitive or not, consist of vertices

corresponding to sites within the unit cell, edges corresponding to the connection between a pair

of adjacent vertices, and faces corresponding to p-gons that tile the hyperbolic plane. The number

of vertices, edges and faces, denoted as V, E, F respectively, satisfy the identity:

pF = 2E = q V . (3.43)

For example, in the primitive cell on the {6, 4}-lattice to the very left in Fig. 4 we see that V = 6

and E = 12. The number of faces can be obtained by counting the triangles shaded in light blue

and dividing it by the number of light blue triangles that make up the central hyperbolic hexagon,

F = 4·6
6 = 4.

Another relation between V, E, F is given by the Euler characteristic χ, [40]:

χ = V − E + F . (3.44)

The Euler characteristics for orientable surfaces Σg is proportional to the genus g of Σg, and

according to Ref. [41] given by:

χ = 2 (1 − g). (3.45)
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3 Symmetries of regular hyperbolic lattices

Thus, imposing PBCs amounts to a compacti�cation on a closed Riemann surface Σg with genus

given by:

g =
(p − 2)(q − 2) − 4

4 p
V + 1 . (3.46)

Recall, that the tilling of the hyperbolic plane by p-sided polygons meeting with q identical copies

at a corner, are restricted by (p - 2)(q - 2) > 4, which implies that g ≥ 2. In the subsequent

section we will see what this implies for the Brillouin zone.

3.4 Hyperbolic Bloch Hamiltonian

The graph theoretical considerations in the previous section have shown that hyperbolic PBC

clusters are compacti�ed on closed Riemann surfaces of genus g > 1 . As in the Euclidean case

discussed in Section 2.3, we now want to construct the normal subgroup ΓPBC ◁ Γ that identi�es

the PBC cluster. This is achieved by the coset decomposition of Γ. Recall, we canonically chose

right actions, thus the right coset decomposition of Γ is given by:

Γ =
⋃

ηi∈TΓ(ΓPBC)

ηiΓPBC (3.47)

and let N = |Γ : ΓPBC|. The groups ΓPBC are in general not normal subgroups of ∆. As a con-

sequence, the quotient ∆/ΓPBC is in general not a group, recall (2.7). This implies that the PBC

cluster CPBC = sf · ΓPBC is not left invariant under the repeated action of the set isomorphic to

the quotient ∆/ΓPBC. As such, we restrict the groups ΓPBC to be normal subgroups of the form

ΓPBC ◁∆ and ΓPBC ◁ Γ ◁∆. These normal subgroups can be used to form a non-primitive unit

cell CPBC, which are called supercell, [3].

Further, F. R. Lux et al. [42] have shown the convergence to the thermodynamic limit by re-

stricting the sequences of normal subgroups that identify PBC clusters to so-called coherent

sequences of normal subgroups [43]:

∆+ ▷ Γ(1) ▷ Γ(2) ▷ · · ·, ,⋂
n≥0

Γ(n) = {1} ,

(3.48)

(3.49)

where Γ(0) ≡ ∆+. The imposed condition for selecting sequences of normal subgroups has been

demonstrated to result in a converging approximation of the bulk properties in the thermodynamic

limit [42] and shown convergence of moments of the density of states of hyperbolic tight-binding

models in the thermodynamic limit [21].

Let us construct the hyperbolic tight-binding Hamiltonian on the in�nite lattice following Ref. [3]

and [18]. The decomposition in Eq. (3.40) gives:
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3 Symmetries of regular hyperbolic lattices

H =
∑

γ̃,γ′∈Γ

∑
u,v

huv(γ̃, γ′)cu
†

γ̃ c
v
γ′ , (3.50)

where u, v label the orbitals within the unit cell C, Eq. (3.20) such that u, v ∈ C Eq. (3.39)

and cuγ is an annihilation operator for the orbital u in the unit cell C translated by γ ∈ Γ. The

hopping amplitude huv(γ̃, γ′) couples orbitals u in the unit cell translated by γ̃ with orbitals v in

the unit cell translated by γ′. We can simplify huv(γ̃, γ′) since huv(γ̃, γ′) = huv(γ̃γ′−1,1) for any

γ′, γ̃ ∈ Γ. Thus, let γ = γ̃γ′−1 and huv(γ) ≡ huv(γ,1) then it follows:

H =
∑

γ,γ′∈Γ

∑
u,v

huv(γ)cu
†

γγ′cvγ′ . (3.51)

Next, imposing periodic boundary conditions requires the construction of the Hamiltonian on the

PBC cluster with the corresponding normal subgroup ΓPBC. Thus, we restrict translations to the

PBC cluster by Eq. (3.47), while retaining the labels u, v of the orbitals in the unit cell C:

HPBC =

N∑
i=1

∑
γ∈Γ

∑
u,v

huv(γ)cu
†

[γηi]PBC
cv[ηi]PBC , (3.52)

where [γηi]PBC ∈ Γ/ΓPBC. From now on let ΓPBC = Γ(n) and likewise CPBC = C(n), which

denotes the n'th PBC cluster. The action of a general translation γ ∈ Γ on the n'th PBC cluster

amounts to some permutation of the N primitive cells C within the supercell C(n). Then, by

Cayley's theorem there exists a homomorphism from the quotient group Γ/Γ(n) to the permutation

group SN with N ×N matrix representations U : Γ/Γ(n) → SN , [18], namely:

Uij([γ]) = δ[ηi],[γηj ], (3.53)

such that:

cu
†

[γηj ]
=
∑
i

cu
†

[ηi]
Uij([γ]), (3.54)

where [γ] ∈ Γ/Γ(n). These so-called regular representations are in general further reducible

into their irreducible components D(λ) of dimension dλ ≥ 1 with D(λ) : Γ/Γ(n) 7→ U(d(λ)) by an

appropriate unitary transformation P ∈ U(N):

PU([γ])P † =

N⊕
λ=1

dλD
(λ)([γ]), (3.55)

where λ labels the equivalence classes of Γ/Γ(n) , N is the number of equivalence classes and the

dimension of the irreducible representation d(λ) is equal to the multiplicity of D(λ) in Eq. (3.55),

[18]. In the special case where the translation group is Abelian, the irreducible representations

are one dimensional and thus equal to their character. Then:

D(λ)(γ) = χ(λ)(γ), (3.56)
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3 Symmetries of regular hyperbolic lattices

where χ(λ) : Γ/Γ(n) → U(1), such that:

PU([γ])P−1 =


χ(1)([γ])

· · .
χ(N)([γ])

 . (3.57)

Using Eq. (3.54) with subsequent unitary transformation of the representation U with Eq. (3.57),

we �nd that the n'th PBC cluster Hamiltonian for general irreducible representations becomes:

Hn-PBC ≡ HPBC =
N∑

i,j=1

∑
γ∈Γ

∑
u,v

huv(γ)cu
†

[ηi]
Uij([γ])c

v
[ηj ]

=
∑
k,l

∑
u,v

(∑
i

Pkic
u
[ηi]

)†[∑
γ∈Γ

huv(γ)
( N⊕

λ=1

dλD
(λ)([γ])

)
kl

](∑
j

Pljc
v
[ηj ]

) (3.58)

and we see:

∑
γ∈Γ

huv(γ)
( N⊕

λ=1

dλD
(λ)([γ])

)
kl

=
( N⊕

λ=1

dλ
∑
γ∈Γ

h(γ)⊗D(λ)([γ])
)uv
kl
. (3.59)

Let:

H(D) =
∑
γ∈Γ

h(γ)⊗D([γ]) and ĉuk =
∑
i

Pkic
u
[ηi]
, (3.60)

then, the n'th PBC cluster Hamiltonian is:

Hn-PBC =
∑
k,l

∑
u,v

ĉu
†

k

( N⊕
λ=1

dλH(D(λ))
)uv
kl
ĉvl . (3.61)

In the limit n→ ∞ the supercell C(n) covers the in�nite lattice and Γ/Γ(n) is replaced by Γ such

that the cosets [γ] are replaced by γ, recall Eq. (3.48). Therefore, the hyperbolic tight-binding

Hamiltonian is block-diagonalized as:

H =
∑
k,l

∑
u,v

ĉu
†

k

(⊕
λ

dλH(D(λ))
)uv
kl
ĉvl , (3.62)

where lambda now labels representations of the original translation group of the in�nite lattice.

We can identify the Bloch Hamiltonian as:

H(D) =
∑
γ∈Γ

h(γ)⊗D(γ) (3.63)

and annihilation operators are:
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3 Symmetries of regular hyperbolic lattices

ĉuk =
∑
i

Pkic
u
ηi , (3.64)

where ηi now labels a translated primitive cell C(1) on the in�nite lattice, and we abuse the no-

tation by keeping the symbol
⊕

which now runs over a continuous space over in�nitely many

irreducible representations. In the special case where the translation group is Abelian, the irre-

ducible representations are one-dimensional, and therefore the Bloch Hamiltonian in Eq. (3.63)

reduces to:

H(χ) =
∑
γ∈Γ

h(γ)χ(γ). (3.65)

The space of one-dimensional irreducible representations forms a 2g Recall from Section 3.3 that

the primitive cell is compacti�ed on a closed Riemann surface Σg. For one-dimensional irreducible

representations, we can think of threading the 2g non-contractible cycles of Σg by magnetic �uxes

associated with the mapping χ : Γ → U(1), such that the 2g components form the Abelian

hyperbolic Brillouin zone torus T2g, [3, 18]. The Brillouin zone is then de�ned as:

BZ(1,1) =
{
γi 7→ χk(γi) = eiki | k ∈ [0, 2π)2g ∼= T2g

}
, (3.66)

where the superscript (1, 1) indicates the primitive cell and the dimension of the irreducible rep-

resentations, respectively. Thus, the Abelian Bloch Hamiltonian is given by:

H(k) =
∑
γ∈Γ

h(γ)ei
∑2g

i=1 Ki(γ)ki , (3.67)

where Ki(γ) corresponds to the number of times the generator γi of Γ appears in γ, where the

inverse generator γi
−1 is counted negatively.

3.5 Supercells on hyperbolic lattices

The compacti�cation via PBC clusters is more subtle in the hyperbolic plane. Recall the case of

the Euclidean plane in section 2.3, we have seen that in order that the compacti�cation correctly

reproduces the thermodynamic limit, we need to make sure to �nd an appropriate sequence of

normal subgroups. The translation group of the Euclidean plane is Abelian. Consequently its nor-

mal subgroups are Abelian as well and thus the irreducible representations are one-dimensional.

The translation group Γ of the hyperbolic plane, however, is non-Abelian. This implies that the

normal subgroups Γ(m) are in general non-Abelian, such that in order to correctly describe �nite

systems and the thermodynamic limit, one needs to consider higher-dimensional irreducible rep-

resentations. To circumvent this predicament, P. M. Lenggenhager et al. [3] have developed the

supercell method which enables the systematic access to non-Abelian Bloch states through the

use of the Abelian hyperbolic band theory (AHBT) applied to particular sequences of normal

subgroups.
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3 Symmetries of regular hyperbolic lattices

The supercell method requires the construction of normal subgroups Γ(m) ◁∆+ such that super-

cells can be assembled via symmetric aggregation of primitive unit cells, followed by a labeling

procedure for the Wycko� positions within the supercells. Figure 5 depicts the �rst supercell

constructed via the aforementioned method. The supercell boundaries are colored such that each

color indicates a pair of edges that are related to each other by elements of the supercell translation

group.

Figure 5: 1st supercell corresponding to ∆+(2, 4, 6)/Γ
(2)
{6, 4}. The primitive cell of the {6, 4}-

lattice is indicated with black Schwarz triangles, the corresponding cell boundary is

shown with black lines that surround this cluster of triangles. The symmetric aggrega-

tion of 4 additional primitive cells makes up the 1st supercell, which is indicated with

dark gray Schwarz triangles surrounded by colored lines that indicate the 1st supercell

boundary. The di�erently colored lines indicate a pair of edges that are related to each

other by elements of the supercell translation group. The compacti�cation of the lattice

via periodic boundary condition and subsequent considerations of solely one dimensional

irreducible representations on the primitive cell and indicated supercell amounts to a

Brillouin zone isomorphic to T4 and T10 torus respectively.

A sequence of normal subgroups required for the supercell method is:

∆+ = Γ(0) ▷ Γ(1) ▷ Γ(2) · · · ▷Γ(m) ▷ · · · , (3.68)

where Γ(0) ≡ ∆+ and Γ(m) ◁ ∆+. As pointed out in section 3.2 instead of constructing normal

subgroups Γ(m) by a low-index normal subgroup algorithms, we rely on tabulated quotient groups

∆+/Γ(m) such that we can use the kernels of the group homomorphisms to retrieve the normal

subgroups Γ(m).

An example of the normal subgroup relations for the tabulated quotient groups up to genus 50 is
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3 Symmetries of regular hyperbolic lattices

shown in Figure 6 for the {6, 4}-lattice. Every vertex corresponds to a normal subgroup ∆+/Γ(m).

They are labeled by a corresponding quotient group ∆+/Γ(m) in [39], denoted as Tg.n, where g

is the genus of the corresponding Riemann surface Σg and n is the n'th quotient group with

that genus. Vertices highlighted in red indicate that Schwarz triangles can be assembled mirror

symmetrically, given an appropriate choice of representatives in the right transversal. Blue vertices

do not admit a mirror-symmetric unit cell, and they cannot be analyzed with the present version

of the HyperCells package. Pairwise distinct vertices Γ(m),Γ(m+1) connected by a directed edge

obey the normal subgroup relation Γ(m) ▷ Γ(m+1). It is apparent that some of the sequences of

normal subgroups in the Figure are disconnected from others, however, this may change as one

constructs larger-index quotient groups.

Figure 6: Tree graph of normal subgroups relations between pairwise distinct Γ(m).

Each vertex in the graph, corresponds to a normal subgroup Γ(m) ◁∆+(2, 4, 6) labeled

by the quotient group corresponding quotient groups ∆+/Γ(m) in the list [39], denoted

as Tg.n. Vertices Γ(m),Γ(m+1) connected by a directed edge obey the normal subgroup

relation Γ(m) ▷ Γ(m+1). The tree graph depicts such relations up to genus g < 50. GAP

code provided by Tomá² Bzdu²ek.

Labeling the Wycko� positions in supercells amounts to performing right coset decompositions of

the translations group Γ(1), analogous to the Euclidean case in Eq. (2.16). Thus:

Γ(1) =
⋃

η
(1)
i ∈T

Γ(1) (Γ
(m))

η
(1)
i Γ(m), (3.69)

thus for an arbitrary γ(1) ∈ Γ(1):

γ(1) = η
(1)
i γ(m), (3.70)
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3 Symmetries of regular hyperbolic lattices

where γ(m) ∈ Γ(m). The cosets of Γ(1)/Γ(m) are sets of translations that act non-trivially on the

supercell C(m), with index N (1,m) = |Γ(1) : Γ(m)|. Each representative of a coset in the transversal
TΓ(1)(Γ(m)) is associated with a particular primitive cell C(1) within the supercell C(m). Therefore,

we extend the labeling of Wycko� positions in the primitive cell, Eq. (3.39), by adding another

label η
(1)
i indicating which primitive cell in the supercell the Wycko� position is located in.

3.6 The supercell method

The supercell method consists of a sampling procedure to systematically access the higher-

dimensional irreducible representations of the translation group Γ(1) without explicitly construct-

ing them, [3]. This procedure consists of compactifying the m'th supercell C(m), identifying with

normal subgroups Γ(m) ◁ Γ(1) ◁∆, on a closed Riemann surface Σg.

Let us construct the corresponding Hamiltonian from supercells by following Ref. [3]. The exten-

sion of the labeling procedure modi�es the tight-binding Hamiltonian (3.50) as:

H =
∑

γ̃(1),γ′(1)∈Γ(1)

∑
u,v

huv(γ̃(1), γ′(1))cu
†

γ̃(1)c
v
γ′(1)

=
∑

γ̃(m),γ′(m)∈Γ(m)

N(1,m)∑
i,j=1

∑
u,v

huv(η
(1)
i γ̃(m), η

(1)
j γ′(m))cu

†

η(1)γ̃(m)c
v

η
(1)
j γ′(m)

,

(3.71)

where u, v ∈ C. Let the labels for orbitals within the m'th supercell be equipped with η
(1)
i such

that µ = (u, η
(1)
i ). Thus, the orbital µ is located in a primitive cell that has been translated by

η
(1)
i within the supercell and the location within that primitive cell is given by u. The hopping

matrix huv, which couples orbital u in the primitive cell translated by η
(1)
i γ̃(m) with orbital v in

the primitive cell translated by η
(1)
j γ′(m), can be explicitly rewritten in terms of the labels in the

supercells:

huv(η
(1)
i γ̃(m), η

(1)
j γ′(m)) = hµν(γ̃(m), γ′(m)), (3.72)

which can be simpli�ed further hµν(γ̃(m), γ′(m)) = hµν(γ̃(m)γ′(m)−1,1). Finally, let γ(m) =

γ̃(m)γ′(m)−1 and hµν(γ(m),1) ≡ hµν(γ(m),1) then it follows:

such that:

H =
∑

γ(m),γ′(m)∈Γ(m)

∑
µ,ν

hµν(γ(m))cµ
†

γ(m)γ′(m)c
ν
γ′(m) . (3.73)

This is structurally equivalent to the Hamiltonian (3.51). Thus, we can proceed as we did in

section 3.4 and block-diagonalize the Hamiltonian. Then the Bloch Hamiltonian is given by:

H(D) =
∑

γ(m)∈Γ(m)

h(γ(m))⊗D(γ(m)) , (3.74)
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3 Symmetries of regular hyperbolic lattices

where D : Γ(m) 7→ U(d) with d ∈ N≥1. The special case for one-dimensional irreducible represen-

tations with χ : Γ(m) 7→ U(1), is therefore given by:

H(χ) =
∑

γ(m)∈Γ(m)

h(γ(m))χ(γ(m)). (3.75)

P. M. Lenggenhager et al. [3] then argue that higher dimensional irreducible representations

of Γ(1) are accessed via one dimensional irreducible representations of normal subgroups Γ(m),

and thus this provides an e�ective sampling procedure for accessing non-Abelian Bloch states.

They further conjecture that the sequence of m'th supercells in the m → ∞ limit, converges to

the thermodynamic limit. Additionally, they provide a rationalization of this conjecture through

the introduction of PBC clusters constructed by symmetrically aggregating supercells into larger

supercells, called super-supercells. This, requires an additional label by another right coset de-

composition of Γ(m) such that the super-supercell is identi�ed by a normal subgroup Γ(n)◁Γ(m)◁∆.

The construction of the Hamiltonian and the block-diagonalization into blocks of Bloch Hamilto-

nians then follows by the same arguments as we have seen above and in section 3.4, see [3] for a

detailed derivation and discussion.

Thus, �nally, the Abelian Bloch Hamiltonian on supercells identi�ed with normal subgroup

Γ(m) is given by:

H(k) =
∑

γ(m)∈Γ(m)

h(γ(m))ei
∑2g

i=1 Ki(γ
(m))ki , (3.76)

where Ki(γ
(m)) corresponds to the number of times the generator γ

(m)
i of Γ(m) appears in γ(m),

where the inverse generator γ
(m)
i

−1 is counted negatively. The lattice with periodic boundary

conditions endowed on the supercell is compacti�ed on the closed Riemann surface Σg, 3.3. Once

again, we can think of threading the 2g non-contractible cycles of Σg by magnetic �uxes associated

with the mapping χ : Γ(m) → U(1), such that the 2g components form the Abelian hyperbolic

Brillouin zone torus T2g, [3, 18]. The corresponding Brillouin zone is then de�ned as:

BZ(m,1) =
{
γ
(m)
i 7→ χk(γ

(m)
i ) = eiki | k ∈ [0, 2π)2g ∼= T2g

}
, (3.77)

where the superscript (m, 1) indicates the m'th normal subgroup Γ(m) and the dimension of the

one-dimensional irreducible representations, respectively.
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4 Modeling of bulk properties

In this chapter we will study the bulk properties of regular lattices in two dimensional Euclidean

and hyperbolic spaces, with an emphasize on hyperbolic lattices. As such, we start with an inter-

lude in the Euclidean plane by reviewing the nearest-neighbor tight-binding model on the honey-

comb lattice. This enables us to put our considerations of chapter 2 into practice. Subsequently,

we will contrast the study of the honeycomb lattice with the hyperbolic {6, 4} and {8, 3}-lattices.
In particular, the application of the group theoretical aspects are highlighted and the bulk prop-

erties of the tight-binding models are studied through the use of the supercell method, following

the methodology reviewed in chapter 3.

4.1 Honeycomb lattice

The honeycomb lattice forms an ideal platform to establish some key concepts concerning band

theory and topology. The corresponding lattice is formed by a regular tessellation of the Euclidean

plane by hexagons that meet with 3 identical copies at each corner, which constitutes a {6, 3}-
lattice. Figure 7 depicts the honeycomb lattice together with the nearest-neighbor vectors ai and

Bravais lattice vectors bi where i = 1, 2, 3. We set the lattice constant to 1 for convenience.

Figure 7: The Honeycomb lattice, formed by regularly tessellating the Euclidean plane with

hexagons. The sublattices A and B are indicated with white and black colored sites,

respectively. A nearest-neighbor tight-binding model endows the lattice with hopping

amplitude t which couples sites on sublattices A and B. The nearest-neighbor vectors

ai and lattice vectors bi are indicated in blue and pink, respectively.

The nearest-neighbor vectors ai and lattice vectors bi are given by:

a1 = (0, −1) b1 = a1 − a2,

a2 = (
√
3/2, 1/2) b2 = a2 − a3,

a3 = (−
√
3/2, 1/2) b3 = a3 − a1,

(4.1)
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4 Modeling of bulk properties

The tight-binding Hamiltonian for spin-less electrons can be constructed by considering the lattice

as bipartite with sublattices A and B, as indicated in Fig. 7. As such, we denote the annihilation

operators accordingly as ai, bi, such that:

H = t
∑
<i,j>

a†ibj + h.c. . (4.2)

where < i, j > indicates a sum over nearest neighbor sites. Let us block-diagonalize the Hamil-

tonian H by following the methodology established in section 2.3. The primitive cell of the

honeycomb lattice can be compacti�ed on a two-dimensional torus by imposing periodic bound-

ary conditions. This induces the Bloch theorem, which leads to the block-diagonalization of the

tight-binding Hamiltonian with an emergent BZ torus T2 such that the Bloch Hamiltonian is given

by:

H(k) = t
3∑

i=1

[
0 e−ik·ai

eik·ai 0

]
= h(k) · σ,

with h(k) = t

3∑
i=1

(cos(k · ai), sin(k · ai), 0),

(4.3)

where σ = (σ1, σ2, σ3) are the Pauli matrices in the fundamental representation of SU(2). The

eigenvalue problem can be solved analytically, resulting in eigenvalues:

ϵ±(k) = ±∥h(k)∥ . (4.4)

The band structure together with the density of states, as shown in Fig. 8, reveal a van-Hove

singularity at the high-symmetry pointM and a Dirac point at K where linearly-dispersing Dirac

cones meet, forming a semimetal.
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Figure 8: Band structure and density of states for the nearest-neighbor tight-binding

model on honeycomb lattice. The band structure is particle-hole symmetric. The

high symmetry points M and K exhibit a van Hove singularity and a Dirac point,

respectively.
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4 Modeling of bulk properties

The corresponding Brillouin zone forms a hexagon, which is re�ected in the density plot of the

energy eigenvalues ϵ+(k) as well, depicted in Fig. 9.
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Figure 9: Brillouin zone. Left: Brillouin zone of the honeycomb lattice together with its high

symmetry points and reciprocal lattice vectors br
i . Right: Density plot of the energy

eigenvalues ϵ+(kx, ky), with a van Hove singularity and Dirac point indicated as a red

and orange dot respectively.

The corresponding reciprocal lattice vectors are given by:

br
1 =

2π

3
(
√
3, 1), br

2 =
2π

3
(−

√
3, 1) . (4.5)

In subsequent chapters we may change to the non-orthogonal basis of reciprocal lattice vectors br
i

in order to conveniently compute topological invariants over the BZ, such that:[
kx

ky

]
=

1

2π

[
br
1 br

2

] [k1
k2

]
. (4.6)

The change of basis leads to a band folding, as indicated in the Fig. 10.
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Figure 10: Brillouin zone. Left: Band folding schematics in Brillouin zone for a change of basis

to k1, k2 coordinates. Right: Density plot of the energy eigenvalues ϵ+(k1, k2), with a

van Hove singularity and Dirac point indicated as a red and orange dot respectively.
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4 Modeling of bulk properties

Further, the termination of the in�nite honeycomb lattice to semi-�nite ribbons treated with open

boundary conditions reveals that certain geometries can host localized edge states, a review is

included in Appendix 10.1.

4.2 Hyperbolic lattices

The group theoretical considerations for the construction of hyperbolic lattices of section 3.2 can

now be put into practice. To do so, we construct the {6, 4} and {8, 3}-lattices on primitive cells

as well as on supercells to study the their bulk properties. We will generally focus on these two

hyperbolic lattices, and occasionally consider other {p, q}-lattices in subsequent chapters. The

framework to construct the hyperbolic lattices is implemented in the GAP package HyperCells

[2], which can be used in tandem with the Mathematica package HyperBloch [1] to construct

Abelian Bloch Hamiltonians, both of which were developed in Ref. [3]. These packages will be the

central tools for the study of hyperbolic lattices in this thesis.

4.2.1 Hyperbolic {6, 4} and {8, 3}-lattices

In this subsection we will study the bulk properties of the {6, 4} and {8, 3}-lattices through the

density of states, by applying the supercell method, described in section 3.6. This enables us to

access non-Abelian Bloch states without an explicit construction of higher-dimensional irreducible

representations by applying Abelian hyperbolic band theory on supercells.

We identify the primitive cells and supercells by constructing an appropriate sequence of nor-

mal subgroups under the constraint in Eq. (3.68). The sequences of normal subgroups Γ
(m)
{6,4} ◁

∆+(2, 4, 6) and Γ
(m)
{8,3} ◁∆

+(2, 3, 8) are constructed via the quotient groups tabulated in Ref. [39]:

{6, 4}-lattice : T2.2, T5.4, T9.3, T33.11, T65.9

{8, 3}-lattice : T2.1, T5.1, T17.2, T33.1
(4.7)

This is followed by a labeling procedure of Wycko� positions V cell
y within the chosen unit cell per

Eq. (3.39), which we equip with labels according to the right coset decomposition in Eq. (3.69).

The graph representation of the nearest-neighbor tight-binding Hamiltonian on the primitive cell

for the {6, 4} and {8, 3}-lattices are depicted in Fig. 11. We equip the lattice with coupling

constants set to t for inter and intra-cell nearest neighbor interactions, indicated in blue and

red respectively.
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Figure 11: Graph representation of nearest-neighbor tight-binding Hamiltonian on

primitive cells of {6,4} and {8,3}-lattice. The inter and intra-cell hopping am-

plitudes t are indicated in blue and red, respectively. Left: The primitive cell of the

{6, 4}-lattice together with 6 sites located at Wycko� positions in V cell
y (2, 4, 6), as given

in Eq. (3.42). Right: The primitive cell of the {8, 3}-lattice together with 16 sites lo-

cated at Wycko� positions in V cell
y (2, 3, 8). The primitive cell endowed with PBCs is

compacti�ed on a four dimensional surface called the Bolza surface [18].

The corresponding nearest-neighbor tight-binding Hamiltonian is:

H = t
∑
<i,j>

c†icj (4.8)

The construction of the Abelian Bloch Hamiltonians in Eq. (3.76) follows by AHBT. Consider for

example the {6, 4}-lattice on the primitive cell. The translation group Γ
(1)
{6,4} is generated by four

operators γi as given in Eq. (3.26), where i = 1, 2, 3, 4. Thus, four linearly independent momenta

appear in the one dimensional irreducible representations γi 7→ eiki when applying AHBT, which

amounts to a four-dimensional BZ torus T4. The corresponding Abelian Bloch Hamiltonian is

given by:

H(k) = t



0 1 + eik2 1 + e−ik1 0 0 0

1 + e−ik2 0 0 1 + eik3 0 0

1 + eik1 0 0 0 1 + ei(k2+k4) 0

0 1 + e−ik3 0 0 0 1 + eik4

0 0 1 + e−i(k2+k4) 0 0 1 + ei(k1+k3)

0 0 0 1 + e−ik4 1 + e−i(k1+k3) 0


.

(4.9)

We proceed by calculating the density of states by exact diagonalization via random sampling in

the Brillouin zones BZ(m,1), Eq. (3.77). Figure 12 shows the corresponding DOS, each produced

by 5 · 104 randomly sampled points with subsequent application of a kernel density estimation

with a Gaussian kernel using a energy bandwidth of 0.01. The DOS of the {8, 3}-lattice, shown on
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4 Modeling of bulk properties

the right, is in agreement with the computation via the real space continued fraction method

in [33], as has been demonstrated in [3].
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Figure 12: Density of states for nearest-neighbor tight-binding model on {6,4} and

{8,3}-lattice, left and right respectively. The sequence of supercells listed in Eq.

(4.7) are indicated with the corresponding genuses g in the legends.

4.2.2 Hyperbolic {6, 4} and {8, 3} Lieb lattices

Lieb lattice originate from square lattices in the Euclidean plane. Each square unit cell is endowed

with three sites placed at Wycko� positions V cell
x ,V cell

y . These lattices exhibit energy bands of con-

stant energy over an extended region in the Brillouin zone, which leads to pronounced �at-bands

in density of states. This makes Lieb lattices ideal platforms to study strongly correlated systems

[44], due to the diverging ratio between the interaction potential and the kinetic energy [22].

In the non-interacting nearest-neighbor tight-binding models, the relation between real-space and

momentum-space properties can be used to understand key aspects of �at-bands. T. Bzdu²ek et

al. [12] have studied the manifestation of �at-bands in hyperbolic Kagome and dice lattices by

real-space and momentum-space considerations. They show that the properties of �at-bands such

as band degeneracy and band touchings with other dispersive bands are quanti�able by apply-

ing non-Abelian and Abelian hyperbolic band theory. In particular, they conjecture that for all

�at-band hyperbolic lattices the fraction of states that lie within the �at-bands, the �at-band

fraction, remains unchanged when restricting to Abelian states. P. M. Lenggenhagger [27] has

veri�ed their prediction through the application of the supercell method in the {8, 3} Kagome

lattice for the supercell sequence in Eq. (4.7).

We extend the HyperCells package through the addition of Lieb lattices in the hyperbolic plane.

Thus, we incorporate additional sites within the {p, q}-lattices by including sites on both Wycko�

positions in V cell
x and V cell

y . The graph representations of the tigh-binding Hamiltonian of the

{6, 4} and {8, 3} Lieb lattices are depicted in Fig. 13.
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Figure 13: Graph representation of nearest-neighbor tight-binding Hamiltonian on

primitive cells of {6,4} and {8,3} Lieb lattices, left and right, respectively. The

inter- and intra-cell hopping amplitudes t are indicated in blue and red respectively.

The primitive cell together with sites located at Wycko� positions in V cell
x and V cell

y ,

as given in Eq. (3.42).

The corresponding density of states are shown in Fig. 14, each produced by 5 · 104 randomly

sampled points. The DOS is smoothed by a kernel density estimation with a Gaussian kernel

of energy bandwidth 0.009 for the main plot and energy bandwidth 0.003 for the insets. The

pronounced �at bands are centered around zero energy.
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Figure 14: Density of states in the tight-binding model for the {6,4} and {8,3} Lieb

lattice, left and right, respectively. Each �gure depicts density of states with a pro-

nounced �at band at zero energy. The insets, show the behavior of the DOS in the

vicinity of the �at band. The small sample size might obscure a band touching.

We calculate the fraction of states within an energy region ±10−12 in the vicinity of the �at bands

without smoothed data. The �at-band fraction for all unit cells in the {6, 4} and {8, 3} Lieb

lattices are 1/3 and 1/5, respectively. No band-touching was observed, however, this might be

obscured by the small sample size.
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5 Topological insulators

Topological insulators are characterized by emergent bulk band gaps and protected metallic bound-

ary states. They can be classi�ed by topological invariants, which di�erentiate ordinary insu-

lators from topological insulators, [45�47]. In this chapter, we will review and study topological

insulators in Euclidean and hyperbolic lattices.

5.1 Haldane model

The Haldane model on the honeycomb lattice describes a topological insulator manifested by

the anomalous quantum Hall e�ect (AQHE),[48]. Recall, that the quantum Hall e�ect

arises if time reversal is explicitly broken globally by an externally applied magnetic �eld, lead-

ing to gapped bulk states and conducting boundary states in the topological phase. However,

time reversal symmetry can also be broken by local magnetic �uxes as well, giving rise to the

anomalous quantum Hall e�ect in the Haldane model. In the pursuit of studying variants of the

Haldane model on hyperbolic lattices in the subsequent section, let us review the basic spectral

and topological properties of the Haldane model [20].

The Haldane model endows the honeycomb lattice with a staggered on-site potential ±M at the

sublattices A and B, respectively. Besides nearest-neighbor interactions (NN-interactions) t1, a

coupling of sites through next-nearest-neighbor interaction (NNN-interactions) t2 is considered.

Additionally, local magnetic �uxes are threaded through the entire lattice such that the net �ux

in each hexagon is rendered zero. These �uxes are imposed such that the hopping amplitude t2

acquires a phase through Peierls substitution [45], namely t2 → eiϕt2, see Fig. 15.

Figure 15: NNN-hopping terms and magnetic �uxes in hexagon plaquette. Left: The

honeycomb lattice is endowed with one local �ux ϕ indicated with blue triangular

plaquette, its boundaries form aWilson loop,[49]. Right: The Haldane model endows

the entire honeycomb lattice by local �uxes of the form indicated on the left. The NNN-

hopping terms are chosen to develop an additional phase factor by parallel transport,

such that the NN-hopping terms are left unchanged. The phases ϕ correspond to

perpendicular magnetic �uxes with alternating signs, indicated with symbols ⊗ and ⊙,
across parts of the hexagon. The sum of �uxes within a hexagon is zero.
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5 Topological insulators

The corresponding tight-binding Hamiltonian is given by:

H =
M

2

∑
i

(a†iai − b†ibi) + t1
∑
<i,j>

a†ibj + t2 e
iϕ
∑
⃗ij

(a†iaj + b†ibj) + h.c. , (5.1)

where ⃗ij denotes the sum over next-nearest-neighbor contributions in clockwise directions. The

block-diagonalization through the imposition of Bloch theorem yields:

H(k) =
3∑

i=1

[
2 t2 cos(k · bi + ϕ) + M t1 e

−ik·ai

t1 e
ik·ai 2 t2 cos(k · bi − ϕ) − M

]
. (5.2)

We can rewrite this compactly:

H(k) = ĥ(k)σ0 + h(k) · σ, (5.3)

where σ0 is the 2× 2 identity matrix and:

ĥ(k) = 2 t2

3∑
i=1

cos(k · bi) cos(ϕ),

h(k) = (t1

3∑
i=1

cos(k · ai), t1
3∑

i=1

sin(k · ai), M − 2 t2

3∑
i=1

cos(k · bi)sin(ϕ)).

(5.4)

The energy eigenvalues are given by:

ϵ±(k) = ĥ(k) ± ∥h(k)∥ . (5.5)

The spectrum of the Haldane model exhibits gaps at speci�c values of coupling constants. An

example of three distinct con�gurations is depicted in Fig. 16. The �rst �gure on the left depicts

a gapped band structure at t1 = 1, ϕ = π/2 and η = M/t2 = 2.5
√
3. In the central �gure we

increase η to η = 3
√
3, the gap closes at the K-points and pairs of Dirac cones emerge and touch

at the Dirac point. Increasing η further reopens the gap, depicted in the right for η = 3.5
√
3.
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Figure 16: Band structure of the Haldane model. Left: The band structure is gapped at

t1 = 1, ϕ = π/2 and η = M/t2 = 2.5
√
3. Center: As we increase η to η = 3

√
3,

the gap closes at the K-points and pairs of Dirac cones emerge and touch at the Dirac

point. Right: Increasing η further reopens the gap, for example at η = 3.5
√
3.
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5 Topological insulators

The corresponding phases can be identi�ed by a topological invariant, the �rst Chern num-

ber C(1). Thus, let us review the geometrical interpretation of the �rst Chern number following

Refs. [7, 47, 50, 51] a more formal description can be found in Ref. [40].

The introduction of local �uxes within the honeycomb lattice raises the question how the Hilbert

space spanned by the Bloch states is modi�ed. Bloch states can no longer be compared without

considering how phases accumulate as we sweep across the Brillouin zone torus T2. Consider a

non-degenerate system with a general Bloch Hamiltonian H(k) and the corresponding BZ torus

T2 such that k ∈ (R/2πZ)2. We are interested in how the Bloch states transform as they are

transported on a closed loop in the BZ torus. For a cell-periodic Bloch eigenstates in the b'th

band |b(k)⟩ we �nd:

H(k)|b(k)⟩ = ϵb(k)|b(k)⟩ , (5.6)

where ϵb(k) is the energy eigenvalue of the state |b(k)⟩. Crucially, the states are ambiguously

de�ned since the multiplication with a phase factor eiθ is a valid eigenstate as well and ful�lls

⟨eiθb(k) | eiθb(k)⟩ = ⟨b(k) | b(k)⟩ = 1. We may not be able to de�ne a global phase factor for

the state |b(k)⟩ for every value of k, thus in general the states may acquire locally varying phase

factors as we sweep across the BZ tours. We think of tracing out a path in the BZ torus as a time

evolution of the state which is governed by the Schrödinger equation:

i∂t|Ψb(t)⟩ = H(k(t))|Ψb(t)⟩, (5.7)

where we have chosen a speci�c parameterization by t. Thus, let us perform an adiabatic time

evolution such that the parameterization of k(t) from t = 0 to t = T forms a closed loop ∂Γ in

the BZ torus and thus the time evolution of the state |b(k(0))⟩ is given by:

|Ψb(t)⟩ = exp
(
− i

∫ t

0
dt′ϵb(k(t

′))
)
eiθb(t)|b(k(t))⟩ (5.8)

The �rst exponential is the usual dynamical phase factor. We are interested in the second phase

factor. It cannot be rewritten as a function of k and it is in general not equal to the phase factor

at the start of the closed loop such that θ(T ) ̸= θ(0). We can insert this state into the Schrödinger

equation and multiply by ⟨b(k(t))| and �nd after some straightforward manipulations that:

θb(∂Γ) = i

∮
∂Γ
⟨b(k) | ∂ib(k)⟩dki , (5.9)

where ∂i ≡ ∂
∂ki

. The necessary object to compare states is thus given by the so-called Berry

connection Ab
i(k) de�ned as:

Ab
i(k) ≡ ⟨b(k)|∂i|b(k)⟩ (5.10)
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5 Topological insulators

and we call θb the Berry phase, such that:

θb(∂Γ) = i

∮
∂Γ
Ai

b(k)dki. (5.11)

Thus, the geometry of the parameter space in which k resides necessitates the introduction of a

connection which relates neighboring points by accounting for phases accumulated during trans-

port, known as parallel transport. Analogous notions can be found for example in QFT and

General relativity. For example, in quantum electrodynamics (QED), enforcing the invariance

under a local U(1) symmetry necessitates the introduction of a connection, the photon �eld Aµ.

Fermionic �elds couple to the photon �led such that Aµ connects phase transformations at neigh-

boring points in space-time [52]. The analog of the �eld strength tensor Fµν of QED, is the

Berry curvature F b
ij(k) de�ned as:

F b
ij(k) = ∂iA

b
j(k) − ∂jA

b
i(k), (5.12)

Let us look at how the Berry connection transforms under a local U(1) transformation. We know

that states |b(k)⟩ transform as:

|b(k)⟩ → eiα(k)|b(k)⟩ (5.13)

therefore:

Ab
j(k) → Ab

j + i∂jα(k) (5.14)

The Berry connection is not invariant under a gauge tranformation. We can further conclude

that the Berry curvature is invariant under a general gauge transformation, apparent by its def-

inition. The Berry phase is also invariant under a gauge transformation. Consider for exam-

ple a Hamiltonian parameterized by three dimensional parameter space H(R(k)) with R(k) ∈
{R1(k), R2(k), R3(k)}, then we may explicitly write the Berry phase in terms of the Berry curva-

ture by using Stokes theorem:

θb(Γ) =
i

2

∮
Γ
dsiϵ

ijkF b
jk(R(k)), (5.15)

where ϵijk is the Levi-Civita-Symbol, i, j, k = 1, 2, 3 with derivatives in the Berry connection

given by ∂i ≡ ∂
∂Ri . We proceed by constructing a topological invariant that characterizes the

phases of the Haldane model. Consider the vector h(k) given in Eq. (5.4), the simple structure of

the Hamiltonian H(k) in Eq. (5.3) suggests a parameterization in terms of h(k) such that H(h).

Further, ĥ(k) in Eq. (5.4) leads to an energy shift of the spectrum and has no e�ect on topological

properties, provided the system remains in an insulating phase. The eigenstates are given by [45]:

u±(h) =
1

N(h)1/2

 ϵ±(h)
h1+ih2

1

 , N(h) =
(
1 +

h3 + (ϵ±(h))2

h21 + h22

)
. (5.16)
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Thus the Berry phase takes the form:

θ−(Γ) =
i

2

∫
Γ
dk2

h(k)

∥h∥3
·
(∂h(k)
∂kx

× ∂h(k)

∂ky

)
. (5.17)

We recognize that the integrand is the signed parallelogram spanned by ∂h(k)
∂kx

and ∂h(k)
∂ky

. As such,

as k spreads over the BZ torus, h describes a closed surface Σ [20], and the total Berry phase

over the entire BZ torus is proportional to the number of times the BZ wraps around the surface

Σ. It can be shown [40], that this number is an integer times 2π. Therefore, we can characterize

the topology of the system by the �rst Chern number of the b'th band, de�ned as:

Cb
(1) =

1

2πi

∫
T2

d2k F b
xy(k). (5.18)

For our purpose, we need to compute total �rst Chern number up to n �lled bands:

C(1) =
1

2πi

n∑
b=1

∫
T2

d2k F b
xy(k). (5.19)

Figure 17 shows the corresponding phase diagram of the Haldane model. The topological phase

is characterized by a non-zero �rst Chern number C(1) = ±1 at half �lling, indicated in shades of

blue and red. The black curves indicates the semi-metallic phase, which separates the topological

phase from the trivial phase in white.

Figure 17: Phase diagram of the Haldane model. The topological phases in the Haldane

model are characterized by a non-vanishing �rst Chern number indicated in shades of

blue and red. The semi-metallic phase is characterized by black curves separating the

topological phase from the trivial phase in white. Figure reproduced from Ref. [20].

We proceed by computing the �rst Chern number numerically following [53, 54]. Consider the

corresponding BZ torus T2, we construct a grid of equidistantly spaced kx, ky values on T2 with

distance l. The analog of the Berry connection is given by the U(1) link variable on the discretized

surface:

U b
i (k) ≡ ⟨b(k) | b(k+ lı̂)⟩, (5.20)

where ı̂ is a unit vector k̂x or k̂y. Analogous to the Berry connection, the link variable U b
i (k)

describes the phase acquired during parallel transport. The total �ux of Berry curvature F b
xy(k)
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5 Topological insulators

through a square in the kx, ky grid can be accounted for by constructingWilson loops [49] which

describes the Berry phase accumulated during parallel transport in counterclockwise direction

around that square:

W b
xy,k = U b

x(k)U
b
y(k+ lk̂x)U

b
x(k+ lk̂y)

−1U b
y(k)

−1, (5.21)

such that F b
xy(k) is given by:

l2F b
xy(k) = ln(W b

xy,k). (5.22)

Thus, the �rst Chern number Cb
(1) of the b'th band is given by:

Cb
(1) =

1

2πi
lim
l→0

∑
k

l2F b
xy(k), (5.23)

Figure 18 shows the �ux of Berry curvature in the discretized kx, ky grid with positive and negative

local �uxes of Berry curvature generated in the vicinity of the K points. In the topological phase,

the negative and positive �uxes of Berry curvature are generated in di�erent bands such that the

Chern number at half �lling is ±1, which can be computed conveniently by performing a change

of basis as given in Eq. (4.6).

Figure 18: Sinks and sources of Berry curvature in the Haldane model. Berry curvature at

half �lling F−
xy(k). Left: In the topological phase at half �lling for ϕ = π

2 and η =
√
3

the local �uxes of non-vanishing Berry curvature F b(k) ≡ F−
xy(k) are negative, and

located in the vicinity of the high symmetry points K. Right: The trivial phase at

ϕ = 0 and η =
√
3 exhibits alternating positive and negative local �uxes of Berry

curvature.

A characteristic feature of two-dimensional topological insulators is the ability to host gapless one

dimensional edge state according to the bulk boundary correspondence [46]. The appearance

of these states can be demonstrated by terminating the in�nite lattice to semi-�nite ribbons,

which reveals that the Haldane model can host edge states in the Chern insulating phase. We

have included a discussion of the development of localized states in the Haldane model on semi-

�nite ribbons, treated with open boundary conditions, in Appendix 10.2.
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5 Topological insulators

5.2 Haldane model on the hyperbolic {6, 4} and {8, 3}-lattice

In the last section we were able to characterize the topological phase of the Haldane model on the

Euclidean honeycomb lattice via one momentum-space �rst Chern number calculated by perform-

ing an integration over the two-dimensional BZ torus T2. The analogous topological characteri-

zation via momentum-space �rst Chern numbers in Haldane models on hyperbolic lattices must

consider the higher dimensionality of BZ tori T2g involved when applying the supercell method.

De�ning a momentum-space �rst Chern number for each two dimensional subtorus of T2g leads to(
2g
2

)
= g(2g−1) �rst Chern numbers. However, some of these Chern numbers may be constrained

by hyperbolic lattice symmetries. In preparation for our symmetry considerations, we will review

the construction of the {6, 4} and {8, 3} Haldane models by A. Chen et al. [7] and compute the

DOS for a particular con�guration of parameters. In section 7.3 we will elaborate the formulation

of the 1st and 2nd Chern numbers and their derived symmetry imposed constraint equations.

Finally, in section 8.2 we will explicitly extend their hyperbolic lattice symmetry considerations

to supercells.

The {6, 4} and {8, 3} Haldane models are constructed by considering the lattices as bipartite with

sublattices A and B endowed with a staggered on-site potential ±m, indicated in Fig. 19 as white

and black circles, respectively. The spin-less electrons are coupled to their nearest-neighbors and

next-nearest-neighbors through hopping amplitudes t1, t2, shown in Fig. 19 as blue and dashed

red lines, respectively. Each lattice is threaded by local magnetic �uxes ϕ such that the net �ux

in each p-gon, p = 6, 8, is rendered zero. As such, the next-nearest-neighbor hopping amplitudes

t2 acquires a phase eiϕ when hopping in clockwise direction, indicated with orange arrows.

Figure 19: {6, 4} and {8, 3} Haldane models on the primitive cell, left and right respectively.

The sublattices A and B are indicated as white and black circles, and nearest and

next-nearest-neighbor couplings are indicated as blue and dashed red lines. Next-

nearest-neighbor acquires a phase eiϕ when hopping in clockwise direction, indicated

with orange arrows.
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5 Topological insulators

The corresponding Hamiltonians are given by:

H =
m

2

(∑
i∈A

c†ici −
∑
i∈B

c†ici
)
+ t1

∑
<i,j>

c†icj + t2e
iϕ
∑
i⃗j

c†jci + h.c. , (5.24)

where i⃗j denotes the sum over next-nearest-neighbor contributions in clockwise directions. In the

limit where t2 = m = 0 the model reduces to the nearest-neighbor tight-binding model considered

in section 4.2.1. The corresponding density of states are gapless as shown in Fig. 12. Further, an

example of the DOS in the topological phase at t2 = 0.5, m = 0 and ϕ = π/2 is shown in Fig. 20.

Each DOS is computed by exact diagonalization of the corresponding Abelian Bloch Hamiltonian

by 104 randomly sample momentum points. The DOS is smoothed by a kernel density estimation

with a Gaussian kernel of energy bandwidth 0.01.
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Figure 20: Density of states for {6,4} and {8,3} Haldane models, left and right respectively.

The sequence of supercells of Eq. (4.7) are indicated with the corresponding genuses g

in the legends.

The DOS of the {6, 4} Haldane model shows that the states in the vicinity of zero energy are

strongly suppressed with increasing supercell size. Although our sampling size is small, this

suggests that the band-touching observed on the primitive cell in [7] is indeed a �nite sized e�ect

as the authors hypothesized.
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5 Topological insulators

5.3 Higher order topological insulators

The Chern insulating phase of the Haldane model emerges due to explicit breaking of internal

symmetries, as we have seen in the previous sections 5.1 and 5.2. In this section we will look at

higher-order topological insulators (HOTI), which emerge due to protected spatial symmetries.

According to the bulk-boundary correspondence [46, 47], conventional topological insulators, in d

dimensions can host (d − 1)-dimensional boundary states. Higher-order topological insulators in

d dimensions, on the other hand, can host (d − n)-dimensional boundary states [55, 56]. W. A.

Benalcazar et al. have generalized the notions of multipole moments to the context of crystalline

solids [57]. They have constructed a model protected by mirror symmetry which develops a

quantized multipole moment and corner modes, known as the Benalcazar-Bernevig-Hughes (BBH)

model [57, 58]. In this section, we will study two variants of the BBH model. Once again, we

start with a Euclidean lattice, in order to establish an intuitive grasp for HOTIs. We will then

proceed with a HOTI on a hyperbolic lattice.

5.3.1 BBH model on the ruby lattice

We consider a variant of the BBH model [57] in the ruby lattice [59] in order to study a

manifestation of a higher-order topological insulator. The ruby lattice is the honeycomb lattice

endowed with three orbitals per site. In order to ascribe a variant of the BBH on the ruby lattice,

we endow the lattice with inter-site hopping amplitudes t1 that couple orbitals on the same site, as

indicated by the red lines in Fig. 21. Orbitals on adjacent sites are coupled by intra-site hopping

amplitude (−)t2, indicated in Fig. 21 by (dashed) green lines. Each hexagon, as well as each

rectangle between two hexagons, is threaded by a magnetic π-�ux.

-t2

t1
t2

A

BC

D

E F

m+1

m

m-1

l+1

l

l-1

Figure 21: Ruby lattice. Left: The ruby lattice with hexagonal primitive cells, indicated in an

transparent blue, slightly shrunken down. The inter-site hopping amplitudes t1 and

the intra-site hopping amplitudes (−)t2 are indicated with red lines and green (dashed)

lines, respectively. Middle: The nearest-neighbor vector ai,bi and Bravais lattice vec-

tors ci. Right: A grid of black lines indicates how the orbitals are labeled for the con-

struction of the tight-binding Hamiltonian. The sublattices labels A, B, C, D, E, F

are indicated in the center.
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We consider the ruby lattice as a hexpartite lattice with sublattices labeled as A, B, C, D, E, F

and lattice constant set to 1. The vectors that connect nearest-neighbor orbitals are given by :

a1 = s(1, 0) b1 = (1 − 2s)(
√
3/2, 1/2),

a2 = s(1/2,
√
3/2) b2 = (1 − 2s)(−

√
3/2,

√
3/2),

a3 = s(1/2,
√
3/2) b3 = (1 − 2s)(0, 1),

(5.25)

where s ∈ [0, 12 ]. The parameter s deforms the lattice into its limiting cases, where s = 0

corresponds to the honeycomb lattice and s = 1
2 to a triangular lattice. Unless speci�ed otherwise,

we will set s to s = 1
3 which corresponds to equidistantly spaced orbitals, its use will become clear

later. Further, the lattice vectors are given by:

c1 = a1 + b1 − b2

c2 = a2 + b2 + b3

c3 = −a3 − b1 − b3.

(5.26)

the position vectors of the orbitals, labeled by the corresponding sublattices, are:

ral,m = −(lc2 + mc3), rbl,m = ral,m − (a3 + b3), rcl,m = ral,m − a3,

rdl,m = ral,m − (a2 + a2 + b3), rel,m = ral,m − a2, rfl,m = ral,m − (a2 + b3).
(5.27)

The corresponding Hamiltonian written in this hexpartite con�guration, with corresponding an-

nihilation operators al,m, bl,m, cl,m, dl,m, el,m, fl,m, is given by:

H =
∑
l,m

[
t1(a

†
l,mel,m + a†l,mcl,m + b†l,mdl,m + b†l,mfl,m + c†l,mel,m + d†l,mfl,m)

+ t2(−a†l,mbl,m+1 + a†l+1,mfl,m + b†l,mcl,m − d†l,mcl+1,m − e†l,mfl,m + e†l,mdl,m+1) + h.c.
]
,

(5.28)

after imposing the Bloch theorem, the Hamiltonian can be written in terms of the Bloch Hamil-

tonian H(k) such that H =
∑

kC
†
kH(k)Ck with Ck = (ak, bk, ck, dk, ek, fk), and:

H(k) =



0 −t2eikb1 t1e
−ika3 0 t1e

−ika2 t2e
ikb2

−t2e−ikb1 0 t2e
ikb3 t1e

−ika2 0 t1e
ika1

t1e
ika3 t2e

−ikb3 0 −t2eikb2 t1e
ika1 0

0 t1e
ika2 −t2e−ikb2 0 t2e

−ikb1 t1e
ika3

t1e
ika2 0 t1e

−ika1 t2e
ikb1 0 −t2e−ikb3

t2e
−ikb2 t1e

−ika1 0 t1e
−ika3 −t2eikb3 0


. (5.29)

The corresponding band structure is shown in Fig. 22, where three distinct phases can be iden-

ti�ed, each with doubly degenerate energy bands. In the topological phase for t2/t1 = 1.5 the

spectrum is gapped,as shown in the left. A gap closing occurs between the middle pair and the

upper pair of bands at the Γ-point for t2/t1 =
√
3, revealing a semi-metallic phase, depicted in the

center. As t2 is increased beyond
√
3t1 a trivial phase is reached and the gap reopens, indicated

in the right �gure for t2/t1 = 2.

47



5 Topological insulators

-4

-2

0

2

4
ϵ k
a
rb
.u
.]

M K

-4

-2

0

2

4

ϵ k
a
rb
.u
.]

M K

-4

-2

0

2

4

ϵ k
a
rb
.u
.]

M K

Figure 22: Bulk band structures of BBH model on the Ruby lattice. Left: The spectrum

of the bulk develops a gap between the degenerate upper pair of bands for t2 = 1.5t1.

This is a topological phase exhibiting corner modes. Center: As we sweep across

increasing t2 the upper pair of bands approach each other and the gap eventually

closes at t2 =
√
3t1. Right: A gap reappears as we further increase t2 such as for

t2 = 2t1. The length of the x-axes corresponds to the Euclidean norm between high

symmetry points.

A characteristic feature of higher-order topological phases is the quantization of the bulk polar-

ization, which can be used as a topological index, [58]. In the modern theory of polarization,

the accumulation of phases during the parallel transport of states is the de�ning feature for de-

scription of the polarization in crystalline materials, [50]. As such, let us return to the �rst Chern

number in preparation for the description of the polarization in the topological phase.

The system is invariant under time reversal, which renders the �rst Chern number zero. The

degenerate energy bands require us to adapt the description of the �rst Chern number in Eq.

(5.18) from an isolated band scenario to the general case of degenerate energy bands. In order

to verify the vanishing of the �rst Chern number. As such, let us review aspects in Refs. [50, 53, 54].

The Berry connection needs to incorporate the band degeneracy. For cell periodic Bloch eigen-

states |a(k)⟩, |b(k)⟩ in a multiplet of n �lled bands:

Ψ(k) =
(
|1(k)⟩, |2(k)⟩, ..., |n(k)⟩

)
, (5.30)

the generalized Berry connection, called the Berry-Wilczek-Zee (BWZ) connection is de�ned

as [7, 60]:

(AΨ
i (k))

ab = ⟨a(k)|∂i|b(k)⟩, (5.31)

where AΨ
i forms a n × n matrix. The correspondingly adjusted non-Abelian Berry curvature,

known as the BWZ curvature is given by:

FΨ
ij (k) = ∂iA

Ψ
j (k) − ∂jA

Ψ
i (k) + i[AΨ

i (k), A
Ψ
j (k)] (5.32)

48
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where [·, ·] is the Lie bracket. The BWZ curvature connects U(N) transformations at neighboring

points in the parameter space. This is analogous to notions found in QFTs, where Yang-Mills

theories enforce a local SU(N) symmetry invariance giving rise gauge �elds that connect SU(N)

transformations at neighboring points in space-time [52]. Further, the total �rst Chern number

up to n �lled bands is thus:

CΨ
(1) =

1

2πi

∫
T2

d2kTr[FΨ
xy(k)], (5.33)

which reduces to Eq. (5.19) for non-degenerate bands. We obtain the �rst Chern number by

numerical calculations following Refs. [53, 54]. Analogous to the discretization for the Abelian

case in section 5.1, we construct a grid of equidistantly spaced kx, ky values on T2 with distance

l, such that discretized integral is approximated by:

CΨ
(1) =

1

2πi
lim
l→0

∑
k

l2Tr[FΨ
xy(k)]. (5.34)

The total �ux of BWZ-curvature FΨ
xy(k) through a square in the kx, ky grid can be accounted for

by constructing Wilson loops:

WΨ
xy,k = UΨ

x (k)UΨ
y (k+ lk̂x)U

Ψ
x (k+ lk̂y)

−1UΨ
y (k)−1 (5.35)

such that FΨ
xy(k) is given by:

l2FΨ
xy(k) = ln(WΨ

xy,k). (5.36)

with U(N) link tensor UΨ
i (k) given by:

UΨ
i (k) = Ψ†(k)Ψ(k+ lı̂). (5.37)

The tensor UΨ
i (k) describes the phase acquired during parallel transport. We can rewrite UΨ

i (k)

with the well known identity Tr[ln(M)] = ln(det(M)), where M is an non-singular matrix, such

that:

Ui(k) ≡ det
(
Ψ†(k)Ψ(k+ lı̂)

)
. (5.38)

It is convenient to perform a change of basis as de�ned in Eq. (4.6), in order to compute the �rst

Chern number in the topological phase at 2/3 �lling. As expected for a time-reversal invariant

system, we �nd that the �rst Chern number vanishes.
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The Wilson loop formulation for the calculation of the �rst Chern number can also be used to

formulate a description of the bulk polarization. Consider a discretized Wilson loop that goes

across the entire Brillouin zone in increments δkx = (2π/Nx, 0):

WΨ
x,k = UΨ†

x (k+ (Nx − 1)δkx) · · · UΨ†
x (k+ δkx)U

Ψ†
x (k) , (5.39)

where UΨ†
x (k) = Ψ†(k + δkx)Ψ(k). It can be shown [57], that the relative positions of electrons

in the unit cells are given by the phases of the Wilson loop eigenvalues νjx(ky), called Wannier

centers [50]. As such, the electronic contribution to the polarization is the sum over the Wannier

centers for the multiplet of n �lled bands Ψ(k) [57]:

pΨx (ky) =
n∑

j=1

νjx(ky) = − i

2π
ln(det(WΨ

x,k)). (5.40)

In the thermodynamic limit Nx → ∞, the polarization as a function of ky becomes:

pΨx (ky) =
i

2π

∫ 2π

0
dkxTr[A

Ψ
x (k)], (5.41)

which is proportional to the Berry phase along a non-contractible path 0 → 2π in the kx direction.

The total polarization along x direction is the sum of pΨx (ky) over discretized ky values. In the

thermodynamic limit where 1
Ny

∑
ky

→ 1
2π

∫
dky, it is given by:

pΨx =
i

(2π)2

∫
T2

d2kTr[AΨ
x (k)], (5.42)

We numerically calculate the polarization in the non-orthogonal basis given in Eq. (4.6) in a

equidistantly spaced k1, k2 grid at 2/3 �lling. The calculated polarization vanishes P = (0, 0).

Intriguingly, in higher-order topological phases a �lling anomaly can arise when corners are

introduced through �nite �akes in Cn symmetric lattices with vanishing bulk polarization, [58].

Consequently, the �nite system may host fractional corner charges, [56].

The ruby lattice is invariant under C6 rotation symmetry. However, the Bloch Hamiltonian in

Eq. (5.29) is not invariant C6 symmetry, due to threaded π-�uxes, also referred to as gauge

�uxes, [61]. As such, consider the r̂6 rotation operator which transforms the Bloch Hamiltonian

at momentum k to those at R6k, where R6 is the 6-fold rotation matrix. The counter clockwise

rotation operator r̂6 is given by:

r̂6 =



0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


. (5.43)
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We see that r̂6H(k)r̂†6 ̸= H(R6k). The rotation operation has changed the gauge �ux con�guration

such that the intra-site hopping amplitudes �ip signs ±t2 → ∓t2. We can restore the con�guration

by an appropriate gauge transformation. As such, the symmetry operation which leaves the lattice

and the gauge con�guration of the system invariant is a combination of a gauge transformation

and a 6-fold rotation, given by:

r̃6 =



0 0 0 0 0 1

−1 0 0 0 0 0

0 1 0 0 0 0

0 0 −1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0


, (5.44)

where r̃6H(k)r̃†6 = H(R6k). The rotation operator r̃6 describes a projective representation

of the rotation symmetry [61]. In order to see the interplay between C6 symmetry and charge

neutrality we terminate the system to �nitely sized �akes, such as the hexagonal �nite �akes

shown in Fig. 23.

t1
t2

-t2

Figure 23: Hexagonal ruby lattice �ake. A �nite sized hexagonal ruby lattice �ake consisting

of 37 hexagonal primitive cells.

Each �ake consists of N = 1 + 3n(n + 1) primitive cells, where n ∈ N≥0. The corresponding

Hamiltonian for n ∈ N≥2 is given by:

H = t1

n−1∑
i=2−n

i∑
j=2−n

(
a†i,jci,j + a†i,jei,j + b†j,ifj,i + c†i,jei,j + d†j,ibj,i + d†j,ifj,i

)
+ t2

n∑
i=2−n

n−1∑
j=1−n

(
− a†i,jbi,j+1 + a†i,jfi−1,j − d†j,icj+1,i + d†j,iej,i+1 + b†i,j+1ci,j+1 − e†i−1,jfi−1,j

)
+ t1

n−2∑
j=2−n

(
a†n,j+1cn,j+1 + a†j,1−nej,1−n + b†j+1,ndj+1,n + b†j−1+n,j−1fj−1+n,j−1

+ c†j,j−1+nej,j−1+n + d†1−n,je1−n,j

)
+ h.c. .

(5.45)
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We compute the spectrum of a �ake with N = 721 hexagonal unit cells by exact diagonalization.

Its spectra in the topological phase are shown in Fig. 24. For t2 = 0.1t1, shown in the left �gure,

the system exhibits in-gap states at energies ±0.1 that are localized at the six corners of the �ake.

In-gap states in the interval (−0.1, 0.1) and (0.9, 1.1) are localized at the edges of the �ake. As

t2 is increased to t2 = 0.3t1, the in-gap state start to approach the bulk spectrum, as depicted in

the center. As t2 is increased further, localized states start to hybridize with the bulk states as

shown in the spectrum on the right at t2 = 0.7t1.

Figure 24: Spectra of hexagonal ruby lattice �ake in the topological phase, for a �ake

consisting of 721 hexagonal primitive cells and inter-cell hopping amplitude t1 = 1.

Left: For t2 = 0.1t1 the system exhibits in-gap states. In-gap states at energy ±0.1 are

localized at the corners of the hexagonal �ake. The inset shows the energy eigenvalues

of a selection of these states at energies −0.1. Center: As t2 is increased to t2 = 0.3t1,

the in-gap states start to approach the bulk spectrum, with in-gap states at energies

∼ −0.294 shown in the inset. Right: At t2 = 0.7t1 some in-gap states start to hybridize

with the bulk.

The C6 projective symmetry of the ruby lattice enforces the existence of two sets of 6-fold degener-

ate states that are localized at the corners of the �ake. The sets of lower energy for t2/t1 = 0.1, 0.3

are shown insets of Fig. 24, left and center, respectively. The degenerate set of states lead to an

inability to place the Fermi energy at a �lling factor of exactly 2/3, since the spectrum in the

topological phase exhibits gaps at �lling 4N − 4 or 4N + 2. As such, the system is in a predica-

ment when accounting for the ionic contribution to the total charge density, either obey charge

neutrality and break C6 symmetry or preserve C6 symmetry and lose charge neutrality. Since the

former is not possible without introducing a C6 symmetry breaking term, a charge imbalance

is invoked, [58]. It can be shown [58] that the Wannier centers at the unit cell boundaries are cut

in the topological phase at 4N − 4 or 4N + 2 �lling. The invariance under C6 symmetry then

requires an equal distribution of the total charge in each sector subtended by an angle π/3, which

explains the appearance of fractional corner charges.

We can show this charge fractionalization in the ruby lattice by explicitly computing the total

charge density. Thus, in order to compute the total charge density, we place the Fermi energy
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at 0.9 at a �lling 4N + 2. Further, we place ions in Wycko� positions located in the centers of

hexagonal primitive cells. Each ion contributes 4 electronic charges. The electronic charge density

is computed afterwards and redistributed to the Wycko� positions of the ions by adjusting the

parameter s, introduced in Eq. (5.25). As such, s is tuned to s = 1/2 such that the six orbital

positions within each hexagonal primitive cell coincide with the Wycko� position in the center.

The ionic contribution to the charge density is subtracted from the redistributed electronic charge

density. The resulting total charge density at 4N + 2 �lling in the topological phase are depicted

in Fig. 25.

Figure 25: Total charge density at 4N +2 �lling in the topological phase, for ruby lattice

�ake consisting of N = 721 hexagonal primitive cells with inter-cell hopping amplitude

set to t1 = 1. The Wycko� position in the centers of the primitive cells are depicted

as black dots. Left: The total charge density reveals fractional corner charges 1/3 for

t2 = 0.1t1. Center: Corner modes start to hybridize with the bulk such that the corner

charges are redistributed. In the vicinity of the edges the charge density is negative

with a minimal value around ∼ −0.0002. This is indicated as a white hexagonal

section within the orange surface. Right: At t2 = 0.7t1, the hybridization of corner

modes depletes the corner charges and the negative sections indicated in white are

further extended, with a minimal value around ∼ −0.0033.

In the left �gure, the total charge density reveals fractional corner charges 1/3 for t2 = 0.1t1. As

t2 is increased, the corner modes start to hybridize with the bulk such that the corner charges are

depleted, shown in the center. In particular, in vicinity of the edges the charge density becomes

slightly negative, indicated as a white hexagonal section within the orange surface. The right

�gure shows the total charge density at t2 = 0.7t1. We see that the hybridization of corner modes

depletes the corner charges with a redistribution in the vicinity of the corners. Notably, in vicinity

of the edges the negative charge density region, indicated as a white hexagonal section within the

orange surface, extend further into the bulk. In all three cases the integrated total charge density

over a sector subtended by an angle π/3, that includes one corner, is ∼ 1/3 rounded to the 12

decimal place.

Further, the total charge density in the topologically trivial phase at t1 = 1 and t2 = 2t1 exhibits

no corner charges and the integrated total charge density over a sector subtended by an angle π/3

is vanishing.
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5.3.2 BBH model on {6, 4}-lattice

In this section we study the BBH model on the {6, 4}-lattice introduced in [3]. In order to probe

the bulk boundary correspondence we introduce �nite �akes with disclination defects, which

enables us to demonstrate the existence of fractional charges at the disclination core.

Analogous to the original BBH model [57] we endow the hyperbolic {6, 4}-lattice with four orbitals
per site, such that each orbital couples to four nearest neighbor orbitals as shown in Fig. 26. The

inter-site hopping amplitudes (−)h0 couples a cycle of four orbitals, labeled by 1 to 4, indicated

with (dashed) red lines. Each plaquette formed by such a cycle, is threaded by a magnetic π-�ux.

The intra-site hopping amplitudes (−)h1 are indicated with (dashed) green lines. Plaquettes with

alternating red and green lines, located between hyperbolic hexagons, are threaded by a magnetic

π-�uxes as well.
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Figure 26: BBH model on {6,4}-lattice, shown in the primitive cell. Each site at Wycko�

position in V cell
y , as given in Eq. (3.42), is endowed with a cycle of four orbitals,

indicated as black dots. The inter-site hopping amplitudes (−)h0 couple a cycle of four

orbitals, labeled by 1 to 4, indicated with (dashed) red lines. The intra-site hopping

amplitudes (−)h1 are indicated with (dashed) green lines. The primitive cell boundary

together with the corresponding translation operators are indicated with a colored line

segments. The corresponding generators are given in Eq. (3.26).

The corresponding tight-binding Hamiltonian is:

H =
h0
2

∑
i

c⃗ †i


0 1 0 −1

1 0 1 0

0 1 0 1

−1 0 1 0

 c⃗i+h1
∑

<i,j>c

c⃗ †i


1 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 c⃗†j +h1
∑

<i,j>b

c⃗ †i


0 0 0 0

0 0 0 1

0 0 −1 0

0 0 0 0

 c⃗ †j + h.c..

(5.46)
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where < i, j >b indicates the NN-interactions that cross the boundary of the primitive cell, and

< i, j >c denotes the NN-interactions within the primitive cell. Analogous to the ruby lattice in

the Euclidean plane discussed in Section 5.3.1, the system is in the topological trivial phase for

|h0| ≫ |h1|, and in the topological nontrivial phase for |h0| ≪ |h1|.

The corresponding density of states for a sequence of supercells identi�ed with the corresponding

quotient groups in Eq. (4.7), is shown in Fig. 27. Each DOS is computed by exact diagonalization

with 5 · 103 randomly sampled points in the BZ tori T2g. In addition, the data is smoothened by

the application of a kernel density estimation with a Gaussian kernel of energy bandwidth 0.015.

A computation with signi�cantly more data points can be found in Ref. [3].
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Figure 27: Density of states of BBH model on the {6, 4} lattice, with intra-site hopping

amplitude set to |h1| = 1. Left: For |h0| = 0.38 the DOS is gapped and the system

is in a topologically insulator phase. Center: At |h0| = 0.77 the gap closes at ϵ = 0.

Right: For h0 = 1.5 the system is in a trivial phase. Figure reproduced from Ref. [3].

For |h0/h1| = 0.38, shown in the left Figure 27, the system is in a topological insulator phase and

the density of states exhibits a gap. The gap starts to close as we approach the critical value for

increasing |h0|. Notably, the density of states for small supercells appears to be semi-metallic,

with a vanishing density of states at ϵ = 0, for |h0/h1| ≈ 0.77, depicted in the center. However,

this appears to be a �nite-size e�ect that disappears for larger supercells with an appearance of

a metallic phase [3]. The gap reopens as |h0| is increased further, such that the system is in a

trivial phase, shown on the right for |h0/h1| = 1.5.

Similarly to the BBH model on the ruby lattice of section 5.3.1, we consider the construction of

�nite �akes in order to probe the bulk-boundary correspondence for the {6, 4} BBH model. To

this end, we introduce a disclination defect in �nite �akes, which has been shown to give rise to

fractional charges at the disclination core, [58, 62]. We can motivate this idea by reconsidering

the BBH model on the ruby lattice of Section 5.3.1. In the topological phase of the BBH model

on the ruby lattice, the fractional corner charges in the hexagonal �ake add up to an integer. A

disclination can be introduced by cutting away a sector subtended by an angle π/3 that includes

a corner, the remaining �ake is then glued together at the cut edges. This con�guration contains

�ve corners and thus, the sum of charges over the remaining corners is fractional. This results in a

fractional charge appearing at the disclination core such that the total charge is again an integer,

[62].
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We proceed by constructing �nite �akes of the {6, 4}-lattice. Our construction of �akes, with and

without disclinations, consists of determining a sequence of supercells with the methodology in

chapter 3. The cluster of sites at Wycko� positions V cell
y within the supercells make up the �akes

without disclinations. These �akes are shown in Fig. 28:

Figure 28: Finite �akes of the {6,4}-lattice. The �nite �akes are constructed

from sites within single supercells identi�ed by corresponding quotient groups

T2.2, T5.4, T9.3, T33.11, T65.9.

The hyperbolic variant of the BBH model is then imposed onto each �ake. The corresponding

spectra for |h0/h1| = 0.38 are shown in Fig. 29. Notably, the gaplessness implies the existence of

boundary modes.
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Figure 29: Energy spectra of �nite �akes of the {6,4}-lattice in the BBH model. Each

spectrum corresponds to a �nite �ake constructed from sites within a single supercell,

labeled according to the corresponding quotient group they have been constructed with.

The introduction of disclinations consists of identifying a subset of vertices in �akes that lie

within a wedge of Frank angle θ = −π/3. The corresponding vertices are cut out of the �akes

and dangling bonds of vertices located at the same radial distance away from the center are glued

together by new edges. A set of �akes with introduced disclinations is shown in Fig. 30.
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Figure 30: Disclination on {6,4}-lattice �akes with Frank angle −π/3. The �nite �akes

are constructed from sites within single supercells identi�ed by corresponding quotient

groups T2.2, T5.4, T9.3, T33.11, T65.9, with a subsequent introduction of a disclina-

tion with Frank angle −π/3.

The corresponding spectra for h0/h1 = 0.38 are depicted in Fig. 31. The comparison with the

�akes without disclinations in Fig. 29 reveals a �lling anomaly by the appearance of in-gap

states. Each spectrum shows a particular selection of these in-gap states in corresponding insets

indicated with red dots.
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Figure 31: Energy spectra of �nite �akes with disclinations of the {6,4}-lattice in the

BBH model. Each spectrum corresponds a �nite �ake with a disclination constructed

from sites within a single supercell, labeled according with the corresponding quotient

group they have been constructed with. All spectra depict in-gap states, a selection is

shown in the corresponding insets.

The spatial distribution of the local density of states (LDOS) can be used as a measure of the

spatial localization of states, [63]. Given a set of eigenstates ψj(x) with energy Ej , the LDOS is

given by ρp(x, ϵ) =
∑

j |ψj(x)|2δ(ϵ − Ej). The LDOS of the in-gap states shown in the insets of

Fig. 31, are depicted in Fig. 32.
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Figure 32: Local density of states for in-gap states shown in the insets of Fig. 31.

Analogous to our analysis of the higher-order topological phase in the ruby lattice in Section 5.3.1,

we proceed by computing the total charge density at half �lling. The Fermi energy is placed at

zero energy and the ionic charges are placed at Wycko� positions V cell
y , which are depicted as

black dots in Fig. 30. Each ion contributes 2 electronic charges such that charge neutrality is

obeyed. The electronic charge density is computed and redistributed to the Wycko� positions of

ions by identifying the cycle of four orbitals that surround each ion. The ionic contribution of the

charge density is subtracted from the redistributed electronic charge density. The corresponding

total charge density ρtot(x) for the T33.11 �ake is shown in Fig. 33.

Figure 33: Total charge density at 1/2 �lling of T33.11 �ake with a disclination for {6,4}
BBH model, with |h1| = 1 and �ake placed at -0.1 for orientation. The Wycko�

positions V cell
y are shown as black dots in the �ake. The inter-site hopping amplitude

is set to: Top row: h0 = 0.01, 0.1, 0.2, respectively; Bottom row: h0 = 0.3, 0.4, 1.5,

respectively. The total charge density in all �gures is depicted as a 3 dimensional brown

surface spanned by interpolating between data points that are indicated as small black

dots in the surface.
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Consider the �gures in the top row and the �rst two �gures in the bottom row of Fig. 33. They

depict the total charge density in the topological phase for di�erent values of the inter-site hopping

amplitude h0. The integrated total charge density over the entire �ake is always zero, rounded

to 12 decimal places. As such the negative total charge at the disclination core compensates the

positive total charge at corners, such that charge neutrality is obeyed. The last �gure in the right

corner of Fig. 33 depicts the trivial phase at h0 = 1.5, where the total charge distribution is

uniform.

Further, as the inter-site hopping amplitude h0 is increased, additional corner modes start to

emerge at the �ake boundaries. We have not further investigated their origin. However, we have

observed that the total charge density in the T9.3 �ake with a disclination does not exhibit an

appearance of additional corner modes as h0 is increased. Informally, the boundary of the T33.11

�ake is in a sense more irregular then the boundary of the T9.3 �ake. This might suggest that

the geometry of the �ake boundaries may play a role in the appearance of these states, similar to

the hybrid higher-order skin-topological e�ect [9].

The integrated total charge densities over a region in the vicinity of the disclination core Qd for

di�erent inter-site hopping amplitudes are shown in Table 1. The region of integration includes �ve

points at Wycko� position V cell
y that are closest to the origin. In the vicinity of the fully dimerized

limit for h0 = 0.01 the charge at disclination core approaches a quantized value Qd ∼ −1/2. The

deviation from −1/2 for increasing h0 is to be expected. As for corner charges, the net electronic

charge at the disclination core is expected to be exponentially localized Q(x) ∝ e−αx [64]. In the

trivial phase for h0 = 1.5 the total charge distribution is uniform such that the disclination core

binds approximately zero net charge.

h0 0.01 0.1 0.2 0.3 0.4 1.5

Qd -0.49997 -0.49661 -0.48585 -0.46461 -0.42042 -0.00177

Table 1: Integrated charge density at the disclination core Qd for T33.11 �ake, rounded

to the 5th decimal place, for di�erent values of the inter-site hopping amplitude h0.

In combination, Fig. 33 and Table 1 show that the introduction of a disclination indeed manifest

a fractional charge at the disclination core in the topological phase of the {6, 4} BBH model.

In conclusion, we provided the �rst explicit evidence of higher-order topological phenomenology

associated with the {6, 4} BBH model introduced in Ref. [3]
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The topological classi�cation of Hermitian Hamiltonians describing isolated systems has been

studied extensively, see for example Ref. [24]. Non-Hermiticity is a prevalent property in nature,

it appears for example through the introduction of gains and/or losses which can break the Her-

miticity of the system and enables e�ective approximations to study non-equilibrium physics of

open quantum systems. The addition of non-Hermitian terms into the Hamiltonian gives rise to

features unprecedented in their Hermitian counterparts, such as point gaps and line gaps in the

complex energy spectrum. In this chapter we will consider the introduction of such Hermitic-

ity breaking terms on hyperbolic lattices in order to study the topological characterization of a

selection of {p, q}-lattices via winding numbers. To do so, let us �rst review some key concepts

following Ref. [26].

The spectrum of a general non-Hermitian Hamiltonian is complex and thus necessitates a recon-

sideration of the usual Hermitian notion of topological equivalence. Recall that, if and only if two

Hermitian Hamiltonians can be continuously deformed into each other without closing a gap and

maintaining the symmetries, they are de�ned to be topologically equivalent, [40]. This de�nition

is unique for Hermitian systems since the eigenvalues are real, as shown on the left of Fig. 34.

However, in general non-Hermitian systems the spectrum resides in the complex plane and eigen-

values can envelope a point gap Ep, or a line in the complex plane can be drawn in an energy

range where no states exist, as depicted in the center and on the right of Fig. 34, respectively.

Figure 34: Energy gaps in Hermitian and non-Hermitian systems. Left: The systems is

Hermitian and all eigenvalues of the Hamiltonian are real, the Fermi energy EF is

de�ned as a point within the gap. Center: The complex spectrum of the non-Hermitian

system exhibits a point gap Ep where no states exist. Right: A gap in the complex

plane separate regions in the spectrum that do not intersect the complex line gap.

Figure adapted from Ref. [26].

In this thesis we will only consider point gaps in non-Hermitian systems on hyperbolic lattices.

Formally, a non-Hermitian Abelian Bloch Hamiltonian H(k) on the m'th supercell is de�ned to

have a point gap Ep ∈ C if there exists no crystal momentum k ∈ BZ(m,1) in the BZ such that Ep

is an eigenvalue of H(k).
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Further, a general strategy for topological classi�cations of non-Hermitian systems is based on

the construction of a double Hamiltonian, which reduces the problem to a Hermitian one [26].

Thus, consider a non-Hermitian Bloch Hamiltonian H(k) such that H†(k) ̸= H(k), the Hermitian

double is de�ned as:

H̃(k) =

[
0 H(k)

H†(k) 0

]
. (6.1)

6.1 Winding numbers

The winding numbers are topological invariants that can be used as indicators for topological in-

sulators. Let us �rst illustrate the geometrical interpretation of the winding number for a simple

1D Hermitian model following Ref. [65], and subsequently extend the illustration to a 1D non-

Hermitian model following Ref. [25].

Figure 35: SSH chain is a one-dimensional bipartite chain with spin-less fermions coupled to its

nearest neighbors by alternating hopping amplitudes v andw, where the unit cell is

indicated with dashed lines. The sublattices A,B are indicated as blue and gray dots

respectively. Figure reproduced from Ref. [65]

The Su-Schrie�er-Heeger (SSH) model describes a one-dimensional bipartite chain with spin-less

fermions with nearest-neighbor coupling by alternating hopping amplitudes v andw, as shown in

Fig. 35. The corresponding Hamiltonian is given by:

H =
∑
i

(va†ibi + wa†ibi−1 + h.c.) =
∑
k

C†
k (h(k) · σ)Ck

h(k) = (h1(k), h2(k), h3(k)) = (v + w cos(k), w sin(k), 0)

(6.2)

where:

h(k) · σ =

[
0 h(k)

h∗(k) 0

]
, h(k) ≡ h1(k) − ih2(k) . (6.3)

The corresponding eigenvalues:

E(k) = ∥h(k)∥ =
√
v2 + w2 + 2 v w cos(k), (6.4)

61



6 Non-Hermitian systems

where σ = (σ1, σ2, σ3) is a vector of Pauli matrices in the fundamental representation of SU(2)

and Ck ≡ (ak, bk). In the fully dimerized limit where v ̸= 0 and w = 0 the system decouples

into dimers. The states on each of these dimers are localized between the dimer sites, in the middle

of the unit cell. In contrast, in the opposite limit where v = 0 and w ̸= 0 the sites located at

the edges of the SSH chain fully decouple, leaving only dimers within the bulk. Consequently, the

system develops states at the edges that are localized only on one particular site, i.e. edge states

with zero energy.

Naturally, we want to characterize these phases and see whether a topological invariant can be

identi�ed. Consider the vector h(k), it traces out a closed circle in the hx, hy plane as we vary

k = 0 → 2π in the BZ torus T1. This circle is centered at (v, 0) and collapses to a point for

w = 0. As v < w and w ̸= 0 the loop encircles the origin. This implies that the topology of

the loop can be characterized by the number of times the loop winds around the origin [65]: the

winding number.

a) b)

c)

d)

Figure 36: Winding number and homotopy. Examples of loops exhibiting quantized values

of the 1D winding number, de�ned at a �xed base point p, indicated in red. a) Defor-

mation of a generic path to a unit circle that winds around the point p once, indicated

in red. b) The loop winds around the p once. c) The path crosses the irregular point

p, which renders the winding number ill-de�ned. d) The winding number is zero since

the point p is outside the closed path. Cf. Refs. [45, 66]

The construction of the formula for the winding number in 1D follows naturally by the integration

of the normalized signed length that h(k) traverses. Let ĥ(k) ≡ h(k)/ ∥h(k)∥:

w(1) =
1

2π

∫
T1

dk

(
ĥ(k)× dĥ(k)

dk

)
z

=
1

2πi

∫
T1

dk(h(k))−1dh(k)

dk
, (6.5)
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Therefore, the winding number w(1) describes the number of times the BZ wraps onto S1 de�ned

by the map ĥ(k) : T1 → S1, where S1 is the unit circle. The subscript (1) indicates the dimen-

sionality of the BZ tours T1. The relevance of the subscript notation will become clear in what

will follow. Further, note that the structure of the winding number takes a similar form as the

�rst Chern number described in Eq. (5.17).

The extension to non-Hermitian models follows analogously. The Hatano-Nelson model [67] de-

scribes a 1D chain with non-reciprocal nearest-neighbor coupling, as shown in Fig. 37.

···

t - t -

t + t +

···

Figure 37: Hatano-Nelson model in 1D chain, with asymmetric hopping amplitudes (t± γ).

Cf. Ref. [25]

The corresponding Hamiltonian is given by:

HHN =
∑
i

(t+ γ)c†ici−1 + (t− γ)c†ici+1 =
∑
k

h(k) c†kck ,

h(k) = 2(t cos(k) + iγ sin(k)).

(6.6)

The asymmetric hopping amplitudes render the eigenvalues complex. These eigenvalues form a

closed loop in the complex plane around the origin as we vary k = 0 → 2π in the BZ torus, for

t, γ ̸= 0. The loop collapses to real line of length 4t for γ = 0 and to a imaginary line of length

4γ for t = 0. To describe the topology of the loop traced out by h(k) in the complex plane we

can make use of the doubling procedure [26] for non-Hermitian Hamiltonians as described in Eq.

(6.1), thus:

H̃(k) =

[
0 h(k)

h∗(k) 0

]
. (6.7)

The doubled Hamiltonian H̃(k) is structurally equivalent to the Hamiltonian of the SSH chain,

therefore, we may ascribe the same topological invariant to the Hatano-Nelson model.

The extension to general non-Hermitian systems compacti�ed on a one dimensional torus with

matrix valued Bloch Hamiltonian H(k) is given by [25, 68]:

w(1) =
1

2πi

∫
T1

dkTr[H−1(k)
dH(k)

dk
]. (6.8)

We proceed by adopting the language of di�erential geometry to describe winding numbers in

non-Hermitian systems in hyperbolic {p, q}-lattices. This will be convenient for our analysis
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of the transformation behavior of the winding numbers under general hyperbolic symmetries

g ∈ ∆(2, q, p). The winding number w(1) in Eq. (6.8) can be expressed as:

w(1) =
1

2πi

∫
T1

Tr[H−1(k)dH(k)], (6.9)

where dH(k) is a matrix valued di�erential form of degree one. The generalization of the wind-

ing number in odd dimension for non-Hermitian systems are given by the winding number

density [26]:

w(2n+1)[H(k)] =
(−1)n+1n!

(2n+ 1)!

(
i

2π

)n+1

Tr[(H−1(k) dH(k))∧2n+1]

≡ N2n+1 dk
i1 ∧ · · · ∧ dki2n+1Tr[H−1(k)(∂i1H(k)) · · ·H−1(k)(∂i2n+1H(k))],

(6.10)

where n ∈ N⩾0, d ≡ d/dk and ∂i ≡ ∂/∂ki. The winding numbers that can be calculated are re-

stricted to the dimensionality of the BZ torus. Therefore, for hyperbolic lattices n ∈ {1, 2, .., g−1},
where 2g is the dimension of the BZ torus. We adopt the following short-hand notation introduced

in Ref. [7]. Let X be a matrix valued di�erential form of degree one, then:

X∧j = X ∧ · · · ∧X︸ ︷︷ ︸
j copies ofX

. (6.11)

Further, the integration of the winding number density over the BZ torus T2g, with d ≡ 2n + 1

and D ≡ 2g, gives us the winding number tensor:

w
id+1···iD
(d) ≡ Nd

(2π)D−d

∫
TD

dki1 ∧ · · · ∧ dkiDTr[H−1(k)(∂i1H(k)) · · ·H−1(k)(∂idH(k))]

=
Nd

(2π)D−d
ϵi1...iD

∫
TD

dDkTr[H−1(k)(∂i1H(k)) · · ·H−1(k)(∂idH(k))]

≡ ϵi1···iD w̃(d) i1...id ,

(6.12)

where ij ∈ {1, 2, .., D}. We will refer to w̃(d) i1...id as the winding number components. The

winding numbers can, for example, be used to classify non-Hermitian systems with no internal

symmetries exhibiting point gaps [26]. These systems reside in the symmetry class A within

the complex Altland-Zirnbauer (AZ) symmetry classes [26]. Further, we will restrict ourself to

d = 1, 3 for most of our considerations of the winding numbers, deviating only when we consider

hyperbolic lattice symmetries in chapter 7. In the subsequent section we will explicitly investigate

the winding numbers in non-Hermitian systems in symmetry class A.
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6 Non-Hermitian systems

6.2 Hatano-Nelson model on {6, 4}-lattice

We proceed with studying a variation of the Hatano-Nelson model [67] on the hyperbolic {6, 4}-
lattice. Let us consider the primitive cell as shown in Fig. 38. The Hatano-Nelson model endows

the {6, 4}-lattice with asymmetric hopping amplitudes (t+ γ) in counter-clockwise direction and

(t − γ) in the clockwise direction, indicated with orange arrows. This e�ectively describes an

in�nite set of decoupled one dimensional chains following the hyperbolic geodesics within the

{6, 4}-lattice. Additionally, we introduce a perturbing term proportional to δ, which couples

these Hatano-Nelson chains symmetrically, indicated with dashed green lines.
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Figure 38: {6,4} Hatano-Nelson model with perturbations. Asymmetric hopping ampli-

tudes (t + γ) in counter-clockwise direction and (t − γ) in the clockwise direction are

indicated with orange arrows. The Hermitian coupling terms proportional to δ are

indicated with dashed green lines.

The corresponding Hamiltonian on the primitive cell is given by:

H =
∑
γ∈Γ

(t+ γ)
(
a†γ2γbγ + b†γaγ + c†γ4γdγ + d†γcγ + e†

(γ2γ4)
−1

γ
fγ + f †γeγ

)
+ (t− γ)

(
a†γbγ + b†γaγ2γ + c†γdγ + d†γcγ4γ + e†γfγ + f †γe(γ2γ4)

−1
γ

)
+ δ

(
a†γfγ + b†γ3γcγ + c†γbγ + d†

(γ1γ3)
−1

γ
eγ + e†γdγ + f †γ1γaγ + h.c.

)
.

(6.13)

The creation and annihilation operators, labeled according to Fig. 38, are given by:

aγ ≡ c
{2,1}
γ , dγ ≡ c

{2,6}
γ ,

bγ ≡ c
{2,2}
γ , eγ ≡ c

{2,5}
γ ,

cγ ≡ c
{2,4}
γ , fγ ≡ c

{2,3}
γ .

(6.14)
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6 Non-Hermitian systems

The Abelian Bloch Hamiltonian in Eq. (3.67) takes the form:

H(k) =


0 t−γ+(t+γ)eik2 δ+δe−ik1 0 0 0

t+γ+(t−γ)e−ik2 0 0 δ+δeik3 0 0

δ+δeik1 0 0 0 t+γ+(t−γ)ei(k2+k4) 0

0 δ+δe−ik3 0 0 0 t−γ+(t+γ)eik4

0 0 t−γ+(t+γ)e−i(k2+k4) 0 0 δ+δei(k1+k3)

0 0 0 t+γ+(t−γ)e−ik4 δ+δe−i(k1+k3) 0


(6.15)

In the limit δ → 0, the one dimensional Hatano-Nelson chains fully decouple and we �nd the

eigenvalues:

ϵ±1 (k) = ± 2 (tcos(
k2
2
) + iγsin(

k2
2
)),

ϵ±2 (k) = ± 2 (tcos(
k4
2
) + iγsin(

k4
2
)),

ϵ±3 (k) = ± 2 (tcos(
k2 + k4

2
) − iγsin(

k2 + k4
2

)),

(6.16)

which is reminiscent of the eigenvalues for the Hatano-Nelson chain in the one-dimensional Eu-

clidean space Eq. (6.6). The corresponding density of states and the spectrum in the complex

plane with 5 · 104 randomly sampled points in the BZ torus T4 for t = 1/2 and γ = 1/5 are

depicted in Fig. 39. The DOS is smoothed by a kernel density estimation with a Gaussian kernel

of energy bandwidth 0.01.

-3 -2 -1 0 1 2 3
Re{ } [arb.u.]0.0
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(Re{ }) [arb.u.]

Figure 39: DOS and complex energy spectrum for the {6,4} Hatano-Nelson model on

the primitive cell, where t = 1/2, γ = 1/5 and δ = 0. Left: The density of states for

the real part of the complex energies takes the well know form for a tight-binding model

on one dimensional chain. Right: The complex energy spectrum envelops a point gap

at zero energy.

In this decoupled limit, the symmetric aggregation of additional primitive cells into m-supercells

does not alter the DOS nor the spectrum, as shown in Fig. 40 for 104 randomly sampled points

in the BZ torus T2g. Note, due to the small sample size small �uctuations appear for the T2.2

primitive cell which are not present in Fig. 39 where more samples have been taken.
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Figure 40: DOS and complex energy spectrum for the {6,4} Hatano-Nelson model

on supercells, where t = 1/2, γ = 1/5 and δ = 0. The sequence of supercells

T2.2, T5.4, T9.3, T33.11, T65.9 and the AHBT associated Abelian BZ trous T2g. Left:

The density of states for the real part of the complex energies takes the well-known

form for a tight-binding model on one-dimensional chain.

As such the higher-dimensional irreducible representations that are accessed via the supercell

method do not change the spectrum. Thus, the {6, 4} Hatano-Nelson model in the decoupled

limit where δ = 0 on the T2.2 primitive cell using AHBT describes the thermodynamic limit.

Perturbing the system by coupling Hatano-Nelson chains through the symmetric hopping ampli-

tudes δ = 0.2 broadens the DOS and the complex energy spectrum, and the model on the T2.2

primitive cell with AHBT no longer describes the thermodynamic limit. The corresponding DOS

plots are depicted in Fig. 41.
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Figure 41: DOS and complex energy spectrum for the {6,4} Hatano-Nelson model

on supercells, where t = 1/2, γ = 1/5 and δ = 0.2. The sequence of supercells

T2.2, T5.4, T9.3, T33.11, T65.9 and the AHBT associated Abelian BZ torus T2g.

We proceed with computing the winding numbers as de�ned in Eq. (6.12) for d = 1, 3 by setting

t = γ = 1/2 and δ = 0. Speci�cally, for d = 1 we compute the w̃(1) i for all supercells of Eq. (4.7)

and for d = 3 we compute w̃(3) i,j,k only up to the �rst supercell T5.4. All winding numbers turn

out to be trivial. In fact, we will see in section 8.1 that the hyperbolic lattice symmetries of the
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6 Non-Hermitian systems

{6, 4} Hatano-Nelson model are not compatible with any one dimensional winding numbers on

any supercell we have considered.

6.3 Hatano-Nelson model on the {8, 4}-lattice

In the last section, we have seen that the winding numbers in the {6, 4}-lattice turned out to

be trivial. As such, we consider the {8, 4} Hatano-Nelson model for two distinct con�gurations,

shown in Fig. 42 on the primitive cell T3.6. The asymmetric hopping amplitudes are indicated

with orange arrows, with hopping amplitude (t + γ) in the direction of the arrow (t − γ) in the

opposite direction. The perturbing term δ is indicated with dashed green lines. Since the orange

arrows in Fig. 42 travel on the hyperbolic geodesics, we denote the left con�guration with anti-

parallel orange arrows as the anti-parallel {8, 4} Hatano-Nelson model and the right con�guration

as the parallel {8, 4} Hatano-Nelson model, for convenience.
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Figure 42: {8, 4} Hatano-Nelson model with perturbations. Asymmetric hopping ampli-

tudes are indicated with orange arrows, with hopping amplitude (t + γ) in the direc-

tion along the arrow (t − γ) in the opposite direction. The Hermitian coupling terms

proportional to δ are indicated indicated with dashed green lines.

Note that there exist a lower-order quotient group T2.3 in [39] for the triangle group ∆(2, 4, 8);

however, the corresponding primitive cell is not compatible with the Hatano-Nelson models we

want to consider. As such, the supercell sequence we consider is given by:

{8, 4}-lattice : T3.6, T5.6, T9.7, T17.8 (6.17)

We calculate the winding number components w̃(d) i1,..,id in Eq. (6.12) for d = 1, 3, in the decou-

pled limit with t = γ = 1/2 and δ = 0. Further, for d = 1 we compute the w̃(1) i for all supercells

of Eq. (6.17) and for d = 3 we compute w̃(3) i,j,k only up to the supercell T5.6.
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6 Non-Hermitian systems

For the anti-parallel {8, 4} Hatano-Nelson model we �nd trivial winding numbers w̃(1) i = 0 and

w̃(3) i,j,k = 0. In contrast, for the parallel {8, 4} Hatano-Nelson model we again �nd w̃(3) i,j,k = 0,

however, the w̃(1) i are not trivial and tabulated in Table 2.

∆+/Γ(m)(2, 4, 8) index: i w̃(1) i

T3.6
1,3-5 0

2,6 2

T5.6

1-3,5,7,8 0

4,10 2

6, 9 -2

T9.7
1-6,8,12-18 0

7,9-11 4

T17.8

1,3,6,7,9-12,14-18,21,25-34 0

2,4,5,13,23,24 4

8,20,21 -4

Table 2: One dimensional winding number components w̃(1) i, for the parallel {8, 4} Hatano-
Nelson model shown on the right of Fig. 42, with t = γ = 1/2 and δ = 0. The index i

denotes the index in w̃(1) i.
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7 Hyperbolic lattice symmetries and

topological invariants

Hyperbolic lattice symmetries may constrain the degrees of freedom of topological invariants. In

this chapter we will build the necessary tools in order to formulate such constraints for winding

numbers. For the 1st and 2nd Chern numbers such constraint equations were derived in Ref. [7]

and we will use the same methodology in order to �nd constraint equations for the winding

numbers in section 7.2. At the end of this chapter, we brie�y state the constraint equations of

the �rst and second Chern numbers, in preparation for the subsequent chapter 8. There, the

number of independent winding numbers as well as 1st and 2nd Chern numbers will be calculated

explicitly for a selection of already considered models.

7.1 Point-group matrices

In this section we will look at how symmetry elements of the triangle groups act on hyperbolic

momenta by reviewing aspects in Ref. [7]. Let ψk(z) be the amplitude of an Abelian hyperbolic

Bloch state at a position z in the hyperbolic space and momentum k in the BZ torus. Let Sg be

a representation of a general symmetry g ∈ ∆(2, q, p), with triangle group ∆ in Eq. (3.15), such

that [Sg, H(k)] = 0 where H(k) is the hyperbolic Abelian Bloch Hamiltonian. To achieve brevity,

let us omit the {p, q} dependence of the group ∆ and likewise for Γ and G given in Eq. (3.18)

and Eq. (3.22), respectively. Further, let us also suppress the momentum subscript of the state

ψ. Under a general symmetry transformation g the state ψ(z) transforms as:

Sgψ(z) = ψ(g−1(z)) ≡ ψg(z). (7.1)

Recall from Section 2.3 that according to the Abelian Bloch theorem ψ(z) transform under a

translation γi ∈ Γ ◁ ∆ as Sγiψ(z) = χ(γi)ψ(z) where χ : Γ → U(1). By extension ψg(z)

transforms as:

Sγiψg(z) = (SgSg
−1)SγiSgψ(z) = SgSg−1γig

ψ(z)

= Sgχ(g
−1γig)ψ(z) = χ(g−1γig)ψg(z),

(7.2)

where the third equality follows from the fact that Γ is a normal subgroup of ∆ such that g−1γig ∈
Γ. We can conclude that a general translation of a transformed state ψg(z) mixes momenta kj .

Using χ(γj) = eik
j
, we �nd:

χ(g−1γig) = eik̃
i
= ei(Mg)ijk

j

,

where k̃i ≡ (Mg)
i
jk

j ,
(7.3)

where (Mg)
i
j ∈ Z is the number of times γj appears in g−1γig after abelianization, where neg-

ative entries correspond to their inverse. The point-group matrix Mg is a representation of
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7 Hyperbolic lattice symmetries and topological invariants

G, since Γ is a normal subgroup of ∆ and since for any pair g1, g2 that is in the same coset

there exists one representative in the transversal g̃ ∈ T∆(Γ), recall Eq. (3.18). For simplicity

suppose g1 is the representative of this coset, then g2 can be decomposed into g2 = γg1, therefore:

g2
−1γig2 = g1

−1γ−1γiγg1 and thus Mg1 = Mg2 , therefore Mg : G → GL(2g,Z). Note that we

chose the translation γ to be on the left side of g1 out of convenience, which is contrary to our

convention. We may as well write g2 = γg1 in terms of another translation operator to the right

of g1 such that g2 = g1γ
′.

The extension to anti-unitary symmetry transformations, like time reversal T , follows the same

procedure. Under a general symmetry transformation composed with time reversal gT we �nd:

SgT ψ(z) = ψ∗(g−1(z)) ≡ ψgT (z)

SγiψgT (z) = SgT χ(g
−1γig)ψ(z) = χ∗(g−1γig)ψgT (z).

(7.4)

Therefore, under the anti-unitary symmetry transformation gT the point-group matrix Mg devel-

ops a minus sign:

MgT = −Mg . (7.5)

Thus, the construction of Mg requires the determination of the words g−1γi g in form of the

generators γj in the translation group Γ and subsequent abelianization. These calculations can

e�ciently be executed using GAP. We have constructed such an implementation, the pseudo code

is provided in the Appendix 10.3. The point-group matrices are essential objects for the symmetry

characterization of models on hyperbolic lattices. As such, we will construct them for a set of

m'th supercells and study how topological invariants are constrained by symmetry.

7.2 Winding numbers revisited

We are interested in the transformation behavior of the winding numbers under general hyper-

bolic lattice symmetry transformations g ∈ ∆(2, p, q). These symmetries constrain the degrees of

freedom of the system and, as such, lead to constraint equations for winding numbers. To this

end, we will be following the same methodology as applied by Ref. [7] for non-Hermitian Abelian

Bloch Hamiltonians. We will make use of the tools of di�erential geometry such as the graded

cyclicity property G.C. and graded Leibniz rule G.L., [69].

We will start by considering unitary transformations. In order to proceed we need the non-

Hermitian Abelian Bloch Hamiltonian H(k) to have the following properties:

� We assume that the Hamiltonian has a gapped spectrum across the entire BZ and that there

is no eigenvalue that is zero. This implies that det(H(k)) ̸= 0 and therefore H is invertible.

� We further assume that the spectrum of the Hamiltonian has a compact support and there-

fore H(k) is trace-class. This implies that we can use the graded cyclic property of the

trace.
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7 Hyperbolic lattice symmetries and topological invariants

Let g be a general symmetry of the hyperbolic {p, q}-lattice such that g ∈ ∆(2, q, p). Consider

any appropriate m'th supercell identi�ed by a normal subgroup Γ
(m)
{p,q} obeying Eq. (3.68), to-

gether with a non-Hermitian Abelian Bloch Hamiltonian H(k) constructed through the supercell

method in 3.6 on that m'th supercell, at momentum k ∈ T2g. There exists a unitary repre-

sentation Vg(k) ∈ U(N) that transforms H(k) at k to the Hamiltonian at Mgk, such that

Vg(k)H(k)Vg(k)
† = H(Mgk). Further, recall that the dimension d of the winding number density

w(d)[H(k)] in Eq. (6.10) indicates the dimension of subtori spanned by momenta {ki1 , ki2 , .., kid}
of the 2g dimensional BZ torus T2g, with ij ∈ {1, 2, 3, .., 2g} and d ∈ {1, 3, 5, .., 2g− 1}.

Claim 7.1. Let V ≡ Vg(k). Under a general hyperbolic lattice symmetry transformation the

winding number density w(d) transforms as:

w(d)[H(k)] → w(d)[H(Mgk)] = Nd Tr[(H
′−1(k) dH ′(k))∧d]

= Nd Tr[((V H(k)V †)−1 d(V H(k)V †))∧d]

= Nd Tr[(H
−1(k) dH(k))∧d] + dz

= w(d)[H(k)] + dz ,

(7.6)

where the transformation can at most acquire a total derivative dz that vanishes when integrating

over a closed surface in BZ(m,1) by Stokes theorem. The symbol (′) indicates the transformed

object.

Proof of claim 7.1 for d = 1, 3:

Let H ≡ H(k) for convenience. Let us de�ne:

x = dV HV † , v = V dH V † ,

y = V HdV † , w = H ′−1v = V H−1dH V † ,

such that v + x + y = d(V HV †).

(7.7)

These are matrix valued di�erential forms of degree one. The following identities will

prove useful:

xH ′−1 = dV V † and H ′−1y = V dV † ,

=⇒ xH ′−1 + H ′−1y = d(V V †) = 0 ,
(7.8)

wH ′−1 = −V dH−1V † , x ∧ w = dV ∧ dH V †

and w
G.L.
= V H−1d(HV †) − H ′−1y

(7.8)
= V H−1d(HV †) + xH ′−1 .

(7.9)

For d = 1:

w(1)[H(Mgk)] = N1 Tr[H
′−1 dH ′] = N1 Tr[w + H ′−1(x + y)]

G.C.
= w(1)[H(k)] + N1 Tr[xH

′−1 + H ′−1y]

(7.8)
= w(1)[H(k)] .
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In the last line we used Eq. (7.8).

For d = 3:

w(3)[H(Mgk)] = N3 Tr[(H
′−1 dH ′)∧3] = N3 Tr[(w + H ′−1(x + y))∧3]

≡ N3 Tr[w
∧3] + N3 Z = w(3)[H(k)] + N3Z .

Further, for matrix valued one-forms a, b, we see that:

Tr[a ∧ b∧2 + b ∧ a ∧ b + b∧2 ∧ a] G.C.
= 3Tr[a ∧ b∧2], (7.10)

such that Z can be written as:

Z ≡ Z1 + 3Z2 + 3Z3

(7.10)
= Tr[(H ′−1(x + y))∧3] + 3Tr[w ∧ (H ′−1(x + y))∧2] + 3Tr[w∧2 ∧ (H ′−1(x + y))] .

The �rst term in Z reduces to:

Z1
(7.10)
= Tr[(H ′−1x)∧3 + (H ′−1y)∧3 + 3 (H ′−1x)∧2 ∧H ′−1y + 3H ′−1

x ∧ (H ′−1y)∧2]

G.C.
= 3Tr[(xH ′−1)∧2 ∧ (yH ′−1 − H ′−1y) + (H ′−1

x − xH ′−1) ∧ (H ′−1y)∧2]

+ Tr[(xH ′−1 + H ′−1y)∧3] ,

where we have added zeros (1 − 1)((xH ′−1)∧2 ∧H ′−1
y + xH ′−1 ∧ (H ′−1

y)∧2) in the second

line. The last term vanishes by Eq. (7.8). Further:

Z1 = 3Tr[(xH ′−1)∧2 ∧ (yH ′−1 − H ′−1y) + (H ′−1x − xH ′−1) ∧ (H ′−1y)∧2]

(7.8)
= 3Tr[H ′−1x ∧ (xH ′−1)∧2 + (xH ′−1)∧2 ∧ yH ′−1 + (xH ′−1)∧3 − (xH ′−1)∧3]

G.C.
= 3Tr[(xH ′−1)∧2 ∧ (H ′−1x + yH ′−1)] .

The second term in Z reduces to:

Z2
(7.9)
= Tr[((V H−1d(HV †) − H ′−1y) ∧H ′−1y

+ (V H−1d(HV †) + xH ′−1) ∧H ′−1x) ∧ (H ′−1x + H ′−1y))]

(7.8)
= −Tr[ (xH ′−1)∧2 ∧ (H ′−1x + H ′−1y)] + Tr[xH ′−1 ∧H ′−1x ∧ (H ′−1x + H ′−1

y)]

+ Tr[V H−1d(HV †) ∧ (H ′−1
x + H ′−1y)∧2] .

The third term in Z reduces to:

Z3
(7.9)
= Tr[(V H−1d(HV †) + xH ′−1) ∧ (V H−1d(HV †) − H ′−1y) ∧ (H ′−1x + H ′−1y)]

= −Tr[(V H−1d(HV †) + xH ′−1) ∧ (H ′−1x + H ′−1y)∧2]

+ Tr[(V H−1d(HV †) + xH ′−1) ∧ (V H−1d(HV †) + H ′−1
x) ∧ (H ′−1x + H ′−1y)] ,
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where we have added (H ′−1x −H ′−1
x) in the second bracket in line two. Therefore:

Z = Z1 + 3Z2 + 3Z3

= 3Tr[((V H−1d(HV †) + xH ′−1) ∧ (V H−1d(HV †) + H ′−1
x)

− xH ′−1 ∧H ′−1y) ∧ (H ′−1x + H ′−1y)] + 3Tr[(xH ′−1)∧2 ∧ (yH ′−1 −H ′−1y)] .

(7.11)

After some tedious but straightforward manipulations through repeated use of the graded

Leibniz rule and the graded cyclicity, see Appendix 10.4, we �nd:

Z = − 3Tr[dV ∧ (d(HV †)V ∧ d(H−1V †) − d(H−1V †)V ∧ d(HV †))]

G.L.
= − 3 dTr[V d(HV †)V ∧ d(H−1V †)]

+ 3Tr[V d(d(HV †)V ∧ d(H−1V †)) + dV ∧ d(H−1V †)V ∧ d(HV †)]

G.L.≡ 3Tr[V d(HV †) ∧ dV ∧ d(H−1V †) − dV ∧ d(H−1V †)V ∧ d(HV †)] + dz

G.C.
= 3Tr[dV ∧ d(H−1V †)V ∧ d(HV †) − dV ∧ d(H−1V †)V ∧ d(HV †)] + dz = dz .

Therefore:

=⇒ w(3)[H(Mgk)] = w(3)[H(k)] + dz .

The winding number density does indeed transform as given in Eq. 7.1 for d = 1, 3. ■

We hypothesize that the claim 7.1 holds for d ∈ {5, 7, 9, .., D − 1} as well and leave the proof for

future endeavors.

Claim 7.2. The winding number density is a closed form, i.e.:

dw(d)[H(k)] = 0 . (7.12)

Proof of claim 7.2:

dw(d)[H(k)] = Nd dTr[(H
−1dH)∧d] = Nd Tr[d(H

−1dH)∧d]

G.L.
= Nd Tr[dH

−1 ∧ dH ∧ (H−1dH)∧d−1 − (H−1dH) ∧ dH−1 ∧ dH ∧ (H−1 dH)∧d−2

+ (H−1dH)∧2 ∧ dH−1 ∧ dH ∧ (H−1dH)∧d−3 − ...+ (H−1dH)∧d−1 ∧ dH−1 ∧ dH]

G.C.
= dNd Tr[dH

−1 ∧ dH ∧ (H−1dH)∧d−1]

=
dNd

2
Tr[dH−1 ∧ dH ∧ (H−1dH)∧d−1 + dH−1 ∧ dH ∧ (H−1dH)∧d−1]

G.L.
=

dNd

2
Tr[dH−1 ∧ dH ∧ (H−1dH)∧d−1 + (H−1dH) ∧ dH−1 ∧ dH ∧ (H−1dH)∧d−2]

G.C.
=

dNd

2
Tr[dH−1 ∧ dH ∧ (H−1dH)∧d−1 − dH−1 ∧ dH ∧ (H−1dH)∧d−1] = 0 .

■
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7 Hyperbolic lattice symmetries and topological invariants

Let us proceed by looking at the transformation behavior of the winding number components.

Claim 7.3. The winding number components w̃(d) i1...id as given in Eq. (6.12) transform under a

general hyperbolic lattice symmetry as:

w̃(d) i1...id = det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd , (7.13)

where ij ∈ {1, 2, .., D}.

Proof of claim 7.3:

Under the symmetry transformation the derivatives ∂i transform as:

∂i =
∂(Mgk)

j

∂ki
∂′j = (Mg)

j
i ∂

′
j where ∂i = ∂/∂ki and ∂′i = ∂/∂(Mgk)

i

and the integration measure transforms as:

dDk′ = dk′1 ∧ · · · ∧ dk′D = dki1 ∧ · · · ∧ dkiD
∂(Mgk)

1

∂ki1
· · · ∂(Mgk)

D

∂kiD

= dDk ϵi1...iD(Mg)
1
i1
· · · (Mg)

D
iD

= dDk det(Mg) .

We integrate the left-hand side of Eq. 7.1 over the BZ torus TD:

w′
d
id+1...iD =

1

(2π)D−d

∫
TD

dki1 ∧ · · · ∧ dkid ∧ w[H(Mgk)]

=
Nd

(2π)D−d
ϵi1...iD

∫
TD

dDkTr[H−1(Mgk)(∂i1H(Mgk))...H
−1(Mgk)(∂idH(Mgk))]

= ϵi1...iD w̃′
(d) i1...id

.

Further:

w̃′
(d) i1...id

=
Nd

(2π)D−d

∫
TD

dDkTr[H−1(Mgk)(∂j1H(Mgk))...H
−1(Mgk)(∂jdH(Mgk))]

=
Nd

(2π)D−d
(Mg)

j1
i1

· · · (Mg)
jd
id

×
∫
TD

dDkTr[H−1(k′)(∂′j1H(k′)) · · ·H−1(k′)(∂′jdH(k′))]

=
Nd

(2π)D−d
(det(Mg))

−1 (Mg)
j1
i1

· · · (Mg)
jd
id

×
∫
Mg(TD)

dDk′Tr[H−1(k′)(∂′j1H(k′)) · · ·H−1(k′)(∂′jdH(k′))] .

For the �nal step we follow the same line of reasoning as Ref. [7] in the case of Chern

numbers. We presume that the spectrum of the Hamiltonian exhibits a gap throughout the

entire BZ torus and that the integral is topological, see Eq. 7.2. As such, a continuous

deformation of the BZ torus Mg(TD) back to TD will leave the integral unchanged, and

therefore:

w̃′
(d) i1...id

= det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id

× Nd

(2π)D−d

∫
TD

dDkTr[H−1(k)(∂j1H(k)) · · ·H−1(k)(∂jdH(k))]

= det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd ,
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7 Hyperbolic lattice symmetries and topological invariants

where we used the fact that Mg ∈ GL(D,Z) and therefore det(Mg) = ±1, [7]. We now

integrate the right hand side of Eq. 7.1 over the BZ torus TD:

1

(2π)D−d

∫
TD

dki1 ∧ · · · ∧ dkid ∧
(
w(d)[H(k)] + dz

)
=

1

(2π)D−d

∫
TD

dki1 ∧ · · · ∧ dkid ∧ w(d)[H(k)] = ϵi1...iD w̃(d) i1...id = w
id+1...iD
(d) .

Therefore:

w̃(d) i1...id = det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd .

■

Next, let us extend the transformation behavior by considering anti-unitary transformations, such

as time reversal T .

Claim 7.4. For a general anti-unitary symmetry g ∈ ∆(2, q, p) of the hyperbolic {p, q}-lattice,
there exists a anti-unitary representation Vg(k)K with Vg(k) ∈ U(N) where K is the complex

conjugation. Under this symmetry transformation the winding number components w̃(d) i1...id in

Eq. (6.12) transforms as:

w̃(d) i1...id = (−1)
d+1
2 det(Mg) (Mg)

j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd . (7.14)

Proof of claim 7.4:

The non-Hermitian Hamiltonian transforms as:

VKH(k)KV † = V H∗(k)V † = H∗(Mgk),

where (∗) denotes the complex conjugate. By Eq. (7.5) we know that the point-group

matrix Mg develops a minus sign under a anti-unitary transformation, however since Mg

enters the Hamiltonian via the unitary representation V no additional sign in Mg appears.

Given these transformation behaviors, we can follow the proof of claim 7.1 and the proof of

claim 7.3 by making the aforementioned adjustments. For the �nal step we �nd:

w̃′
(d) i1...id

= det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id

× Nd

(2π)D−d

∫
TD

dDkTr[H−1(k)(∂j1H(k)) · · ·H−1(k)(∂jdH(k))]∗

= det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id

×
N∗

d

(2π)D−d

∫
TD

dDkTr[H−1(k)(∂j1H(k)) · · ·H−1(k)(∂jdH(k))]

= (−1)
d+1
2 det(Mg) (Mg)

j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd ,
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7 Hyperbolic lattice symmetries and topological invariants

where we have used the fact that the winding number is real in the second equality. This

implies:

w̃(d) i1...id = (−1)
d+1
2 det(Mg) (Mg)

j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd .

■

We conclude that the symmetry g constrains the winding number components as:

w̃(d) i1...id = ξdg det(Mg) (Mg)
j1
i1

· · · (Mg)
jd
id
w̃(d) j1...jd , (7.15)

where ξdg = +1 for unitary transformations and ξdg = (−1)
d+1
2 for anti-unitary transformations.

The constraint equation (7.15) is su�cient for the determination of the number of independent

winding numbers. However, for completeness let us state the transformation behavior of the

winding number tensor itself. This is achieved by using the identity given in [7, 70], which we

denote as the Bzdu²ek identity:

1

(D − d)!d!
ϵi1···iD−dkD−(d−1)···kDϵj1···jD−dlD−(d−1)···lD(Mg)

j1
i1

· · · (Mg)
jD−d

iD−d
αlD−(d−1)···lD

= det(Mg)(Mg
−1)

kD−(d−1)

iD−(d−1)
· · · (Mg

−1)
jD
iD
αlD−(d−1)···lD .

(7.16)

Therefore, the winding number tensor w
id+1···iD
(d) transforms under a general hyperbolic lattice

symmetry g as:

w
k1···kD−d

(d) =
ξdg

(D − d)!d!
ϵk1···kD−dlD−(d−1)···lDϵi1···iD−dlD−(d−1)···lD(Mg)

i1
j1

· · · (Mg)
iD−d

jD−d
w
j1···jD−d

(d) .

(7.17)

We conclude this rather technical section by summarizing the properties in d = 1, 3.

For d = 1:

w
i2···iD
(1) = i

ϵi1···iD

(2π)D

∫
TD

dDkTr[H−1(k)(∂i1H(k))] ,

w̃(1) i = ξ1gdet(Mg) (Mg)
j
iw̃(1) j where w

i2···iD
(1) = ϵi1···iD w̃(1) i1 .

(7.18)

(7.19)

For d = 3:

w
i4···iD
(3) =

ϵi1···iD

3!(2π)D−1

∫
TD

dDkTr[H−1(k)(∂i1H(k))H−1(k)(∂i2H(k))H−1(k)(∂i3H(k))] ,

w̃(3) i1,i2,i3 = det(Mg) (Mg)
j1
i1
(Mg)

j2
i2
(Mg)

j3
i3
w̃(3) j1,j2,j3 ,

where w
i4···iD
(3) = ϵi1···iD w̃(3) i1,i2,i3 .

(7.20)

(7.21)

Note that in this case ξ3g = +1 for unitary and anti-unitary symmetry g alike.
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7 Hyperbolic lattice symmetries and topological invariants

7.3 Chern numbers revisited

In the previous section we have established constraint equations under hyperbolic lattice symme-

tries for winding numbers by applying the methodology used by A. Chen et al. Ref. [7]. They

conducted general hyperbolic lattice symmetry considerations in order to �nd constrained equa-

tions for 1st and 2nd Chern numbers on primitive cells of a selection of {p, q}-lattices. In this

section we will review the general description of 1st and 2nd Chern numbers on hyperbolic lat-

tices and state how they are constraint by hyperbolic lattice symmetries, by reviewing aspects

of Ref. [7]. We will extend their study of independent Chern numbers on the primitive cell to

m'th-supercells in section 8.2 by reconsidering the {6, 4} and {8, 3} Haldane models of section 5.2.

In order to use the �rst and second Chern numbers for the characterization of topological phases

in hyperbolic lattice models, we need to reconsider how they are de�ned on Brillouin zone tori

T2g with genus g > 1 of the compacti�ed supercells. Consider a hyperbolic {p, q}-lattice on a

Tg.n supercell with corresponding BZ torus T2g. We can adapt the momentum-space �rst Chern

number by de�ning the �rst Chern number on each two dimensional subtorus of the BZ torus T2g.

Each subtorus is spanned by two pairwise distinct momenta (ki, kj) with i ̸= j and ki, kj ∈ T2g.

The collection of these Chern numbers Cij forms an anti-symmetric 2g×2g matrix C(1). As such,

for non-degenerate energy bands, the b'th band �rst Chern number Cb
ij is de�ned as:

Cb
(1),ij =

1

2πi

∫
T2

d2k F b
ij(k). (7.22)

The Berry curvature is given by F b
ij(k) = ∂iA

b
j(k) − ∂jA

b
i(k) and Berry connections given

by Ab
i(k) = ⟨b(k)|∂i|b(k)⟩. Each Berry connection is constructed by eigenstates in the b'th

band |b(k)⟩ with momenta ki ∈ T2g. The anti-symmetric property of C(1) is inherited from

the Berry curvature. Further, the total �rst Chern number for a multiplet of n �lled bands

Ψ(k) =
(
|1(k)⟩, |2(k)⟩, ..., |n(k)⟩

)
is:

CΨ
(1),ij =

1

2πi

n∑
b=1

∫
T2

d2k F b
ij(k). (7.23)

If the system exhibits degenerate energy bands, as we have seen in subsection 5.3.1, the Chern

numbers need to be adapted accordingly, analogous to Eq. (5.33). Thus:

CΨ
(1),ij =

1

2πi

∫
T2

d2kTr[FΨ
ij (k)], (7.24)

where the Berry connection is replaced by the BWZ connection (AΨ
i (k))

ab = ⟨a(k)|∂i|b(k)⟩ and
F b
ij(k) is replaced by the BWZ curvature FΨ

ij (k) = ∂iA
Ψ
j (k) − ∂jA

Ψ
i (k) + i[AΨ

i (k), A
Ψ
j (k)].

The second Chern numbers, closely related to �rst Chern numbers, are topological invariants in

de�ned on four-dimensional BZ tori [53, 54]. We will refrain from giving a further description of
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7 Hyperbolic lattice symmetries and topological invariants

these invariants, instead we will only state how they are constraint by symmetry. Using the notions

reviewed in Section 7.1 together with the aspects of di�erential geometry used in Section 7.2, A.

Chen et al. [7] conclude that a general symmetry transformation g ∈ ∆(2, q, p) of the hyperbolic

{p, q}-lattice constrain the momentum-space 1st Chern numbers as:

C(1) ij = ζg(Mg)
k
i(Mg)

l
j C(1) kl, (7.25)

where ζg = +1 if g is a unitary transformation, ζg = −1 if g is a anti-unitary transformation,

and the 2nd Chern numbers are constraint as:

C(2) i1i2i3i4 = (Mg)
j1
i1
(Mg)

j2
i2
(Mg)

j3
i3
(Mg)

j4
i4
C(2) j1j2j3j4 , (7.26)

where Mg are the point-group matrices de�ned in Section 7.1.

79



8 Topological band theory of hyperbolic

supercells

The various aspects of hyperbolic lattices we have studied so far can now be tied together. In

this chapter, the hyperbolic lattice symmetry considerations of chapter 7 will be used on models

we have already considered. In Section 8.1 we reconsider the Hatono-Nelson models of sections

6.2 and 6.3 and determine the set of hyperbolic lattice symmetries which leave them invariant.

The set of symmetries will be used to explicitly calculate how many winding numbers are left

unconstraint. Similarly, in Section 8.2 we reconsider the Haldane models of Section 5.2 and we

explicitly calculate how many 1st and 2nd Chern numbers are left unconstraint. At last, in

Section 8.3 we return to the very �rst model we have considered in Section 4.2.1, where we will

study the scaling behavior at band edges in the DOS for sequences of supercells.

8.1 Hatano-Nelson model revisited

The hyperbolic lattice symmetry considerations of the previous chapter have revealed constraints

imposed on the number of independent winding numbers. In this section we count the number of

independent winding numbers for d = 1, 3 by applying the constraints in Eq. (7.18) and (7.20),

derived in Section 7.2. To this end, we reconsider the variants of the Hatano-Nelson models from

sections 6.2 and 6.3, which are invariant under the action of some hyperbolic lattice symmetries

g ∈ ∆.

Consider the C3 rotation symmetric {6, 4} and the C4 rotation symmetric {8, 4} Hatano-Nelson

model with asymmetric hopping amplitudes (t + γ) in the counterclockwise and (t − γ) in the

clockwise direction, shown in Fig. 38 and left Fig. 42, respectively. These systems are invariant

under hyperbolic lattice symmetries generated by:

Ic = {aT , b, z2} , (8.1)

see Fig. 2 for a reference of the symmetry operations. The right action of the re�ection a amounts

to a sign change of the coupling constants (t ± γ) → (t ∓ γ). The original con�gurations are

restored by time reversal. Thus, the composite action of time reversal and re�ection aT leave the

systems invariant. The C3 and C4 symmetry imply an invariance under the rotation symmetry z2.

The parallel {8, 4} Hatano-Nelson model with alternating asymmetric hopping amplitudes (t±γ),
shown in the right Fig. 42, is invariant under C2 rotation symmetry. Due to the alternating

asymmetric hopping amplitudes the invariance under C4 symmetry of the previous {8, 4} Hatano-
Nelson model is explicitly broken, with a remaining C2 invariance. The action of z2 leads to a sign

change in the coupling constants (t ± γ) → (t ∓ γ), which can be restored by time reversal. As

such, the composite action z2T leaves the system invariant. Therefore, the system is left invariant
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8 Topological band theory of hyperbolic supercells

under the hyperbolic lattice symmetries:

Ia = {aT , b, z2T } . (8.2)

Further, the application of Eq. (7.18) and (7.20) necessitate the construction of the point-group

matrices Mg de�ned in Section 7.1, with symmetries g ∈ Ic, Ia. Recall, the point-group matrices

are representations of the point groups G(m). Each point group is isomorphic to a corresponding

quotient group ∆/Γ(m), labeled as Tg.n. We consider quotient groups Tg.n up to genus 11 and

construct the corresponding point-group matrices, through the GAP implementation discussed in

Appendix 10.3.

Crucially, the {6, 4} and {8, 4} Hatano-Nelson models of Sections 6.2 and 6.3 are not necessarily

compatible with general supercell sequences, similar to the incompatibility of our {8, 4} Hatano-

Nelson models on the T2.3 primitive cell. We will highlight the sequences that we have checked for

compatibility with our models. Our analysis considers general non-Hermitian models exhibiting

point gaps that are invariant under the set of hyperbolic lattice symmetries Ic or Ia. We denote

the number of independent winding number components which are constraint by the symmetries

Ic as #w̃c
(1), #w̃c

(3) and those that are constraint by Ia as #w̃a
(1), #w̃a

(3). They are tabulated in

Table 3.

∆+/Γ(m)(2, 4, 6) #w̃c
(1) #w̃c

(3)

T2.2 0 0

T3.4 0 2

T4.3 0 0

T5.4 0 3

T6.2 0 13

T9.3 0 7

T9.4 1 19

T10.8 0 12

T10.9 0 26

T11.1 0 36

∆+/Γ(m)(2, 4, 8) #w̃c
(1) #w̃c

(3)

T2.3 0 0

T3.5 0 2

T3.6 0 1

T5.5 0 1

T5.6 0 3

T9.5 0 13

T9.6 0 11

T9.7 0 12

T9.8 0 16

∆+/Γ(m)(2, 4, 8) #w̃a
(1) #w̃a

(3)

T2.3 1 0

T3.5 0 4

T3.6 1 2

T5.5 1 6

T5.6 1 6

T9.5 1 26

T9.6 1 26

T9.7 2 28

T9.8 0 32

Table 3: Number of independent winding number components in d = 1, 3. #w̃c
(1), #w̃c

(3)

are constrained by hyperbolic lattice symmetries g ∈ {aT , b, z2} and #w̃a
(1), #w̃a

(3) are

constrained by g ∈ {aT , b, z2T }. Rows that are highlighted in gray are compatible with

the {6, 4} and {8, 4} Hatano-Nelson models of sections 6.2 and 6.3.

The gray rows in Table 3 correspond to a sequence of supercells compatible with the Hatano-

Nelson models in Section 6.2 or 6.3. Further, we see that if we follow an appropriate sequence

of supercells, under the condition in Eq. (3.48), the number of independent winding number

components are monotonically increasing. In fact, we have observed this trend for any sequence

of supercells we have considered. Further, in the subsequent section, where we count the number

of independent �rst and second Chern numbers constraint by hyperbolic lattice symmetries, such

a trend is also observed.
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8 Topological band theory of hyperbolic supercells

8.2 Haldane model revisited

We have seen in Section 7.3 that hyperbolic lattice symmetries constrain the number of indepen-

dent momentum-space Chern numbers. In this section we will explicitly calculate how many 1st

and 2nd Chern are left unconstraint when considering sequences of supercells with Abelian hyper-

bolic band theory. The symmetries that we will consider will be dictated by the underlying model

on a given {p, q}-lattice. Let us return to the {p, q} Haldane models considered in Ref. [7], with a

particular focus on the {6, 4} and {8, 3}-lattices. The analysis for the {7, 3}, {8, 4}, {10, 5}{12, 3}
and {12, 4}-lattices, considered in Ref. [7], are discussed in the Appendices 10.5, 10.6 and 10.7.

Analogous to our hyperbolic lattice symmetry considerations of the winding number components,

we proceed with determining the set of symmetries that leave the {6, 4} and {8, 3} Haldane-models

invariant, which comprise two cases. Consider Fig. 19, in the absence of the staggered on-site

potential m = 0, the systems are left invariant under the action of hyperbolic lattice symmetries:

Im=0 = {aT , bT , cT } , (8.3)

see Fig. 2 for a reference of the symmetry operations. The lattices are threaded by local magnetic

�uxes ±ϕ such that the next-nearest-neighbor hopping amplitudes acquire a phase t2e
±iϕ through

the Peierls substitution. Under the action of a re�ection symmetry g ∈ {a,b,c} the sign of the

NNN-hopping terms are �ipped t2e
±iϕ → t2e

∓iϕ. The original con�gurations can be restored by

time reversal. Thus, under the action of re�ection symmetries composed with time reversal the

systems are left invariant, resulting in a particular type of magnetic [28] hyperbolic space group.

In contrast, in the presence of a non-zero staggered on-site potential m ̸= 0, the C6 rotation

symmetry of the {6, 4} Haldane-model and the C8 rotation symmetry of the {8, 3} Haldane-model

are explicitly broken, leaving behind only C3 and C4 symmetries, respectively. This implies that

the systems are no longer invariant under the action of aT , which interchanges the sublattices A

and B. The remaining symmetries C3 and C4 imply an invariance under the action of the rotation

z2 instead. Therefore, the systems are left invariant under the action of symmetries:

Im ̸=0 = {z2, bT , cT }. (8.4)

In order to apply the constraints of Eq. (7.25) and (7.26), we construct the point-group matrices

Mg described in Sections 7.1 and 10.3, for the corresponding quotient groups Tg.n up to genus

g < 50 and symmetries g ∈ Im=0, Im̸=0. The number of independent 1st and 2nd Chern numbers

which are constrained by the symmetries in the set Im=0 are denoted as #C
(1)
m=0, #C

(2)
m=0 and

those that are constrained by Im̸=0 are denoted #C
(1)
m̸=0#C

(2)
m=0, respectively.

The number of independent �rst Chern numbers are shown in the subgroup tree graphs in Fig. 43

and Fig. 44. Note that Fig. 43 is an extension of Fig. 6. As such, recall that each vertex

in the graph corresponds to a normal subgroup Γ(m) ◁ ∆ labeled by its corresponding quotient

group Tg.n, with directed edges indicating a normal subgroup relation. Vertices highlighted in red

indicate that a corresponding supercell can be constructed by symmetrically aggregating primitive

cells.
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8 Topological band theory of hyperbolic supercells

Figure 43: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {6, 4} Haldane model.

Figure 44: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {8, 3} Haldane model.
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8 Topological band theory of hyperbolic supercells

The numbers of independent �rst Chern numbers for {6, 4} and {8, 3} Haldane-model on the

primitive cell T2.2 and T2.1, respectively, are in agreement with the results in Ref. [7]. Further,

following any of the supercell sequences in Fig. 43 and Fig. 44 shows that #C
(1)
m=0, #C

(1)
m ̸=0 are

monotonically increasing, which is further emphasized in Fig. 45 and Fig. 46.

Figure 45: Evolution of the number of momentum-space 1st Chern numbers for in-

creasingly large supercells on the {6, 4} Haldane model. #C
(1)
m=0, #C

(1)
m̸=0 plot-

ted against genus g of corresponding compacti�ed supercell Tg.n. The radius of each

disk is proportional to the number of overlapping points, shown in the inset. Lines

connecting pairs of points indicate supercells obeying a group-subgroup relation.

.

Figure 46: Evolution of the number of momentum-space 1st Chern numbers for in-

creasingly large supercells on the {8, 3} Haldane model. #C
(1)
m=0, #C

(1)
m̸=0 plot-

ted against genus g of corresponding compacti�ed supercell Tg.n. The radius of each

disk is proportional to the number of overlapping points, shown in the inset. Lines

connecting pairs of points indicate supercells obeying a group-subgroup relation.
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8 Topological band theory of hyperbolic supercells

The increasing numbers of independent �rst Chern numbers in Fig. 45 and Fig. 46 are plotted

against the genus g of a corresponding compacti�ed supercell Tg.n, where sequences of supercells

are indicated with blue lines. The physical interpretation for the existence of multiple indepen-

dent momentum-space �rst Chern numbers and the correspondence between momentum-space

and real-space �rst Chern numbers in two dimensional hyperbolic lattices are currently unknown.

In the Haldane models on the primitive cell that were considered in [7], the momentum-space and

real-space �rst Chern numbers were observed to agree if only one independent momentum-space

�rst Chern remains, such as {6, 4} and {8, 3} Haldane models on the primitive cell T2.2 and T2.1,

respectively. As such, further examinations of the number of independent momentum-space �rst

Chern on higher-dimensional BZ tori are needed.

Further, the number of independent second Chern numbers that are constraint by Eq. (7.26) for

sequences of supercells Tg.n up to genus g < 10 are tabulated in Table 4.

∆+/Γ(m)(2, 4, 6) #C
(2)
m=0 #C

(2)
m̸=0

T2.2 1 1

T3.4 1 1

T4.3 2 4

T5.4 3 5

T6.2 3 3

T9.3 15 26

T9.4 9 22

∆+/Γ(m)(2, 3, 8) #C
(2)
m=0 #C

(2)
m ̸=0

T2.1 1 1

T3.2 1 1

T5.1 3 4

T8.1 4 7

T8.2 4 8

Table 4: Number of independent 2nd Chern numbers fo compacti�ed supercells up to

genus g < 10, in the {6, 4} and {8, 3} Haldane models, left and right, respectively.

The numbers of independent second Chern numbers for {6, 4} and {8, 3} Haldane-model on the

primitive cell T2.2 and T2.1, respectively, are in agreement with the results in Ref. [7]. Similar to

our consideration of the �rst Chern numbers, the number of independent second Chern numbers

for any sequence of supercells is monotonically increasing.
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8 Topological band theory of hyperbolic supercells

8.3 Scaling at the band edge

P. M. Lenggenhager et al. [3] have demonstrated that the density of states for increasingly large

supercells is in agreement with the continued fraction method used by R. Mosseri et al. [33]. In

particular, they observe a strong suppression of the density of states near the band edges. Under

the assumption of a generic quadratic scaling of the energy near a band edge as E ∝ k2, where

k ∈ T2g the density of states scales as ρ(E) ∝ Eg−1, which was observed in the models they

considered [3].

We are interested in the scaling behavior in the vicinity of the band edge where states start to

overcome this suppression. To this end, we reconsider the nearest-neighbor tight-binding model of

Section 4.2.1 for the {8, 3}-lattice. A limiting case for hyperbolic {p, 3}-lattices, called the Bethe

lattice with p = ∞ [71], is well known. Its density of states is given by, [33, 72]:

ρ{∞,3}(E) =
3

2π

√
8− E2

9− E2
, (8.5)

where E± = ±2
√
2, which we will refer to as band edge energies. Thus, the density of states

in the vicinity of the band edge for the Bethe lattice scales as:

ρ{∞,3}(E) ≃ 3 4
√
2

π

√
|E±| ∓ E + O(E± + E). (8.6)

Such a square-root behavior is also well known to occur for non-interacting electron gases in three

dimensional Euclidean space [73]. In contrast, two-dimensional Euclidean lattices exhibit a step

edge in the DOS, which corresponds to a critical exponent 0. Before we proceed our study of the

scaling behavior on the {8, 3}-lattice using the supercell method, recall that we consider sequences

of normal subgroups given by:

∆+ ▷ Γ(1) ▷ Γ(2) · · · ▷Γ(m) ▷ · · · ,

with Γ(m) ◁∆+, see Section 3.5. These normal subgroups are constructed by using tabulated quo-

tient groups in [39]. In this section we consider a sequence of normal subgroups of ∆+(2, 3, 8) that

branches o� into two parts speci�ed by quotient groups T2.1,T5.1,T17.2 branching o� to T33.1

and T65.1, with corresponding normal subgroups ΓT65.1 ⋪ ΓT33.1. It remains to be shown that

di�erent sequences of normal subgroups converge to the same limit. However, an apparent conver-

gence of the DOS for the {8, 3}-lattice for two distinct supercell sequences was demonstrated in [3].

The corresponding density of states and subgroup tree graph are depicted in Fig. 47. The density

of states, depicted on the left, computed via exact diagonalization with 5 · 105 randomly sampled

points in the BZ tori T2g is shown in a histogram with energy binwidth 0.001.
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Figure 47: Density of states for nearest-neighbor tight-binding model on {8, 3}-lattice
together with the corresponding subgroup tree graph. Left: Density of states

in a histogram of energy binwidth 0.001, computed via exact diagonalization with

5 · 105 randomly sampled points in the BZ tori T2g. The inset, shown in the upper left

corner, depicts the DOS in the vicinity of the band edge. Right: Tree graph of the

corresponding quotient groups T2.1,T5.1,T17.2 branching o� to T33.1 and T65.1.

We estimate the band edge energy by determining the intersection of the set of density of states

near the band edge E− ≈ −2.9035, which is close to the calculated band edge energy in the

thermodynamic limit using the continued fraction method E− = −2.9048 [33]. We proceed by

performing a non-linear �t of the function:

f(E|a, b) = a (E − E−)
b θ(E − E−) (8.7)

where θ(E) is the Heaviside function and a, b the parameters to be estimated. To do so, we use

the Mathematica function NonlinearModelFit via NMinimize and di�erential evolution

method, [74]. The corresponding best �ts are depicted in Fig. 48 and 49.
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Figure 48: Non-linear model �ts at a band edge of the DOS in the {8,3} nearest-neighbor

tight-binding model for primitive cell T2.1 and supercells T5.1,T17.2. The red lines

correspond to the best �t enveloped by con�dence interval of ±3σ, �tted in an energy

interval [−3.499,−2.800].
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Figure 49: Non-linear model �ts at a band edge of the DOS in the {8,3} nearest-neighbor

tight-binding model for supercells T33.1,T65.1. The red lines correspond to the best �t

enveloped by con�dence interval of ±3σ, �tted in an energy interval [−3.499,−2.800].

The evolution of the estimated parameters for increasingly large supercells are shown in Fig. 50

and the tabulated values can be found in Table 5. The estimated amplitudes a are shown on the

left, seemingly converging to ∼ 0.30. The estimated exponents b, shown on the right, seem to

converge to ∼ 0.27.
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Figure 50: Estimated parameters of non-linear model �ts at the band edge of the DOS

in the {8,3} nearest-neighbor tight-binding model. The estimate parameters together

with the standard error SE. The horizontal axis indicates the corresponding supercell.

∆+/Γ(m) T2.1 T5.1 T17.2 T33.1 T65.1

Parameter Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

a 0.225 0.013 0.414 0.025 0.323 0.012 0.296 0.008 0.297 0.004

b 0.332 0.020 0.359 0.021 0.291 0.012 0.263 0.009 0.264 0.005

Table 5: Estimated parameters for the {8, 3} nearest-neighbor tight-binding model,

where SE is the standard error.
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9 Summary and conclusion

In this master thesis we have applied the supercell method [3] to study various aspects of topol-

ogy and band theory in a selection of hyperbolic {p, q}-lattices. We have started our endeavor by

reviewing the description of lattices in the Euclidean plane in chapter 2. The group theoretical

considerations provided an intuitive and natural language for a comprehensive understanding of

key concepts, such as space groups and translation groups. This enabled us to understand the

bulk description of models in Euclidean lattices through the Bloch theorem via the aggregation

of PBC clusters.

Equipped with the basic tools provided in chapter 2, we have built an elementary understand-

ing of hyperbolic lattices in chapter 3. The unprecedented features due to an emergent negative

curvature of hyperbolic lattices led us to a review of an adjusted description of band theory, the

hyperbolic band theory [18]. Given the recent development of the supercell method [3], we have

reviewed how to aggregate primitive cells into supercells in hyperbolic lattices in order to apply

Abelian hyperbolic band theory through the supercell method.

In order to comprehend various notions of band theory and topology in models on hyperbolic lat-

tices we have alternated between the study of Euclidean and hyperbolic lattices in the subsequent

chapters 4 and 5. Throughout, we have applied the supercell method. In chapter 4, functions of

the HyperCells package [2] were used to construct an implementation of hyperbolic Lieb lattices.

We have computed the density of states for nearest-neighbor tight-binding models on the {6, 4}
and {8, 3} Lieb lattices in order to calculate the fraction of states within emergent �at-bands.

Further, in chapter 5 we've looked at manifestations of conventional topological insulators and

higher-order topological insulators. Our analysis demonstrated the appearance of fractional corner

charges in a variant of the BBH model on the ruby lattice and fractional charges at a disclination

core of �nite �akes with disclination defects in the {6, 4} BBH model.

The growing interest in non-Hermitian systems has motivated us to study variants of the Hatano-

Nelson model on hyperbolic lattices in chapter 6. To this end, we've altered an existing function

in the HyperBloch package [1] in order to construct non-Hermitian Abelian Bloch Hamiltonians.

Our topological characterization via winding numbers of dimension one and three, revealed a

non-trivial phase for a particular {8, 4} Hatano-Nelson model with non-vanishing one-dimensional

winding numbers. In particular, all three-dimensional winding number were found to be trivial.

In chapter 7 we have reviewed and applied hyperbolic lattice symmetry considerations in order

to derive constraint equations for the number of independent winding numbers. Additionally, in

preparation for chapter 8, we brie�y reviewed the constraint equations for the number of indepen-

dent 1st and 2nd Chern numbers that were very recently derived in order to study {p, q} Haldane
models in [7].
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9 Summary and conclusion

Finally, in chapter 8 we tied multiple threads from di�erent chapters together. We have reconsid-

ered the Hatano-Nelson models on a sequence of supercells and determined the set of hyperbolic

lattice symmetries which leave them invariant in order to calculate the number of independent

winding numbers that are left unconstraint. As such, with our previous calculations of the one-

dimensional winding numbers, we were able to illuminate these constraints explicitly. However,

such a demonstration was not possible for three-dimensional winding numbers since all were found

to be trivial.

Analogous to the hyperbolic lattice symmetry considerations of the Hatano-Nelson models, we

calculated the number of independent 1st and 2nd Chern numbers left unconstraint by the sym-

metries of the {p, q} Haldane models surveyed in Ref. [7]. In particular, our calculations for

the number of independent momentum-space �rst Chern numbers included an extensive list of

supercell sequences up to compacti�ed unit cells of genus g < 50. We found that the number

of independent 1st and 2nd Chern numbers as well as winding numbers exhibit a monotonically

increasing trend for any appropriate sequence of supercells.

In conclusion, the main objectives of this thesis were achieved. Further, we have proposed an addi-

tion to the HyperCells package, constituting an implementation of a word simpli�cation function

for elements in the groups constructed while applying the functionality of the HyperCells package,

based on the Knuth-Bendix completion algorithm in GAP [75]. In tandem with this thesis, we

developed an introductory tutorial for the HyperBloch package to facilitate its usage. This will

be the �rst in a series of tutorials for the HyperCells and HyperBloch packages.
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10 Appendix:

10.1 Appendix: Open boundary conditions on honeycomb ribbons

The honeycomb lattice can host edge states which are sensitive to a particular termination of

the in�nite lattice. As such, let us cut the in�nite lattice into semi �nite ribbons with so-called

Armchair edges and Zigzag edges depicted in Fig. 51 respectively. For each ribbon a unit cell

can be de�ned which ranges across the entire height of the ribbon, indicated with dash-dotted

rectangles.

Figure 51: Honeycomb ribbons. Left: Honeycomb ribbon with Armchair edges. Right: Hon-

eycomb ribbon with Zigzag edges. Both ribbons are labled by an index N indicating

at which rung a site is located.

These ribbons can be described by open boundary conditions (OBC) on the edges in the y

direction and PBCs in the x direction. Let us follow Ref. [76] in order to elaborate the analytic

solutions. Let us consider the Armchair edge �rst. The corresponding Hamiltonian is given by:

HN -AC = t
∑
l

( N∑
j=1

b†j,l+δj
aj,l +

N−1∑
j=1

(a†j+1,lbj,l + b†j+1,laj,l) + h.c.
)
, (10.1)

where:

δj =

1 if j is odd

0 else
δ−1
j =

0 if j is odd

1 else.
(10.2)
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Taking the thermodynamic limit with imposition of PBCs in the x direction leads to the Hamil-

tonian given by:

HN −AC = t
∑
kx

(N−1∑
j=1

(ei
kx
2 a†kx,j+1bkx,j + e−i kx

2 a†kx,jbkx,j+1+ eikxa†kx,jbkx,j)+ eikxa†kx,Nbkx,N + h.c.
)
.

(10.3)

We will refer to kx as the longitudinal wavenumber. The eigenvalues can be computed by solving

theHarper equation. Thus, let us construct the Harper equation by determining the eigenstates

of the Hamiltonian. The one-particle �eld operators are given by:

Ψ̂†(kx) =

N∑
j=1

(ϕAkx,ja
†
kx,j

+ ϕBkx,jb
†
kx,j

), (10.4)

where ϕAkx,j , ϕ
B
kx,j

are Bloch states of sublattices A and B respectively, at kx and rung j. Therefore:

HN −AC|Ψ(kx)⟩ = E|Ψ(kx)⟩. (10.5)

The repeated use of the anti-commutation relation for the fermionic ladder operators a†kx,j and

b†kx,j and subsequent rearrangement of terms give:

EϕAkx,j = −te−i kx
2 (ei

3kx
2 ϕBkx,j + ϕBkx,j+1 + ϕBkx,j−1),

EϕBkx,j = −tei
kx
2 (e−i 3kx

2 ϕAkx,j + ϕAkx,j+1 + ϕAkx,j−1).
(10.6)

We can use the Ansatz:

ϕAkx,j = Akxe
ipj + Bkxe

−ipj ,

ϕBkx,j = Ckxe
ipj + Dkxe

−ipj .
(10.7)

We impose that states beyond the edge, at spurious rows indexed j = 0 and j = N + 1, vanish,

thus Akx = −Bkx , Ckx = −Dkx and:

ϕAkx,N+1 = Akx(e
ip(N+1) − e−ip(N+1)) = 0 =⇒ p =

n

N + 1
π, (10.8)

where n = 1, 2, ..., N , we will refer to p as the transversal wavenumber. We make yet another

Ansatz Akx = A′e−i kx
4 and Ckx = C ′ei

kx
4 . It is su�cient to plug the Ansatz into Eq. (10.6) for

j = 1, all other solutions for j > 1 follow recursively. Thus, we set j = 1 and diagonalize the

system of equations:

E±
kx,p

= ± t

√
1 + 4 cos(

3

2
kx)cos(p) + 4 cos2(p). (10.9)

Notably, for kx = 0 whenever p = 2
3π, i.e. N = 3n − 1, the energy vanishes and the band gap

closes. This is apparent in the band structure and density of states as shown in Fig. 52 for

N = 25, 26.
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Figure 52: Example of energy spectra and density of states of Armchair ribbons. Upper

row: The energy spectra of the Armchair ribbon with N = 25 and N = 26 rungs left

and right respectively. The energy gap closes if p = 2
3π, which is the case for N = 26

rungs. Note that we have rescaled kx →
√
3
2 kx. Bottom row: The randomly sampled

density of states of Armchair ribbon with N = 25 and N = 26 rungs left and right

respectively.

The Bloch eigenstates can be obtained by imposing the normalization condition ⟨Ψ(kx) |Ψ(kx)⟩ =
1, the solution is given by:

ϕAkx,j,± =
∓1√

N (kx, p)/t

√
ei

3kx
2 + 2 cos(p) e−i kx

4 sin(pj),

ϕBkx,j =
1√

N (kx, p)/t

√
e−i 3kx

2 + 2 cos(p) ei
kx
4 sin(pj),

(10.10)

where N (kx, p) is given by:

N (kx, p) = (N − cos((N + 1)p)
sin(Np)

sin(p)
)|E±

kx,p
|2. (10.11)

The states indicated in red shown in Fig. 52 are not localized edge states and thus the Armchair

ribbon hosts only bulk states. Therefore, let us proceed with the Zigzag edge termination of the

honeycomb lattice. The tight-binding Hamiltonian is given by:
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HN −ZZ = t
∑
l

( N∑
j=1

a†j+1,lbj,l +
N−1∑
j=1

(a†j,lbj,l + a†j,l+δj
bj,l+δ−1

j
) + h.c.

)
. (10.12)

Taking the thermodynamic limit with imposition of PBCs in the x direction leads to the Hamil-

tonian given by:

HN −ZZ = t
∑
kx

(N−1∑
j=1

(2 cos(

√
3

2
kx)a

†
kx,j

bkx,j + a†kx,j+1bkx,j) + 2 cos(

√
3

2
kx)a

†
kx,N

bkx,N + h.c.
)
.

(10.13)

Once again, we de�ne the one-particle �eld operators as in Eq. (10.4), and construct the Harper

equation analogously to the Armchair edge:

EϕAkx,j = −t (2 cos(
√
3

2
kx)ϕ

B
kx,j + ϕBkx,j−1),

EϕBkx,j = −t (2 cos(
√
3

2
kx)ϕ

A
kx,j + ϕAkx,j+1).

(10.14)

We proceed analogously to the Armchair edge. We keep the index j of ϕAkx,j ,ϕ
B
kx,j

free. The

characteristic polynomial of the Harper equation is of the form:

ukx,p + vkx,p e
2ipj + wkx,p e

−2ipj = 0 , (10.15)

where:

vkx,p = w∗
kx,p = E2

kx − t2 (ϑ2kx + 2ϑkxe
−ip + 1),

ukx,p = t2 (ϑ2kx (1 + ζp) + 2ϑkx (e
ip + ζpe

−ip) + e2ip + ζpe
−2ip) − E2

kx (1 + ζp),
(10.16)

where (∗) denotes the complex conjugation and ϑkx = 2 cos(
√
3
2 kx), ζp = e2ip(N+1). The Harper

equation is rendered trivial when p is equal to 0 and ±π. Correspondingly, the wave functions

ϕAkx,j ,ϕ
B
kx,j

vanish for all kx and j, which implies that these solutions are unphysical. The three

terms must vanish separately due to the dependence on j. The energy eigenvalues can be deter-

mined by the combination of the two zero terms vkx,p + wkx,p = 0:

E±
kx,p

= ± t

√
1 + 4cos(

√
3

2
kx)cos(p) + 4cos2(

√
3

2
kx). (10.17)

The values for p are given by the last remaining constraints ukx,p = 0. After some arithmetics

we �nd:

sin(p(N + 1))ϑkx + sin(pN) = 0 . (10.18)

The set of solutions to the constraint Eq. (10.18) for N = 5 rungs is depicted in Fig. 53 as black

lines. The corresponding states are extend over the whole Zigzag ribbon.
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Figure 53: Set of solutions to the constrained Eq. (10.18) for N = 5 rungs, the solutions

are indicated as black lines. Note that we have rescaled kx →
√
3
2 kx.

Crucially, the set of solutions for p reveals that there exists a remaining degree of freedom at

critical longitudinal kx values, corresponding to solutions for the edge states. Recall that the

solution to the Harper equation for p = 0, π was trivial. This implies that the Eq. (10.17) for

p = 0, π has to vanish for all kx, thus:

E±
kx

= ± t

√
1 ± 4cos(

√
3

2
kx) + 4cos2(

√
3

2
kx) = 0 , (10.19)

which is only ful�lled for kx = ± 4π
3
√
3
modulo 4π√

3
. We can however, analytically continue the

transverse wavenumber p at critical kx, such that complex p values dampen the wavefunction

away from the Zigzag edge. The critical values of kx by the constraint equation Eq. (10.18) are:

kcx =
2√
3
arccos

( N

2(N + 1)

)
, (10.20)

such that:

p→

0± iη for − π ≤
√
3
2 kx < −kcx

π ± iη for kcx <
√
3
2 kx ≤ π,

(10.21)

where η ∈ R. Therefore, the edge states have energy eigenvalues:

E±
kx,η

=


± t

√
1 + 4 cos(

√
3
2 kx) cosh(η) + 4 cos2(

√
3
2 kx) for − π ≤ kx < −kcx

± t

√
1 − 4 cos(

√
3
2 kx) cosh(η) + 4 cos2(

√
3
2 kx) for kcx < kx ≤ π.

(10.22)

The values of η are determined by the constraints:
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sinh(p(N + 1))ϑkx + sinh(pN) = 0 for − π ≤
√
3
2 kx < −kcx

sinh(p(N + 1))ϑkx − sinh(pN) = 0 for kcx <
√
3
2 kx ≤ π.

(10.23)

The set of solutions to the constraint Eq. (10.23) for N = 5 rungs is depicted in Fig. 54 as black

lines. The corresponding states are localized at the edges of the Zigzag ribbon.
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Figure 54: Set of solutions to the constraint Eq. (10.23) for N = 5 rungs, the solutions are

indicates as black lines. Note that we have rescaled kx →
√
3
2 kx.

Each constraint yields one solution for η. The edge states have zero energy up until the critical

kcx. These correspond to �at bands in the spectrum of the Zigzag edge and a pronounced peak in

the density of states at zero energy, as depicted in Fig. 55. Once the critical value kcx is surpassed

the localized states begin to hybridize with the bulk and the energy deviates from zero.
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Figure 55: Example of energy spectrum and density of state for Zigzag ribbon. Left:

The spectrum of a N = 30 rungs Zigzag ribbon exhibits �at bands for longitudinal

wavenumber |kx| greater than a critical value |kcx|, which correspond to eigenvalues of

localized edge states. Note that we have rescaled kx →
√
3
2 kx. Right: The edge states

lead to a pronounced peak at zero energy in the density of states.
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10.2 Appendix: Open boundary conditions and Haldane model

The non-trivial topology, characterized by the �rst Chern number, gives rise to another feature

characteristic for topological insulators. Yet again, let us look at the Armchair, and Zigzag ribbon

termination of the honeycomb lattice. We thread the lattice with net zero �uxes and consider

next nearest neighbor interaction as to describe the Haldane model in this system. The two

ribbons for the Haldane model are shown in Fig. 56.

Figure 56: Open boundary conditions in the Haldane model. Left: Armchair ribbon.

Right: Zigzag ribbon. Both ribbons are labeled by an index N indicating at which

rung a site is located.

The procedure to construct and evaluate the Hamiltonian is analogous to the tight-binding de-

scription of the ribbons in Section 10.1. The Armchair ribbon Hamiltonian is given by:

HN −AC =
∑
l

( N∑
j=1

[M
2
(a†j,laj,l − b†j,lbj,l) + t1a

†
j,lbj,l+δj + t2e

iϕ(a†j,l+1aj,l + b†j,lbj,l+1)
]

+

N−1∑
j=1

[
t1(a

†
j+1,lbj,l + a†j,lbj+1,l) + t2e

iϕ(a†j,laj+1,l + a†
j,l+δ−1

j

aj+1,l+δj )

+ t2e
−iϕ(b†j,lbj+1,l + b†

j,l+δ−1
j

bj+1,l+δj )
]
+ t2

N−2∑
j=1

[
e−iϕa†j,laj+2,l + eiϕb†j,lbj+2,l)

]
+ h.c.

)
.

(10.24)

The imposition of PBCs in the x direction in the thermodynamic limit gives:
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HN −AC =
∑
kx

( N∑
j=1

[M
2
(a†kx,jakx,j − b†kx,jbkx,j) + t1 e

ikxa†kx,jbkx,j
]
+

N−1∑
j=1

[
t1 (e

−i kx
2 a†kx,j+1bkx,j

+ e−i kx
2 a†kx,jbkx,j+1) + 2 t2 cos(

3

2
kx)(e

iϕa†kx,j+1akx,j + e−iϕb†kx,jbkx,j+1)
]

+
N−2∑
j=1

[
t2(e

−iϕa†kx,jakx,j+2 + eiϕb†kx,jbkx,j+2)
]
+ h.c.

)
.

(10.25)

We refrain from studing this system analytically and continue numerically by exact diagonaliza-

tion. Recall, that for the tight-binding model of the honeycomb lattice no edge states were present

due to the geometry of the ribbon. The spectrum turned out to have a gap closing under the

condition that the transversal wavenumber is exactly 2
3π. The spectrum of the Armchair ribbon

in the Haldane model, on the other hand, is always gapless in the topological phase as depicted

in Fig. 57. Thus, in the spectrum of the Armchair ribbon two distinct sets of states can be

identi�ed, the states that cross the Fermi energy at a given kx value, indicated in blue and red,

and the states that have a gapped spectrum, indicated with black lines.
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Figure 57: Spectrum of the Armchair ribbon with N = 26 rungs in the Haldane model.

Left and center: The spectrum is gapless for t1 = 1, η = M/t2 = 3 and ϕ = ∓π
3

respectively. Right: The spectrum exhibits a gap as we enter the topologically trivial

phase for t1 = 1, η = 3 and ϕ = π
6 . Figure reproduced from Ref. [77].

A possible measure to determine if localized edge states are present within a system is the inverse

participation ratio (IPR) [78]. Let H(k) be a general Bloch Hamiltonian with normalized Bloch

eigenstates Ψk(x), the IPR is then de�ned as:

IPR(k) =
∑
x

|Ψk(x)|4 . (10.26)

The IPR can be thought of as a measure of the inverse spatial extent of a state in the system and,

as such, extended states have a vanishing IPR in the thermodynamic limit. Consider for example

a one dimensional chain with N sites and a plane wave solution. Then we �nd that |Ψk(x)| = 1√
N

and thus the IPR is IPR(k) = 1
N .

We compute the IPR for the Armchair ribbon with N = 26 rungs for 300 equidistantly spaced

longitudinal wavenumbers kx over a range of (−π, π], shown in Fig. 58. The states that cross the
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Fermi energy in the spectrum are indicated in red and blue. In the topological phases for t1 = 1,

η = M/t2 = 3 and ϕ = ∓π
3 , shown in the left and center �gure respectively, these states exhibit

a higher IPR. This indicates that these states are localized and are distinct from the bulk states

indicated in black.

Figure 58: IPR of the Zigzag ribbon with N = 26 rungs in the Haldane model. topological

phase: Left and center: for t1 = 1, η = M/t2 = 3 and ϕ = ∓π
3 respectively. Trivial

phase: right: for t1 = 1, η = 3 and ϕ = π
6 .

We proceed with the Zigzag ribbon. The Hamiltonian is given by:

HN −ZZ =
∑
l

( N∑
j=1

[M
2
(a†j,laj,l − b†j,lbj,l) + t(a†j,lbj,l + a†j,l+δj

bj,l+δ−1
j
)

+ t′eiϕ(a†j,l+1aj,l + b†j,lbj,l+1)
]
+

N−1∑
j=1

[
ta†j+1,lbj,l + t′eiϕ(2δj−1)(a†j,laj+1,l + b†j,lbj+1,l)

+ t′e−iϕ(2δj−1)(a†j,l+δj
aj+1,l+δ−1

j
+ b†

j,l+δ−1
j

bj+1,l+δj )
]
+ h.c.

)
.

(10.27)

The imposition of PBCs in the x direction in the thermodynamic limit gives:

HN −ZZ =
∑
kx

( N∑
j=1

[M
2

(a†kx,jakx,j − b†kx,jbkx,j) + t1 cos(

√
3

2
kx)a

†
kx,j

akx,j

+ t2 (cos(
√
3kx − ϕ)b†kx,jbkx,j + cos(

√
3kx + ϕ)b†kx,jbkx,j)

]
+

N−1∑
j=1

[
t1 a

†
kx,j+1bkx,j

+ 2 t2 (cos(

√
3

2
kx + ϕ)a†kx,jakx,j+1 + cos(

√
3

2
kx − ϕ)b†kx,jbkx,j+1)

]
+ h.c.

)
.

(10.28)

Analogous to the Armchair ribbon, the spectrum of the Zigzag ribbon in the Haldane model, is

always gapless in the topological phase, as depicted in Fig. 57.
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Figure 59: Spectrum of the Zigzag ribbon with N = 26 rungs in the Haldane model.

Left and center: The spectrum is gapless for t1 = 1, η = M/t2 = 3 and ϕ = ∓π
3

respectively. Right: The spectrum exhibits a gap as we enter the topologically trivial

phase for t1 = 1, η = 3 and ϕ = π
6 . Figure reproduced from Ref. [77].

The IPR for the Zigzag edge is shown in Fig. 60. Once again the IPR is computed for N = 26

rungs for 300 equidistantly spaced longitudinal wavenumbers kx over a range of (−π, π]. In the

topological phases for t1 = 1, η = M/t2 = 3 and ϕ = ∓π
3 , shown in the left and center �gure

respectively, the states indicated in red and blue exhibit a higher IPR than the states in black.

This indicates that these states are localized near one of the edges. Notably, the localized states

persist even in the topologically trivial phase shown in the right �gure for t1 = 1, η = 3 and

ϕ = π
6 . These states are localized due to the geometry of the Zigzag ribbon as we have seen in

the tight-binding model description in the previous section.

Figure 60: IPR of the Zigzag ribbon with N = 26 rungs in the Haldane model. topological

phase: Left and center: for t1 = 1, η = M/t2 = 3 and ϕ = ∓π
3 respectively. Trivial

phase: right: for t1 = 1, η = 3 and ϕ = π
6 .
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10.3 Appendix: Point group matrix construction in GAP

In order to construct the point-group matrices Mg we use the existing HyperCells package. The

algorithm requires the use of group homomorphisms to embed ∆+ in ∆. The speci�cities are omit-

ted such that the pseudo code applies in general. The pseudo code for the GAP implementations

looks as follows:

Point group matrix construction pseudo code

Input: Triangle group signature as a list of 3 integers of the form (2, q, p), index m of quotient

group ∆/Γ(m) as an integer and a function f∆(m) to access a speci�c Γ(m) in a list I of tabulated

quotient groups. A symmetry operator g̃ in terms of generators a, b, c ∈ ∆ as a string.

Output: Point group matrix Mg.

Initialize: List of tabulated quotient groups I.

1. Construct the presentation of ∆ = ∆(2, q, p).

2. Retrieve symmetry operator g ∈ ∆ by multiplying generators

a, b, c ∈ ∆ in the sequence speci�ed by the string g̃.

3. Start: normal subgroup search:

a) Retrieve any appropriate quotient group through the function f∆(m) such

that qm = ∆/Γ(m) with ∆ = Γ(0) ▷ Γ(1) · · · ▷Γ(m) ▷ · · · and ∆ ▷ Γ(m).

b) Determine the genus g of the Riemann surface Σg that qm acts upon.

c) Construct Γ(m) via the kernel of the group homomorphism Φ : ∆ → qm.

4. Start: construction of Mg entries:

a) Set i = 1 and Mg = [ ] as an empty list.

b) Retrieve generator γ
(m)
i , with γ

(m)
i ∈ Γ(m).

c) Construct word wi = gγ
(m)
i g−1 ∈ Γ(m).

d) Start: construction of row i of Mg:

i. Set j = 1 and mg = [ ].

ii. Compute Kj(wi), where Kj(wi) corresponds to the number of times the generator

γ
(m)
j of Γ(m) appears in wi, where γ

(m)
j

−1 is counted negatively.

iii. Append Kj(wi) to mg and set j = j + 1.

iv. If i = j = 2g append mg to Mg and stop,

else if j = 2g and i ̸= 2g, append mg to Mg, set i = i + 1 and return to step b),

else return to step ii .
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10.4 Appendix: Addendum to the proof of claim 7.1:

In this section we show that Z as given in Eq. (7.11) indeed reduces to the simple form considered

in the proof of claim 7.1. As such, let us reconsider Eq. (7.11):

Z = 3X1 + 3X2

≡ 3Tr[((V H−1d(HV †) + xH ′−1) ∧ (V H−1d(HV †) + H ′−1
x)

− xH ′−1 ∧H ′−1y) ∧ (H ′−1x + H ′−1
y)] + 3Tr[(xH ′−1)∧2 ∧ (yH ′−1 −H ′−1y)] .

Let us expand the matrix-valued di�erential forms:

X2 = Tr[(xH ′−1)∧2 ∧ (yH ′−1 −H ′−1y)]

= Tr[dV V † ∧ dV V †(V HdV †V H−1V † − V dV †)]

G.L.,G.C.
= − Tr[HdV † ∧ V H−1dV † ∧ dV + dV ∧ V †dV ∧ dV †].

Further:

X1 = Tr[((V H−1d(HV †) + xH ′−1) ∧ (V H−1d(HV †) + H ′−1x)

− xH ′−1 ∧H ′−1y) ∧ (H ′−1x + H ′−1y)]

= Tr[(V H−1d(HV †) + dV V †) ∧ (V H−1d(HV †) + V H−1V †dV HV †)

∧ (V H−1d(HV †) + V dV †) − dV V † ∧ V dV † ∧ (V H−1d(HV †) + V dV †)]

.

After some algebra with repeated use of the graded cyclicity and graded Leibniz rule, we �nd:

X1 =Tr[−d(HV †) ∧ d(V H−1) ∧ V †dV + d(V H−1) ∧ d(HV †) ∧ dV V †

+ d(HV †) ∧ V H−1V †dV V † ∧ d − d(V H−1) ∧ V †dV H ∧ dV †

+ d(V H−1) ∧ V †dV H ∧ dV † + dV † ∧ V H−1d(HV †) ∧ dV

+ dV ∧ V H−1dV † ∧ dV H + dV ∧H−1V †dV H ∧ dV †

− dV † ∧ dV ∧H−1V †dV H − dV ∧ dV † ∧ V dV †].

We see that many terms cancel each other, such as the 4th and 5th term as well as the 8th and

9th term. Other terms are canceled partially, such as the expanded 3rd and 7th term as well as

the expanded 6th and 10th term. Thus, we obtain:

X1 =Tr[−d(HV †) ∧
(
d(V H−1)V †

)
∧ dV + dV

(
V †d(V H−1)V †V

)
d(HV †)]

+ Tr[−dHH−1 ∧ dV † ∧ dV + dV † ∧ V H−1dHV † ∧ dV ],

where we have inserted the identity 1 = V †V in the big parentheses in the second term. Let us

rewrite the di�erential forms in the big parentheses:

d(V H−1)V † = dV H−1V † − V H−1dV † + V d(H−1V †) ,

V †d(V H−1)V †V = V †dV H−1 − H−1dV †V + d(H−1V †)V .
(10.29)
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This enables us to split X1 into two parts Y1,Y2, where Y1 is reconsidered in Section 7.1 of the

main text. Let us show that the other part vanishes entirely:

X1 = Y1 + Y2

≡ Tr[−dV ∧ (d(HV †) ∧ V d(H−1V †) − d(H−1V †)V ∧ d(HV †))]

+ (Tr[−dV ∧ (d(HV †)(dV H−1V † − V H−1dV †) − (V †dV H−1 − H−1dV †V ) ∧ d(HV †))]

+ Tr[−dHH−1 ∧ dV † ∧ dV + dV † ∧ V H−1dHV † ∧ dV ]) ,

thus:

Y2 = Tr[−dV ∧ (d(HV †) ∧ dV H−1V † + H−1dV †V ∧ d(HV †)

− d(HV †) ∧ V H−1dV † − V †dV H−1 ∧ d(HV †))]

+ Tr[−dHH−1 ∧ dV † ∧ dV + dV † ∧ V H−1dHV † ∧ dV ]

G.L.,G.C.
= Tr[dV ∧ (d(HV †) ∧ V H−1dV † + V †dV H−1 ∧ d(HV †))]

+ Tr[−dHH−1 ∧ dV † ∧ dV + dV † ∧ V H−1dHV † ∧ dV ] .

Further, expanding the remaining terms and applying the graded cyclicity and Leibniz rule re-

peatedly, reduces Y2 to:

Y2 = Tr[HdV † ∧ V H−1dV † ∧ dV + dV ∧ V †dV ∧ dV †]

and thus we see that X2 + Y2 = 0, therefore:

Z = 3Y1 = 3Tr[−dV ∧ (d(HV †) ∧ V d(H−1V †) − d(H−1V †)V ∧ d(HV †))].
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10.5 Appendix: Subgroup treegraphs and evolution of 1st Chern

numbers

Figure 61: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {8, 4} Haldane model.

Figure 62: Evolution of the number of momentum-space 1st Chern numbers for in-

creasingly large supercells on the {8, 4} Haldane model. #C
(1)
m=0, #C

(1)
m̸=0 plot-

ted against genus g of corresponding compacti�ed supercell Tg.n. The radius of each

disk is proportional to the number of overlapping points, shown in the inset.

.
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Figure 63: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {10, 5} Haldane model.

Figure 64: Evolution of the number of momentum-space 1st Chern numbers for in-

creasingly large supercells on the {10, 5} Haldane model. #C
(1)
m=0, #C

(1)
m̸=0

plotted against genus g of corresponding compacti�ed supercell Tg.n. The radius of

each disk is proportional to the number of overlapping points, shown in the inset.
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Figure 65: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {12, 3} Haldane model.

Figure 66: Evolution of the number of momentum-space 1st Chern numbers for in-

creasingly large supercells on the {12, 3} Haldane model. #C
(1)
m=0, #C

(1)
m̸=0

plotted against genus g of corresponding compacti�ed supercell Tg.n. The radius of

each disk is proportional to the number of overlapping points, shown in the inset.
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Figure 67: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {12, 4} Haldane model.

Figure 68: Evolution of the number of momentum-space 1st Chern numbers for in-

creasingly large supercells on the {12, 4} Haldane model. #C
(1)
m=0, #C

(1)
m̸=0

plotted against genus g of corresponding compacti�ed supercell Tg.n. The radius of

each disk is proportional to the number of overlapping points, shown in the inset.
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Figure 69: Number of independent momentum-space 1st Chern numbers #C
(1)
m=0,

#C
(1)
m ̸=0 in normal subgroup tree graph for the {7, 3} Haldane model.
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10.6 Appendix: Tabulated numbers of independent 1st Chern

numbers

∆+/Γ(m)(2, 3, 8) #C
(1)
m=0 #C

(1)
m̸=0

T2.1 1 2

T3.2 1 1

T5.1 2 3

T8.1 1 1

T8.2 1 1

T16.1 2 2

T17.2 3 4

T22.1 2 4

T22.2 2 4

T33.1 4 7

T46.2 4 7

T46.3 3 4

∆+/Γ(m)(2, 4, 8) #C
(1)
m=0 #C

(1)
m̸=0

T2.3 1 2

T3.5 2 3

T3.6 2 3

T5.5 2 2

T5.6 3 5

T9.5 3 3

T9.6 3 3

T9.7 4 6

T9.8 2 4

T17.8 5 9

T17.9 5 8

T17.10 6 8

T17.11 3 6

T19.6 4 6

T19.7 4 9

T22.4 3 5

T22.5 3 5

T33.12 7 14

T33.13 6 10

T33.14 8 13

T33.15 7 10

T33.16 6 10

T33.17 7 11

T33.18 8 11

T33.19 4 11

T37.11 6 6

T37.12 6 6

T37.13 5 11

T37.14 7 16

T43.5 6 5

T43.6 6 9

T46.5 7 7

T46.6 7 7

T46.7 5 7

∆+/Γ(m)(2, 4, 12) #C
(1)
m=0 #C

(1)
m ̸=0

T3.7 2 3

T5.7 3 5

T9.9 4 5

T9.10 4 7

T9.11 2 3

T10.12 5 5

T13.3 4 4

T17.12 6 9

T17.13 4 9

T17.14 5 9

T19.9 8 10

T19.10 4 8

T21.8 4 4

T21.9 6 6

T25.8 6 6

T33.20 5 7

T33.21 6 10

T33.22 9 13

T33.23 6 10

T33.24 8 13

T33.25 9 17

T33.26 10 14

T33.27 7 15

T37.16 7 15

T37.17 12 18

T37.18 10 14

T37.19 9 15

T41.13 10 13

T41.14 5 10

T49.13 10 12

∆+/Γ(m)(2, 5, 10) #C
(1)
m=0 #C

(1)
m ̸=0

T2.4 2 2

T6.6 4 6

T13.8 3 5

T17.19 5 5

T17.20 5 5

T26.5 6 10

T33.34 11 13

∆+/Γ(m)(2, 3, 7) #C
(1)
m=0

T3.1 1

T7.1 1

T14.1 1

T14.2 1

T14.3 1

∆+/Γ(m)(2, 4, 6) #C
(1)
m=0 #C

(1)
m̸=0

T2.2 1 2

T3.4 1 1

T4.3 1 1

T5.4 2 3

T6.2 1 1

T9.3 3 5

T9.4 2 2

T10.8 2 4

T10.9 3 4

T11.1 2 2

T15.5 2 2

T17.5 3 3

T17.6 3 4

T17.7 4 6

T21.3 3 5

T28.8 5 10

T29.1 4 5

T31.3 4 6

T33.8 4 4

T33.9 6 9

T33.10 5 9

T33.11 6 11

T37.9 6 7

T41.3 5 11

T49.8 5 7

∆+/Γ(m)(2, 3, 12) #C
(1)
m=0 #C

(1)
m̸=0

T3.3 2 3

T4.1 2 2

T7.2 3 5

T9.1 3 4

T10.3 3 3

T13.2 3 3

T19.1 4 7

T25.2 5 9

T25.3 6 9

T28.2 3 7

T28.3 4 6

T33.3 5 9

T33.4 5 6

T33.5 5 7

T37.2 5 6

T49.2 5 8

Table 6: Number of independent momentum-space �rst Chern numbers, for compacti�ed

supercells Tg.n up to genus g < 50, and corresponding BZ torus T2g and BZ(m,1) (3.77),

constrained by hyperbolic lattice symmetries Im=0 = {aT , bT , cT } , Im ̸=0 = {z2, bT , cT }
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10.7 Appendix: Tabulated numbers of independent 2nd Chern

numbers

∆+/Γ(m)(2, 3, 12) #C
(2)
m=0 #C

(2)
m ̸=0

T3.3 2 3

T4.1 2 3

T7.2 10 16

T9.1 13 23

∆+/Γ(m)(2, 4, 12) #C
(2)
m=0 #C

(2)
m ̸=0

T3.7 2 3

T5.7 9 15

T9.9 23 39

T9.10 28 50

T9.11 26 41

∆+/Γ(m)(2, 4, 8) #C
(2)
m=0 #C

(2)
m ̸=0

T2.3 1 1

T3.5 2 3

T3.6 2 3

T5.5 3 6

T6.6 6 10

T9.5 16 30

T9.6 18 35

T9.7 22 42

T9.8 25 42

∆+/Γ(m)(2, 5, 10) #C
(2)
m=0 #C

(2)
m̸=0

T2.4 1 1

T6.6 11 21

∆+/Γ(m)(2, 3, 7) #C
(2)
m=0

T3.1 1

T7.1 3

Table 7: Number of independent 2nd Chern numbers, for compacti�ed supercells Tg.n up

to genus g < 10, and corresponding BZ torus T2g and BZ(m,1) (3.77), constrained by

hyperbolic lattice symmetries Im=0 = {aT , bT , cT } , Im̸=0 = {z2, bT , cT }

The tabulated numbers of independent 2nd Chern number for the {6, 4} and {8, 3}-lattices can
be found in the main text in Table 4.
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