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Abstract

In the presented work, gravitational lensing is investigated as a tool for studying the universe
model. In a first step, the lensing equation is solved for an analytic potential. An algorithm
for approximating a generic mass distribution is written. The main features of point mass
distributions are captured. Additional noise is predicted in form of a fingerprint pattern. A
simulation of a cosmological mass distribution is then analyzed and two galaxy clusters are
cropped out of the simulation and reconstructed using a Fourier-Bessel series approach. The
Fourier-Bessel series is determined for different numbers of Bessel roots, which determines
the accuracy of the reconstruction. The gravitational potential is calculated from the recon-
structions. The RMS for the error of the potential for galaxy cluster 1 are 8.45 picoradians
for 50 Bessel roots and 3.31 · 10−2 picoradians for 2238 Bessel roots. The specific values
for galaxy cluster 2 are 7.15 picoradians for 50 Bessel roots and 3.26 · 10−2 picoradians
for 2238 Bessel roots. Subsequently, different spiral galaxies are used as source images to
simulate gravitational lensing with the reconstruction of galaxy cluster 2 serving as gravi-
tational lens. The distances between the image positions range from 3.91 microradians to
26.70 microradians. For a reconstruction with the maximum number of Bessel roots, time
delays are predicted in a range from 5.31 days to 384.34 days. By inverting the equation for
the time delay and using the fact that the angular diameter distances depend on the Hub-
ble parameter of the current epoch, the Hubble parameter can be estimated. The Hubble
tension is still an issue in the recent ΛCDM model of the universe. The approach of using
gravitational lensing to determine the Hubble parameter of the current epoch provides a
completely independent strategy. With the James Webb Space telescope, new data gets
available and a huge potential is unlocked for which this tool can be helpful.
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1 Introduction

As light travels through space, it interacts with nearby matter through gravity. Large
masses such as a clusters of galaxies, bend the paths of nearby light by the gravitational
field’s attraction. This diffraction of light in a gravitational field was one of the first tests
of Einstein’s theory of general relativity (Mollerach and Roulet 2002). As early as 1920,
multiple images due to the deflection of light deflection by stellar objects were postulated
by Eddington (Eddington 1920). In order to find a quantitative explanation and make
predictions, the lens equation was derived to quantitatively describe lensing effects due to
stellar objects. In the following section the lens equation is derived.

1.1 Derivation of the Lens Equation

Throughout the derivation it is assumed that the gravitational potential ϕ is small

compared to the speed of light c, i.e.
ϕ

c2
≪ 1. It is assumed that the velocity of the lens

mass v is small compared to the cosmological rest frame, i.e. v ≪ c (Schneider, Ehlers,
and Falco 1992). Because of these small perturbations, the Minkowski metric
ds2 = dx2 − c2dt2 locally changes to

ds2 =

(
1− 2ϕ

c2

)
dx2 −

(
1 +

2ϕ

c2

)
c2dt2. (1)

Using the Taylor expansion

√
1 + x

1− x
= 1 + x+O(x2) and the fact that photons follow

null geodesic, i.e. ds = 0 (Mollerach and Roulet 2002), Equation 1 can be transformed
into

c′ =
dx

dt
= c

(
1 +

2ϕ

c2

)
. (2)

From Equation 2 it can be deduced that the light particles move with a modified speed c′.
This speed can be used to determine the refractive index

n =
c

c′
=

(
1− 2ϕ

c2

)
, (3)

which is a result of the gravitational potential. Thus, the potential changes the refractive
index and the light moves at a different speed. According to Fermat’s principle, light takes
an extremal path x(l) from source to observer. Therefore, it is valid that

δ

∫
n(x(l)) dl = 0. (4)

New variables are introduced to describe gravitational lensing quantitatively. Figure 1
shows all relevant angles and distances, which are used to describe the source plane, the
lens plane and the distances between source, lens and observer. A source at distance Ds

from the observer emits light at an angle β to the observer. A cluster of galaxies at
distance Dd from the observer deflects light by an angle of α, shifting the position of the
light to an angle Θ with respect to the observer. It is possible that multiple extremal light
paths exist and therefore multiple images can be observed. Since the distances Dd, Ds and
Dds are large compared to the size of the cluster, the problem can be treated in the thin
lens approximation.
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Figure 1: Illustration of the distances between observer, image plane and source plane. The
angles β and Θ describe positions on the source and image plane. α̂ is the reduced deflection
angle of the light (Schneider, Kochanek, and Wambsganss 2006).

Using Equation 4 and following the argumentation of Dodelson 2017, one obtains a
deflection angle of

α = − 2

c2

∫
∇⊥ϕ dl. (5)

In the small angle approximation, the perpendicular distance can be described by ΘDd,

thus ∇⊥ = D−1
d ∇Θ. It is convenient to define the reduced deflection angle α =

Ds

Dds
α̂, to

make the deflection angle independent of distance. The deflection angle can be used to
define a lensing potential Ψ

∇ΘΨ = α

Ψ =
2

c2
Dds

DdDs

∫
ϕdz

(6)

Combining this equation with the Poisson equation ∇2ϕ = 4πGρ yields

∇2
ΘΨ =

2

c2
Dds

DdDs

∫
∇2

Θϕ dz =
8πG

c2
DdDds

Ds
Σ, (7)

where Σ is the density integrated along the line of sight. Σc =

(
4πG

c2
DdDds

Ds

)−1

is

the critical density that defines a criterion for the emergence of multiple images.
Combining this with Equation 7 results in

∇2
ΘΨ = 2

Σ

Σc
=: 2κ, (8)
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where convergence κ is introduced as κ =
Σ

Σc
.

Writing Equation 7 in terms of the deflection angle α yields

∇Θα =
8πG

c2
DdDds

Ds
Σ. (9)

For the relation between the angles, it holds that

ΘI = β + α(ΘI) = β +
Dds

Ds
α̂(ΘI), (10)

where the reduced deflection angle α̂ is distance independent and completely constrained
by the mass distribution of the galaxy cluster. Equation 10 is called the lens equation and
is the central equation when dealing with light deflection by large mass distributions.

Integrating Equation 9 over all spatial coordinates results in

α(Θ) =
4GM

c2
Dds

DsDd

Θ

|Θ|2
. (11)

It is convenient to define the so-called Einstein angle

ΘE =

√
Dds

DsDd

4GM

c2
, (12)

since it transforms the lens equation into a quadratic equation (Mollerach and Roulet 2002)

Θ2 − βΘ−Θ2
E = 0. (13)

If the lens and source are perfectly aligned, β = 0, the observer sees a ring with the
angular radius ΘE .
In general, there are two solutions of Equation 13

Θ± =
β

2
±ΘE

√
1 +

β2

4Θ2
E

. (14)

Only for certain source positions, multiple images are generated.

It is possible to distinguish between microlensing and macrolensing (Narayan and
Bartelmann 2008). In microlensing, the multiple images cannot be resolved because the
observer is closer to the source than the images. It holds that Σ < Σc. An example of a
microlensing system is the Sun which deflects light but not strongly enough to produce
multiple images observable from Earth. In macrolensing, the bending of the light is strong
enough so that the images can be resolved by the observer. It now holds that Σ > Σc.
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1.2 Distances

Due to the expansion of the universe and the finite speed of light, there are several ways to
measure distances in cosmology. (Hogg 2000) For the scope of this work, everything was
calculated in angular diameter distances. The presented distance measures all depend on
the Friedman-Robertson-Walker metric

ds2 = c2dt2 − a2(t)[dχ2 + r2(χ)dΩ], (15)

which is the solution to Einstein’s field equation assuming homogeneity and isotropy of
space (Robertson 1936).

1.2.1 Comoving Distance

Consider a photon (ds = 0) moving radially toward an observer (dΩ = 0) (Refregier
2021). Modifying the Friedman-Robertson-Walker metric accordingly yields

dχ =
c

a(t)
dt. (16)

Using the definition of the Hubble parameter H =
1

a

da

dt
, this can be rewritten as:

dχ =
c da

a2 H(a)
. (17)

Combining Equation 16 with Equation 17, yields

Dcm
AB =

∫
c da

a2H(a)
, (18)

where Dcm
AB is the comoving distance between point A and B.

1.2.2 Angular Diameter Distance

In small angle approximation, the perpendicular length of an object is equal to the
product of its distance and the angle it spans (Refregier 2021). An object with physical
transverse length Lphys is considered to have a fixed comoving radius χ (dχ = 0) at a
fixed time (dt = 0). Using again Friedman-Robertson-Walker metric, results in

L2
phys = ds2 = a2r(χ)2∆Θ2

Lphys = ar(χ)∆Θ.
(19)

Including the scale factor, gives the comoving transverse length Lphys = aLcom. Combining
this with Equation 19 yields

Lcom = r(χ)∆Θ

r(χ) =
Lcom

∆Θ
.

(20)

The physical angular diameter distance is then

Dang
AB = ar(χ) =

Lphys

∆Θ
, (21)

or written in terms of the comoving distance

Dang
AB =

Dcm
AB

1 + z
. (22)
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1.3 Magnification

If an image is gravitationally lensed, it can be magnified. More precisely, the surface
brightness is preserved but the apparent solid angle of the source changes (Dodelson 2017).
According to Mo, Van den Bosch, and White 2010, the magnification µ is measured by

µ =
Image area

Source area
. (23)

1.3.1 Hessian Matrix and Eigenvalues

The Hessian matrix H of the lensing potential Ψ equals

H =

(
Ψxx Ψxy

Ψyx Ψyy

)
=

(
κ+ γx γy
γy κ− γx

)
, (24)

where γ it a two-dimensional external shear (Wucknitz 2008). The convergence κ is the
projected surface mass density Σ normalized by the critical density Σc. The resulting
shear of the images is related to the projected foreground mass contrast inside an angular
radius Θ (Vera C. 2022). The cosmic shear is the correlation between galaxy shapes, i.e.
the systematic quadrupole alignment. This means that correlation in galaxy shapes, e.g.
similar ellipticity, can be explained by the concept of cosmic shear. This results from the
weak gravitational lensing of large-scale structures (Giblin et al. 2021).
In the regime discussed in this work, i.e. the regime of strong gravitational lensing effects,
cosmic shear can be neglected. Alternatively, the impact of the cosmic shear could be
induced by additional mass in the lens plane. This additional mass can be used to
simulate the effects of cosmic shear on the system.

The inverse of the local magnification M can be expressed by the Hessian matrix of the
lensing potential H (Courbin and Minniti 2002). The equation is

M−1 = 1−H. (25)

The scalar version of this equation is

µ−1 = det(1−H) = (1− κ)2 − γ2 = (1− κ+ γ)(1− κ− γ), (26)

with γ2 = γ2
x + γ2

y . The determinant of a matrix is the product of its eigenvalues, thus
1− κ± γ are the eigenvalues of the matrix 1−H.

Considering a point mass, there always exists a minimum of the potential Ψ, which is a
solution of the lens equation. This can be explained by the fact that when there is a
minimum of Ψ, the gradient vanishes and so does the angle of deflection. Thus, the
solution is Θ = β.

The Hessian matrix has only positive eigenvalues for minima, giving 1− κ ± γ ≥ 0. The
trace of µ−1 is positive for a minimum and since the trace is the sum of the eigenvalues,
i.e. 2− 2 κ > 0 =⇒ κ ≤ 1 =⇒ γ ≤ 1 − κ ≤ 1. The convergence is
non-negative, hence 0 < µ−1 < 1. Putting these things together yields

µ ≥ 1

1− γ2
≥ 1. Thus, images corresponding to a minimum are always magnified.

7



1.3.2 Critical Curves and Caustics

Critical curves are abstract curves in the sky that define the boundaries between regions of
different image types, i.e. maxima, minima, or saddle points (Miranda 2007). As an
observer moves or approaches, the regions adjust and move farther away so that a critical
curve cannot be obtained. The Hessian matrix H given in Equation 24 has two
eigenvalues, both positive for a minimum, both negative for a maximum and of mixed sign
for a saddle point. At a critical curve, the sign of at least one eigenvalue changes.
Therefore, because of the continuity of H, at least one eigenvalue must vanish. The
Hessian matrix is the inverse of the magnification. Consequently, the magnification on a
critical curve becomes infinite (Mollerach and Roulet 2002).
Caustics are critical curves mapped onto the source plane via the lens equation and are
therefore real places that could theoretically be visited. Practically, however, they are not,
since the universe is expanding.
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1.4 Criterion for Multiple Image Formation

The goal now is to find a condition for the formation of multiple images. The basis for the
derivation of a criterion for the formation of multiple images is a theorem formulated by
Burke.

Theorem 1 (Burke’s theorem): Any smooth bounded gravitational lens produces an odd
number of images. A gravitational lens will always produce at least one image with positive
parity and additional images which will appear in pairs with µ−1 > 0 for one and µ−1 < 0
for the other (Burke 1981).

The following more formal proof follows the argumentation of Subramanian and Cowling
1986.

Theorem 2 : Multiple imaging by a smooth bounded gravitational lens is possible if and
only if there exists a point on the image plane (Θx,Θy), where µ−1 = det(1−H), is
negative.

Proof : According to Burke’s theorem the minimal number of multiple images is three.
Two of the images have positive parity and the third has negative parity, which means
that locally µ−1 < 0. Hence, the existence of multiple images implies a point in the image
plane, where µ−1 < 0.
Suppose there is a point (Θ1,Θ2) with µ−1 < 0, it can be related to a point in the source
plane, e.g. (β1, β2), via the lens equation. Now, if the source is located at (β1, β2), an
image with µ−1 < 0 is formed at (Θ1,Θ2). According to Burke’s theorem, this cannot be
the only image, so multiple images can occur. □

Theorem 3 If there exists a point Q on the lens, where the projected surface density Σ(Q)

exceeds Σc, with Σc =

(
c2

4GDπ

)
, then the lens is capable of producing multiple images.

Proof : If at a point Q in the lens plane Σ > Σc, then κ > 1 and

B :=
1

2
tr(1−H) = 1− κ < 0 at Q. An arbitrary curve C, which starts at Q and goes

to infinity is considered. B is a continuous function, because the trace is a continuous
function. At infinity, B is equal to 1 because there is no mass at infinity. Therefore, it
must become zero somewhere on C, since it is negative at Q. This is true for any C, so
there is a closed curve C ′ enclosing Q on which B = 0 and κ = 1. On the curve C ′ it
holds that µ−1 = det(1−H) = (1− κ)2 − γ2 = − γ2 ≤ 0. There are two cases to
distinguish: either µ−1 = 0 on the whole curve C ′, or µ−1 < 0 in at least one point and
then multiple images are possible due to Theorem 2. Thus, only the first case needs to be
shown. Whitney (1995) has shown that any map can be approximated arbitrarily close by
a map which has µ−1 ̸= 0 at points where κ = 1 (Whitney 1995). The physical solution
would be to have an arbitrarily small smooth mass perturbation in a small region outside
C ′ that leaves κ = 1 but gives µ−1 a value less than zero. Since such small perturbations
will most likely always exist in real galaxies, this case can be ruled out as unrealistic. □
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1.5 Resolution

The angular resolution provides information about the ability to detect small details.
More precisely, it indicates the smallest angle that can be resolved by a telescope or other
optical instrument. For light passing through an aperture, the observed diffraction pattern
is inversely proportional to the size of the aperture, i.e. the diffraction pattern is the
Fourier transform of the aperture (Hecht 2016). In the case of a circular aperture, the
diffraction pattern is given by a first kind Bessel function. The pattern is called airy
pattern. It consists of a bright central area and a series of concentric rings around this.
The size of the central bright spot is

d = 3.83
λz

2πb
, (27)

with the wavelength of the light λ, the radius of the aperture b and the vertical distance to
the aperture z. This leads to the Rayleigh criterion for circular apertures

sin(Θ) = 1.22
λ

D
, (28)

with the minimal resolvable angle Θ, the wavelength λ and the diameter D. The criterion
was first derived in 1888 (Lord Rayleigh 1888). It applies to systems with one primary
mirror. Since telescopes and other measuring instruments often have multiple mirrors, it is
assumed that the following criterion applies to systems with multiple mirrors:

sin(Θ) ≈ λ

D
. (29)

Figure 2 shows a sketch of a telescope setup, where the gray box on the right corresponds
to a charge-coupled device (CCD) sensor (Mercieca 2016).
The sensor consists of small boxes into which photons fall. The size of these boxes
determines the size of the pixels Ps. From the geometry of the structure, see Figure 2, one
can deduce

Θ ≈ tan(Θ) =
Ps

FL
, (30)

with FL being the focal length of the telescope. In the equation, the small angle
approximation is used. The focal length of the telescope is given in [FL] = 1mm. The
pixel size is given in [Ps] = 1 µm. From Equation 30, the unit [Θ] = radians/pixel is
deduced for the minimal resolvable angle Θ.
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Figure 2: Schematic of a telescope setup, showing the principle of unit conversion from radi-
ans to pixel. The figure is a modified and adapted version of the original version (Mercieca
2016).

1.6 Time Delay

When light travels along different paths, the light travel time is not necessarily equal along
all paths. The difference in arrival time between images of a multiply imaged source is
called time delay.

There are two different reasons for time delay when light travels along different paths
(Narayan and Bartelmann 2008). Geometrical time delay is due to the extended path of
light around the lens. The gravitational time delay is caused by the increased refractive
index introduced by the gravitational lens, resulting in a decreased speed of light. The
total time delay is the sum of the geometrical and gravitational time delays (Courbin and
Minniti 2002).

t = tgeom + tgravit =
1 + zd

c

DdDs

Dds
[
1

2
(Θ− β)2 − Dds

Ds
Ψ(Θ)]. (31)

Equation 31 provides a theoretical prediction of the time delay, which is completely
determined by the image positions Θ, the source positions β, the gravitational potential Ψ
and the distances between observer, source plane and image plane, i.e. Dd, Ds and Dds.
In addition, the redshift of the lens zd affects the time delay. The Hubble parameter of the
current epoch (H0) is implicit in the formula, since the angular diameter distances depend
on it. It can be factored out of the distances, so no assumptions are made about H0. The
theoretical prediction of the time delay can be compared with a corresponding
measurement.
Time delays can only be measured if the source under investigation contains a varying
light source, e.g. a quasar or blazar. In this case, the difference in arrival time can be
measured. The comparison between the measured time delay and the theoretical values
allows the determination of H0.

The approach to determine H0 is motivated by the Hubble tension, which is a statistical
disagreement between different predictions of H0. On one side are the predictions of the
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ΛCDM model for the early universe and on the other side are the model-independent
estimates from local distances and redshift measurements (Di Valentino et al. 2021). The
determination of H0 by gravitational lensing is an alternative approach and represents and
opportunity to find a more precise value for the parameter. Because of the many sources
of uncertainty, predictions from gravitational lensing have not yet been able to provide a
consistent value. However, with the James Webb Space Telescope (JWST), many more
lensing systems are being discovered and studied, making it more likely to make accurate
predictions from gravitational lensing using effect using the time delay method.
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2 Method

The following section contains a documentation of the working process. All files containing
the codes can be found in: DOI:10.5281/zenodo.6793513.

2.1 Analytic Potential

In a first step, image transformations of galaxies in the Hubble Deep Field are studied
using analytic potentials. The lens equation, Equation 10, is used to calculate the new
image positions including a deflection angle. The reduced deflection angle is determined
using the two-dimensional gradient of the analytic potential

Ψ = ±C · ln(1 + x2 + qx2). (32)

The combination of Equation 6 and Equation 32 gives

αx = ±C · 2x

1 + x2 + qy2
, αy = ±C · 2qy

1 + x2 + qy2
. (33)

The distances are calculated as angular diameter distances, see Equation 22.

2.1.1 Code Structure and Output Images

This section corresponds to the file AnalyticPotential.py. An image of Hubble Deep
Field is uploaded. The resolution is 1280× 1280 pixels. Different galaxies are cropped
from the Hubble Deep Field image and put at different redshifts, i.e.
z1 = 9, z2 = 1.8, z3 = 2, z4 = 5, z5 = 2.1, z6 = 7, z7 = 6. The angular diameter distances
between observer, source and fictive lens are calculated by Equation 22. The transformed
images can be calculated using the lens equation (Equation 10). The deflection angles are
determined by Equation 33, using the constants C = 20000 and q = 0.8. A spline
function is used to interpolate the source plane and assign float values to the source
positions. Figure 3 shows the cropped images and Figure 4 the corresponding lensed
images.
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Figure 3: Galaxies cut out of Hubble Deep
Field
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Figure 4: Images lensed by the analytic po-
tential
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2.2 Derivation of a Solution to Poisson Equation

The next goal is to determine the gravitational potential numerically. It is possible to use
an arbitrary mass distribution and solve the two-dimensional Poisson equation.

When gravitational lensing is considered on cosmological scales, the distances between the
source, the lensing cluster and the observer are many orders of magnitude greater than the
height of the cluster itself; therefore, the problem can therefore be considered to be
two-dimensional.
One attempt to find the potential is to use Bessel functions. Bessel functions are the
solution y(x) of the equation

x2 d
2y

dx2
+ x

dy

dx
+ (x2 − α2)y = 0, (34)

for α ∈ C (Andrews 1999). If α is an integer or a half-integer, the corresponding Bessel
functions are the eigenfunctions of the two-dimensional Laplace equation in cylindrical
coordinates. The strategy is now is to expand the potential Ψ in a Fourier-Bessel series in
angular coordinates and Bessel functions in radial coordinates. The Fourier-Bessel series is∑

mn

cmnJm(αmnr)e
imr, (35)

where Jm is the mth first-order Bessel function. αmn is the nth roots of the mth Bessel
function (Magnus, Oberhettinger, and Soni 1966). r is a spatial coordinate. The approach
now is to consider all zeros of the Bessel functions up to a spatial threshold.

The two-dimensional Poisson equation is

∆Ψ(r,Θ) = 2κ(r,Θ), (36)

where Ψ is the gravitational potential and κ is the convergence, which can be treated as a
two-dimensional density (Schneider, Kochanek, and Wambsganss 2006). The gravitational
constant as well as other constants are absorbed in the convergence.

One approach to solving the two-dimensional Poisson equation is to find eigenfunctions
ϕmn with eigenvalues λmn of the two-dimensional Laplace operator. The solution is

written as a superposition of these eigenfunctions, i.e. Ψ =
∑
mn

ϕmn. Then

∆ϕmn = λ2
mnϕmn,

∂2
rϕmn +

1

r
∂rϕmn +

1

r2
∂Θϕmn − λ2

mnϕmn = 0.
(37)

A separation approach can be used to solve the problem, i.e.
ϕmn = Rm(r) · vn(Θ). Combining this approach with Equation 37, yields

R̈m(r)vn(Θ) +
1

r
Ṙm(r)vn(Θ) +

1

r2
Rm(r)v̈n(Θ)− λ2

mnR(r)vn(Θ) = 0

R̈m(r)

Rm(r)
+

1

r

Ṙm(r)

Rm(r)
+

1

r2
v̈n(Θ)

vn(Θ)
− λ2

mn = 0.

(38)
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The equation must be fulfilled for any Θ and r and is divided into two parts, one of which
depends only on r and the other only on Θ. Both parts must be constant for the equation
to hold for any value of r and Θ. So it is possible to set

v̈n(Θ)

vn(Θ)
= −m2. (39)

The general solution to this differential equation is

vn(Θ) =
∑
m

(amn sin(mΘ) + bmn cos(mΘ)), (40)

where vn is a function of Θ and thus single-valued. This means that m must be an integer,
since sin(mΘ) and cos(mΘ) are linearly independent only when m is an integer. Plugging
m into Equation 38 yields

R̈(r) +
1

r
Ṙ(r) +

(
m2

r2
− λ2

mn

)
R(r) = 0. (41)

Substituting ρ = λmnr, Bessel’s equation is obtained:

d2R

dρ2
+

1

ρ

dR

dρ
+

(
1− m2

ρ2

)
R = 0. (42)

Since m must be an integer, the solution of Equation 42 are Bessel functions of the first
kind, i.e. Rm = Jm(λmnr). The entire density distribution is contained in a disk, and it
is therefore reasonable to choose the boundary condition, such that the functions vanish at
a certain radius rmax. This constrains the Bessel functions to vanish at this radius. The
argument of the Bessel function must therefore fulfill the following condition:

Jm(λmnr) = Jm

(
r

rmax
αmn

)
. (43)

This directly implies that

λmn =
αmn

rmax
. (44)

Thus, the total solution of the two-dimensional Poisson equation is

Ψ =
∑
mn

(am sin(mΘ) + bm cos(mΘ)) · Jm
(

r

rmax
αmn

)
. (45)

The Fourier-Bessel series forms a complete basis. This result justifies the superposition
and makes it a general approach.

The combination of all results leads to

∆Ψ =
∑
mn

∆ϕmn =
∑
mn

λ2
mnϕmn = 2κ = 2

∑
mn

κmn, (46)

hence there exists a correlation

ϕmn =
2

λ2
mn

κmn. (47)
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Inserting Equation 44 into Equation 47 gives

ϕmn = 2

(
rmax

αmn

)2

κmn. (48)

The next step is to find the coefficients of the series. For this purpose, the orthogonality of
differently scaled Bessel functions can be used. Since the basis functions are orthogonal
but not orthonormal, a normalization constant must be implemented. For first-order
Bessel functions it is generally true hat∫ 1

0

rJm(rαmn)Jm(rαmk)dr =
δnk
2

[Jm+1(αmn)]
2, (49)

see Guan, Lai, and Wei 2001. When the maximum radius is introduced this conditions
changes to ∫ rmax

0

rJm(rαmn)Jm(rαmk)dr =
δnk
2

r2max[Jm+1(αmn)]
2 (50)

The basis functions of the potential are

cos(mϕ)Jm(αmnr),

sin(mϕ)Jm(αmnr)
(51)

for m ≥ 0. If two basis functions are multiplied and integrated over angle and radius, two
different integrals are obtained:∫ 2π

0

dϕcos2(mϕ)

∫ rmax

0

drrJm(αmnr)Jm(αmkr)r

=

∫ 2π

0

dϕsin2(mϕ)

∫ rmax

0

drrJm(αmnr)Jm(αmkr)r

(52)

and ∫ 2π

0

dϕ cos(mϕ) sin(mϕ)

∫ rmax

0

drrJm(αmnr)Jm(αmkr)r, (53)

where Equation 50 can be used for the Bessel function part of the integral. For the
trigonometric integral, the following applies:∫ 2π

0

sin2(mϕ) =

∫ 2π

0

cos2(mϕ) = π∫ 2π

0

sin(mϕ) cos(mϕ) = 0

(54)

Combining Equation 50 with Equation 54, the normalization constant is obtained

Nmn = r2max

π

2
Jm+1(αmn)

2 (55)

for m > 0. In the special case of m = 0, the basis function containing a sinus vanishes
and cos(mΘ) = 1 which gives a basis function of the type

Jmn(αmnr). (56)
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Integration over ϕ results in a factor 2π. Combining this with Equation 50 yields

N0n = r2maxπJ1(α0n). (57)

The coefficients are then determined using

am =
1

Nmn

∫ 2π

0

dϕ

∫ rmax

0

drrJm

(
αmn

r

rmax

)
κ(r, ϕ) sin(mϕ)

bm =
1

Nmn

∫ 2π

0

dϕ

∫ rmax

0

drrJm

(
αmn

r

rmax

)
κ(r, ϕ) cos(mϕ).

(58)
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2.2.1 Code Structure and Output Images

This section corresponds to the files Poissonequation.py and Bessel.py. First, the
maximum observable orthogonal radius, i.e. the angle observed by a fictitious telescope,
must be determined. In a second step, the resolution can be chosen. A maximum radius of
rmax = 150 microradians and a resolution of R = 250× 250 pixels are chosen, creating a

quadratic grid of length 2rmax with a pixel size of
2rmax

R
. A mass distribution is generated

by assigning a value to each pixel, as shown in Figure 7.

Intermezzo: In a separate code the roots of the first-order Bessel functions are determined.
The zeros of the Bessel function are determined numerically using the approach that the
nth zero of the mth Bessel function resides within the interval

J0n = [π · (n+ 0.75), π · (n+ 0.8)]

Jmn = [αm−1n + 1, αm−1n +
π

2
].

(59)

Each interval is divided in half multiple times and a bisection algorithm is used to find a
possible zero. After the first root is found, the higher order roots can be found iteratively.
The determined Bessel roots within rmax for the first 70 Bessel functions are shown in
Figure 5. There are no gaps in the ordering of the zeros, which confirms the assumption
about the intervals given in Equation 59.
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Figure 5: The determined zeros of the first fifty first-order Bessel functions

All roots and the corresponding indices are appended as a tuple to a list. Finally, the list is
sorted so that the roots ascend in order. The list can be imported back into the main code.

After the roots of the Bessel functions have been found, the basis functions are determined.
The first eight basis functions of the Fourier-Bessel series are shown in Figure 6.
Equation 58 is used to calculate the coefficients of the Fourier-Bessel series. The
normalization constants are determined according to Equation 57 and Equation 55. The
integrals can be approximated assuming that the value of the integrand is constant for

each pixel. This value is multiplied by the area of the pixel, i.e.
4r2max

R2
. Summing over all

pixels gives the value of the entire integral. After the coefficients are found, the full

18



150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150
y 

in
 m

icr
or

ad
ia

ns
m = 0, = 2.405

0.15

0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 1, = 3.833

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 2, = 5.136

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 0, = 5.517

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 3, = 6.38

0.45

0.30

0.15

0.00

0.15

0.30

0.45

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 1, = 7.017

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 4, = 7.588

0.4

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

150 100 50 0 50 100 150
x in microradians

150

100

50

0

50

100

150

y 
in

 m
icr

or
ad

ia
ns

m = 2, = 8.418

0.60

0.45

0.30

0.15

0.00

0.15

0.30

0.45

0.60

Figure 6: Basis funcions of the Fourier-Bessel series for different m and α
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Fourier-Bessel series is determined using Equation 45. The reconstructed mass distribution

is shown in Figure 8. According to Equation 48 an additional factor of 2

(
rmax

αmn

)2

must be

introduced in order to obtain the gravitational potential shown in Figure 9.
In a next step, the derivative of the Fourier-Bessel series is determined analytically, but as
a function of the coefficients of the Fourier-Bessel series. Using the numerically determined
coefficients, an approximation of the derivatives is found.

The Fourier-Bessel series is written as a functoin of radius and angle, so that first the
derivatives are considered according to radius and angle. In a next step, the gradients are
determined with respect to the Cartesian coordinates by using the following relations for
the coordinate transformation:

Xgrad = rgrad ·X/r − ϕgrad · Y/r
Ygrad = rgrad · Y/r + ϕgrad ·X/r.

(60)

A quiver plot of the gradient in terms of Cartesian coordinates is shown in Figure 10.
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Figure 7: Point mass distribution
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Figure 8: Point mass reconstruction
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Figure 9: Gravitational potential
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Figure 10: Reduced deflection angle

In analogy to Section 2.1.1, where an analytic potential was used, the image positions are
determined using the lens equation.
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2.3 Time Delay and Hubble Parameter

To determine the total time delay resulting from the geometrical and gravitational time
delay, Equation 31 is used. An arrival time surface is calculated for each lensing event.
The lens equation is fulfilled for the condition ∇ τ = 0 where τ is the arrival time
(Denzel et al. 2021). This means that images form at locations where τ has a minimum, a
maximum, or a saddle point.
Equation 31 is evaluated for different positions of the image plane and the difference in the
arrival time is calculated. This gives

∆tij =
1 + zd

c

DsDd

Dds

(
1

2
(Θi − β)2 − (Θj − β)2 − (Ψ(Θi)−Ψ(Θj))

)
, (61)

where i and j correspond to the image positions for which the time delay is determined.
The distances Dd, Ds and Dds are calculated in angular diameter distances according to
the formula

DAB =
1

1 + zB

∫ B

A

1

a2H0

√
Ωma3 +Ωrada4 +ΩΛ

, (62)

where A and B are the image positions. In calculating the angular diameter distances, a
certain value of H0 has already been assumed. To find an estimate for H0, it is excluded
from Equation 62 and the distances are calculated as dimensionless quantities, i.e.

D̃AB =
1

1 + zB

∫ B

A

1

a2c
√
Ωma3 +Ωrada4 +ΩΛ

. (63)

Rearranging Equation 31 yields

H0 =
1 + zd
∆tij

D̃sD̃d

D̃ds

1

2

(
(Θi − β)2 − (Θj − β)2 − (Ψ(Θi)−Ψ(Θj))

)
. (64)

Two different approaches are pursued. In the first approach, the time delays are computed
for the image positions predicted by a reconstruction with 700, 1000, 1500 and 2000 Bessel
roots. These time delays are compared to the predicted time delays using the total number
of 2238 Bessel roots.
In the second approach, random noise with a standard deviation of 10 %, 1 % and 0.1 % of
the mean coefficient value of the Fourier-Bessel series is added to all coefficients. The time
delays are predicted using these noisy potentials and compared to the time delays
predicted by the potential without including noise.
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2.3.1 Code Structure

This section corresponds to the file Timedelaypm.py. To implement the formula for the
time arrival surface, one must choose a specific point on the source plane, e.g. fix β = 0,
where the source is placed. Using the same point mass distribution as in Section 2.2, the
image plane is evaluated, and the arrival time surface is determined. For the readability of

the image, the levels are defined to be separated by
tmax − tmin

60
.

Figure 12 shows the time arrival surface for the selected mass distribution. Small circles
can be seen marking the positions where images will form. To confirm this, Figure 12 is
compared with Figure 11. It can be seen that the images are formed at these positions.
The imported gradients and the imported potential are both multiplied by a factor of 50
to enhance the image distances and make all features visible.
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Figure 11: Images lensed by a point mass
distribution
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Figure 12: Arrival time surface of lensed im-
ages

To numerically determined the time delay between different images of the same source, the
time arrival contour is shown in Figure 12. The extrema are determined numerically and a
specific pixel is obtained as the image position. The time differences can be evaluated at
these determined points using Equation 61. This procedure is repeated for different
redshifts.

To analyze those reconstructions, the obtained time delays are inserted into Equation 64.
In a first approach, the time delays are determined for different numbers of Bessel roots.
In a second approach, the time delays are calculated with noisy potentials. To determine
these noisy potentials, random noise with a standard deviation of 10 %, 1 % and 0.1 % of
the mean coefficient value is added to the Fourier-Bessel series coefficients. The time
delays resulting from those noisy potentials are again inserted into Equation 64.
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2.4 Large Cosmological Simulation of Mass Distribution

In a further step, realistic galaxy clusters are investigated. For this purpose, a large
cosmological mass simulation originating from Stadel et al. 2022 is used as input data.
The spatial scale of the simulation is 46.7 kpc per pixel. It contains 4000× 4000 pixels,
giving a total spatial scale of 187 Mpc× 187 Mpc.
The simulation is not normalized, and before it is used for gravitational lensing, a
normalization constant must be determined. For this simulation, the total density is
assumed to be equal to the mean cosmological matter density.
In the ΛCDM model, the cosmology is described by six parameters. Table 1 shows the
parameters found by the Planck Collaboration in 2016.

H0 67.48± 0.98 km
sMpc

Ωbh
2 0.02225± 0.00023

Ωm 0.313± 0.013
τ 0.079± 0.019

109Ase
−2τ 1.875± 0.014

ns 0.9682± 0.0062

Table 1: Parameters of concordance cosmology (Planck collaboration 2016).

To determine the mean cosmological matter density, the parameter Ωm is important. By
definition

Ωm =
ρm
ρc

, (65)

where ρc is the critical density. The critical density is the density at which the universe is

flat. It has a value of ρc =
3H2

0

8πG
≈ 1.028613775 · 10−26 kg

m3
using

G = 6.67408 · 10−11 m3kg−1s−2 (Merkatas et al. 2019) and
H0 = 74.0 ± 1.4 kms−1Mpc−1 (Riess et al. 2019). From Equation 65, a mean
cosmological matter density of ρm = 3.21956112 · 10−27 kg

m3 is obtained.
The mean two-dimensional density of the simulated mass distribution must be scaled to be
equal to the mean cosmological mass density. The mean cosmological mass density is
three-dimensional, but by integration along the line of sight it becomes the projected
two-dimensional density and can be compared to the density of the simulation. Therefore

⟨Σsim⟩L2 = ρmL3, (66)

where L is the total spatial scale of the simulation, i.e. 187 Mpc · conv and ⟨ Σsim⟩ is the
average density of the simulation. The conversion from Mpc to m has a value of
conv = 3.08567758128 · 1022 m

Mpc . Evaluating Equation 66 yields the average density of
the simulation, i.e.

⟨Σsim⟩ = ρm · L · conv. (67)
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2.4.1 Code

This section corresponds to the file Readh5.py. The average density resulting from
Equation 67 can be used to scale the values assigned to each pixel. The mass density on
pixel p is determined by

Σsim =
Npixmp∑

q mq
× ⟨Σsim⟩, (68)

where Npix is the total number of pixels.
The Poisson equation is solved and the gradients of the potential are determined.
Since the Poisson equation contains the convergence κ and not the two-dimensional
density, the following relation is used for conversion

κ =
Σsim

Σcrit
. (69)

The original simulated mass distribution is already multiplied by the normalization
constant, therefore only the inverse critical density factor is missing. Since the Poisson
equation and the gradients are linear, the factor can be inserted before or after solving the
Poisson equation and calculating the gradients of the potential.
In a last step, in the GalaxyLensing.py code and in the Timedelay.py code , Xgrad, Ygrad

and the potential are multiplied by the factor
4πGDdDds

c2Ds
to find the real lensing effects

and time arrival surfaces.
The entire mass distribution contains several galaxy clusters. In this work, two galaxy
clusters are investigated. Individual galaxy clusters are therefore excluded from the large
cosmological mass simulation. More specifically, a circular piece with a radius of 60 pixel is
excluded from the overall simulation. A diameter of 120 pixels corresponds to a spatial
scale of approximately 5.7 Mpc. A typical galaxy cluster has an extent on the order of
megaparsecs. In the scope of this work, the Poisson equation is solved only for these
particular regions of high density.
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3 Results

In the following section, the reconstruction of the galaxy clusters is analyzed for different
numbers of Bessel roots. In particular, the mass and potential error, the time delay and
the image distances are determined for 700, 1000, 1500 and 2000 Bessel roots and
compared to the overall reconstruction using all roots within rmax = 150 microradians.

3.1 Reconstruction of Mass Distribution

Two circular pieces, each containing a cluster of galaxies are cropped out of the large-scale
cosmological simulation. A total of 2238 Bessel roots are used to reconstruct the mass
distributions. The simulated mass distributions and their reconstruction are shown in
contour plots, see Figure 13.
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Figure 13: The projected simulated mass distribution (left) and mass reconstructions (right)
for galaxy cluster 1 (top) and galaxy cluster 2 (bottom). The reconstructed mass distri-
butions are normalized by the critical density Σcrit = 2.007 kg

m2 . The black contour line
marks the κ = 1 surface.

To show the convergence κ, the mass distribution of the galaxy cluster is normalized by the

critical density, i.e. Σcrit =
c2

4πGDd
= 2.007

kg

m2
for a lens at redshift zl = 2. The black

contour shows the κ =
Σ

Σcrit,0
= 1 surface. Three-dimensional images of the simulated

mass distributions and reconstructions as shown in Figure 13 are presented in Figure 14.
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Figure 14: The simulated mass distribution (left) and mass reconstructions (right) for galaxy
cluster 1 (top) and galaxy cluster 2 (bottom) plotted in 3D. The reconstructed mass distri-
butions are normalized by the critical density Σcrit = 2.007 kg

m2 .
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The total mass error is defined as

∆m = msimulation −mreconstructed. (70)

Illustrations of the total errors in the overall mass distribution of galaxy cluster 1 and
galaxy cluster 2 are shown in Section A.1.1. The errors in the potentials are determined
analogously, but since no reference potential is available, all potentials are compared to the
final estimate with a maximum number of 2238 Bessel roots. The errors in the potentials
are defined as

∆Ψi = Ψi −Ψ2238, (71)

where Ψi is the reconstructed potential with i Bessel roots. Images of the errors in the
potentials are shown in Section A.1.3.
A quantitative overview is depicted in Figure 15 for galaxy cluster 1 and in Figure 16 for
galaxy cluster 2. For the convergence κ and the potential Ψi, the mean and the root mean
square (RMS) values are compared with the mean errors and the RMS of the
corresponding errors.
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Figure 15: Error an RMS for the reconstruction of mass and potential for to galaxy cluster
1.

For galaxy cluster 1, the mean κ for all pixels increases from 2.35 · 10−1 for 50 Bessel
roots to 2.44 · 10−1 for 2238 Bessel roots. The error in κ decreases from 8.10 · 10−2 for
50 Bessel roots to 4.80 · 10−2 for 2238 Bessel roots. Comparing the initial mean error to
the initial mean value of κ, the initial accuracy is 33.20 %. Comparing the final error in κ
with the final mean value of κ, the final accuracy is 20.42 %. The corresponding RMS
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Figure 16: Error an RMS for the reconstruction of mass and potential for to galaxy cluster
2.

values for κ are 3.87 · 10−1 for 50 Bessel roots and 4.21 · 10−1 for 2238 Bessel roots. The
corresponding RMS values for the κ error are 1.90 · 10−1 for 50 Bessel roots and
9.62 · 10−2 for 2238 Bessel roots. These values correspond to 49.11 % and 22.87 %,
respectively.
The mean value of the potential is 2.03 · 103 picoradians for 50 Bessel roots and
2.03 · 103 picoradians for 2238 Bessel roots. The corresponding errors are 5.05 picoradians
for 50 Bessel roots and 2.48 · 10−2 picoradians for 2238 Bessel roots. This corresponds to
0.25 % for 50 Bessel roots and 0.00122 % for 2238 Bessel roots. The RMS of the potential
is 2.69 · 103 picoradians for 50 Bessel roots and 2.69 · 103 picoradians for 2238 Bessel
roots. The RMS of the error of the potential is 8.45 picoradians for 50 Bessel roots and
3.31 · 10−2 picoradians for 2238 Bessel roots. The corresponding accuracy is 0.407 % for
50 Bessel roots and 0.00159 % for 2238 Bessel roots.

For galaxy cluster 2, the mean κ value for all pixels increases from 2.41 · 10−1 for 50
Bessel roots to 2.48 · 10−1 for 2238 Bessel roots. The κ error decreases from 8.11 · 10−2

to 5.28 · 10−2. This corresponds to an initial accuracy of 33.68 % and a final accuracy of
21.29 %. The values for the RMS of κ are 3.46 · 10−1 for 50 Bessel roots and 3.79 · 10−1

for 2238 Bessel roots. The corresponding RMS values for the κ error are 1.81 · 10−1 for
50 Bessel roots and 1.07 · 10−1 for 2238 Bessel roots. These values correspond to the
percentages 52.25 %, and 28.17 %.
The mean value of the potential is 1.93 · 103 picoradians for 50 Bessel roots and
1.93 · 103 picoradians for 2238 Bessel roots. The corresponding errors are
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4.45 picoradians for 50 Bessel roots and 2.38 · 10−2 picoradians for 2238 Bessel roots.
This corresponds to 0.23 % and 0.00123 % for 2238 Bessel roots, respectively. The RMS of
the potential is 2.52 · 103 picoradians for 50 Bessel roots and 2.52 · 103 picoradians for
2238 Bessel roots. The RMS of the error of the potential is 7.15 picoradians for 50 Bessel
roots and 3.26 · 10−2 picoradians for 2238 Bessel roots. The corresponding percentages
are 0.367 % for 50 Bessel roots and 0.00167 % for 2238 Bessel roots, respectively.

The fractional mass difference is defined as:

∆m

m
=

msimulation −mreconstructed

msimulation
(72)

Illustrations of the fractional errors of the total mass distribution of galaxy cluster 1 and
galaxy cluster 2 are provided in Section A.1.2. The fractional mass error count for
different numbers of Bessel roots is illustrated in Figure 17. With increasing number of
Bessel roots, the high error regions become narrower.
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Figure 17: Fractional mass error count for a variety of Bessel roots for galaxy cluster 1 (left)
and galaxy cluster 2 (right).

The input image contains 14′400 pixels. Using the total number of Bessel roots, i.e. 2238
Bessel roots, 2238 · 2− 1 = 4475 basis functions are available. For m > 0, two basis
functions are used, one containing a sine and the other a cosine. For m = 0 the sine
function vanishes and there is only one basis function left, hence the subtraction of 1. The
maximal resolution of the reconstruction is therefore 0.31 basis functions per pixel.
Another way to study the minimum scale of the reconstruction is to analyze the
eigenvalues λmn. The λmn’s are wavelength which, when inverted and multiplied by 2π,
give the minimum scale of the reconstruction. Their maximum value is
λmax
mn = 1.00 microradians−1, which gives a minimum scale of 6.28 microradians.
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3.2 Gravitational Lensing of real Galaxies with reconstructed
Clusters

After the reconstructed mass distributions of the galaxy clusters are found, they can be
used to simulate gravitational lensing. In this section, only galaxy cluster 2 is considered.
By analogy with Section 2.1.1, a Hubble Deep Field image is used. Other images of spiral
galaxies are included as source images, as shown in Figure 18.

Figure 18: Galaxy 1 (NASA, ESA, and Heritage 2022), Galaxy 2 (NASA, ESA, and Hubble
SM4 ERO Team 2022), Galaxy 3 (Hubble Heritage Team, ESA, and NASA 2020), Galaxy
4 (NASA, ESO, et al. 2019), Galaxy 5 (FORS, Antu, and ESO 2017), Galaxy 6 (NASA,
ESA, W., et al. 2022)

A resolution of 2048× 2048 is chosen for the Hubble Deep Field image. For the lensing of
the individual galaxies, a finer resolution is chosen, i.e. resfine = res · 5 =⇒
10 240× 10 240 pixels and only the central 20 microradians are analyzed, since all multiple
images are located in this range. Another reason for choosing the central 20 microradians
is the increased computation time of the code when a finer resolution is chosen. Fine
resolution is necessary, because the pixels are enlarged when the images are magnified.
When sources are lensed, it is common for them to be magnified.

The entire Hubble Deep Field image is placed at a redshift of z = 9 and the lensed images
are calculated. The galaxies are located in positions of increasing redshift, namely
z1 = 9.83, z2 = 10.67, z3 = 11.5, z4 = 12.33, z5 = 13.17 and z6 = 14. The lensed images
are shown in Figure 19 and Figure 20. Two possible images are shown for each galaxy.
These are sections of about 320× 320 pixels to make the pixels visible, which corresponds
to a scale of 46 microradians. The left image is lensed and shows the multiply imaged
source, i.e. the lensed image. The right image shows the source without lens, so that the
resolution of the measuring device, i.e. the pixelation can get observed.
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Figure 19: Images of the lensed (left) and unlensed (right) sources.
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Figure 20: Images of the lensed (left) and unlensed (right) sources.
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Finally, the lensed images of the galaxies and the Hubble Deep Field image are combined
to produce a final simulation of a gravitationally lensed Hubble Deep Field, see Figure 21.
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Figure 21: Lensed Hubble Deep Field with additional lensed spiral galaxies.
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3.2.1 Time Delay and of Image Distances

In this section, the time delays and image distances of the images are analyzed for 700,
1000, 1500, 2000 and 2238 Bessel roots. A point source is constructed for x0 = 2 and
y0 = 2 with an exponentially decaying brightness f , i.e.

f(X,Y ) = exp

(
(X − x0)

2 + (Y − y0)
2

5

)
. (73)

A resolution of 2048× 2048 pixels is chosen for the entire analysis. The maximum radius is
again chosen to be rmax = 150 microradians. The lensed images are constructed using the
lens equation, see Equation 10. The time arrival surface is determined using Equation 31.
This procedure is performed for various redshifts. The results are shown in Figure 22 for
700 Bessel roots, in Figure 23 for 1000 Bessel roots, in Figure 24 for 1500 Bessel roots, in
Figure 25 for 2000 Bessel roots and in Figure 26 for 2238 Bessel roots. The color bar
indicates the arrival time in seconds. The images occur at positions, where the time arrival
surface has a minimum, a maximum or a saddle point. These points are determined
numerically and are marked as red crosses in the figures. For the studied source and setup,
five images can be observed in the image plane. Two of them are minima, one is a
maximum and two are saddle points.
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Figure 22: Time arrival surface (in seconds) for 700 Bessel roots. The minima, maxima and
saddle points are marked with red crosses.

The distances in between the different image positions are determined for 2238 Bessel
roots. All data for this section can be found in Section A.3. All image distances are in a
range between 4.53 microradians and 36.14 microradians.
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Figure 23: Time arrival surface (in seconds) for 1000 Bessel roots. The minima, maxima
and saddle points are marked with red crosses.

The time delay in between images positions is determined after the image positions have
been found. All time delays are listed in Section A.2.
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Figure 24: Time arrival surface (in seconds) for 1500 Bessel roots. The minima, maxima
and saddle points are marked with red crosses.
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Figure 25: Time arrival surface (in seconds) for 2000 Bessel roots. The minima, maxima
and saddle points are marked with red crosses.
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Figure 26: Time arrival surface (in seconds) for 2238 Bessel roots. The minima, maxima
and saddle points are marked with red crosses.
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The determined time delays for 700, 1000, 1500 and 2000 Bessel roots are compared in a
next step with the reconstruction by using 2238 Bessel roots. Large errors occur mainly
for close images, since the normalized error is larger for small differences in time delay.
The median of the reconstruction with 700 Bessel roots is M700 = 0.972. 68% of the
errors are contained in the interval between 0.924 and 1.007. This corresponds to an
interval width of 8.33 %. The distribution of the normalized error in the time delay is
shown in Figure 27. The median of the reconstruction with 1000 Bessel roots is
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Figure 27: Normalized Hubble parameter 700 Bessel roots

M1000 = 0.982. 68 % of the errors lie in the interval between 0.950 and 1.000, which
corresponds to an interval width of 5.05 %. The distribution is shown in Figure 28.

0.4 0.5 0.6 0.7 0.8 0.9 1.0
Normalized error in time delay

0

1

2

3

4

5

6

7

Nu
m

be
r c

ou
nt

Figure 28: Normalized Hubble parameter 1000 Bessel roots
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The median of the reconstruction with 1500 Bessel roots is M1500 = 0.994. 68% of the
errors lie in the interval between 0.977 and 1.002, which corresponds to an interval width
of 2.45 %. The distribution is shown in Figure 29.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
Normalized error in time delay

0

1

2

3

4

5

6

7

Nu
m

be
r c

ou
nt

Figure 29: Normalized Hubble parameter 1500 Bessel roots

The median of the reconstruction with 2000 Bessel roots is M2000 = 0.999. 68 % of the
errors lie in the interval between 0.995 and 1.001, which corresponds to an interval width
of 0.56 %. The distribution is shown in Figure 30.
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Figure 30: Normalized Hubble parameter 2000 Bessel roots
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3.2.2 Estimation of the Hubble Parameter using a Noisy Potential

In this work, no direct measurements of time delays are included. To test the
error-proneness of the reconstructed time delays, a different approach is taken. The time
delay corresponding to a reconstruction with 2238 Bessel roots, determined in the previous
section, is used as input data. Equation 64 is used to determined the Hubble parameter
using the same image positions as used to calculate the time delays. Since the same
procedure as before is performed, the output value is simply 1. In a next step, noise is
added to the potential of the galaxy cluster. More specifically, random noise with a
standard deviations of 10 %, 1 % and 0.1 % of the mean coefficient value is added to the
Fourier-Bessel series coefficients. The mean value of the coefficients is 0.0148 and the
median value is 0.0086. For each standard deviation, the potential is determined six times.
Using the noisy potentials, the minima, maxima and saddle points of the time arrival
surface are determined again. Three normalized distributions of H0 are determined for the
three noisy potentials.

Figure 31 shows the normalized distribution of the time delay for noise with a standard
deviation of 10 % of the mean coefficient value. The distribution is centered around the
median M10 = 1.002. 68 % of the values are contained in the interval between 0.993 and
1.019. This interval corresponds to a width of ≈ 2.63 %.
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Figure 31: Estimation of the Hubble parameter for noise with σ = 10 %
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Figure 32 shows the normalized distribution of the time delay for noise with a standard
deviation of 1% of the mean coefficient value. The distribution is centered around the
median M100 = 1.003. 68 % of the values are contained in the interval between 0.995 and
1.016. This interval corresponds to a width of ≈ 2.06 %.
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Figure 32: Estimation of the Hubble parameter for noise with σ = 1%

Figure 33 shows the normalized distribution of the time delay for noise with a standard
deviation of 0.1% of the mean coefficient value. The distribution is centered around the
median M1000 = 1.003. 68 % of the values are contained in the interval between 0.996
and 1.015. This interval corresponds to a width of ≈ 1.95 %.
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Figure 33: Estimation of the Hubble parameter for noise with σ = 0.1%
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4 Discussion

This work contains documentation of the development of a tool for simulating
gravitational lensing. Random point mass distributions are reconstructed, time delays
between different image positions are determined and lensed images are generated. The
main result is the reconstruction of two galaxy clusters, which are cropped out from a
simulation of a large-scale cosmological mass distribution. This reconstruction is
performed using a Fourier-Bessel series approach. The series is oriented around the roots
of the Bessel functions. By specifying a number of Bessel roots, the accuracy of the
reconstruction is adjusted. An arbitrary accuracy can be chosen, and the corresponding
number of Bessel roots can be determined from the analysis. For different numbers of
Bessel roots, the reconstruction of the mass distributions, potentials, time delays and
distances is investigated.

4.1 Reconstruction of Mass Distributions

The simulated mass distribution of galaxy cluster 1 and 2 and their reconstructions are
shown in Figure 13. Three-dimensional plots of the same mass distributions are shown in
Figure 14. The κ = 1 surface is marked with a black contour line. For galaxy cluster 1, a
central peak and more or less uniformly distributed mass points around it can be seen.
There is a small surplus of mass points in upper left corner of the image, but overall, the
mass distribution is approximately spherically symmetric. During reconstruction, it can be
observed that the general features of the mass distribution are captured. The central peak
and multiple mass points in the outer region are captured. It can also be seen that there is
a surplus of mass points in the upper left corner.

The mass distribution of galaxy cluster 2 is less symmetric than the mass distribution of
galaxy cluster 1, showing an elliptically shaped central peak and a smaller peak in the
lower right corner of the image. Some additional point masses are mainly located in the
upper half of the image. The κ = 1 surface is again shown as a black contour line in the
two-dimensional plot. In the reconstruction image, it be observed that the main features of
the mass distribution are again captured, as the elliptically shaped central peak as well as
the smaller peak in the lower right corner can be seen again. In contrast to the
reconstruction of galaxy cluster 1, an underestimation of the mass contained in the cluster
can be seen by eye. The κ = 1 surface is shifted towards the mass peaks. Additional mass
is predicted outside the circular region containing the galaxy cluster.

The reconstruction of the mass distribution can be performed with any number of Bessel
roots. To investigate the quality of the reconstruction, the mass error of the reconstruction
is determined on each pixel of the distribution. This is done for a total of 42
reconstructions by increasing the number of Bessel roots by 50 roots in each step. The
total and fractional mass errors for the reconstruction of the two galaxy clusters are shown
in Section A.1.1 and Section A.1.2. The κ = 1 surfaces are again shown with a black
contour.

For the total mass error, it is observed that the error shows an increasingly fine fingerprint
pattern as the number of Bessel roots increases. Overall, the error decreases with
increasing number of Bessel roots for both galaxies. The fractional mass error shows an

42



analogous finger print pattern, with additional maximum values around the smaller mass
points and in the outer regions of the circle. A possible explanation for these features is
that the mass in the non-central regions is very close to zero, so any small mass is a huge
overestimation. The overestimation around the mass points can also be explained by the
fact that the change in the mass distribution is very steep, which again is difficult to
capture by reconstruction with smooth Fourier-Bessel functions.

In a next step, the total mass and the potential errors are examined. For each
reconstruction corresponding to a given number of Bessel roots, the mean error and the
RMS of the error of the reconstruction are calculated. The results are shown in Figure 15
for the reconstruction of galaxy cluster 1 and in Figure 16 for the reconstruction of galaxy
cluster 2. For the reconstruction of galaxy cluster 1, the κ error decreases from 33.20 % to
20.42 %. The corresponding RMS error is 49.11 % for 50 Bessel roots and 22.87 % for
2238 Bessel roots. The fact that the RMS error is larger than the total error, indicates
that there are large outliers in the reconstruction of the galaxy cluster. A possible
explanation is the additional masses which are constructed outside of rmax. The error in
the potential is 0.25 % for 50 Bessel roots and 0.00122 % for 2238 Bessel roots. The
corresponding values for the RMS are 0.407 % for 50 Bessel roots and 0.00159 % for 2238
Bessel roots. The error and RMS decrease by more than two orders of magnitude when
the maximum number of Bessel roots is used. A possible explanation for this stronger
minimization of the potential with respect to κ is that the potential is a smoother
function. According to Gauss’ divergence law, the gravitational potential outside any
radius depends only on the total mass contained within that radius if the mass is radially
symmetric (Forster 2017). Therefore, the potential in the outer regions does not depend
on the specific positions of the constructed point masses inside, but only on the total mass
contained in that radius. Both galaxies are approximately spherically symmetric, since the
main mass is contained in a central circular peak.

Similarly, the errors in the reconstruction of galaxy cluster 2 are 33.68 % for 50 Bessel roots
and 21.29 % for 2238 Bessel roots. The RMS values are 52.25 % and 28.17 %. The error of
the potential is 0.23 % for 50 Bessel roots and 0.00123 % for 2238 Bessel roots. The RMS
is 0.367 % for 50 Bessel roots and 0.00167 % for 2238 Bessel roots. Again, the error and
RMS of the potential decrease more significantly, i.e. by two orders of magnitude, than the
error and RMS and κ. The same argument applies as for galaxy cluster 1.

The reconstructed galaxy clusters are used for the simulation of strong gravitational
lensing. For the lens equation, see Equation 10, only the gravitational potentials are
required. An accurate reconstruction of the gravitational potential is therefore more
important than the reconstruction of the mass distribution.
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4.2 Gravitational Lensing of Real Galaxies with Reconstructed
Clusters

The galaxy cluster 2 is used as a gravitational lens and lensed images are produced.
Images of spiral galaxies are used as sources, see Figure 18. These images are placed at
different redshifts. Two images are generated for each lens. One image shows an image of
the source without lensing. The other image shows lensed images generated by the
reconstructed galaxy cluster 2 as a gravitational lens. Comparing the two different images
placed side by side in Figure 19 and 20, one can see the pixelation of the measuring device.
The point spread function of the signal provides a maximum possible resolution, as only
signals which are separated by more than the distance to the first minimum can be
resolved. The pixel size of the device ideally corresponds to this resolution limit. If more
pixels are available, no more information can be extracted from the system, but more
useless data is generated. If fewer pixels are available, information is lost during the
measurement process.

The superposition of the different lensing events corresponding to different redshifts is
shown in Figure 21.
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4.3 Time Delays and Image Distances of Complete
Reconstruction

Currently, no gravitational lens with a redshift of z = 6 is listed in the Harvard
Gravitational Lens Data Base. It is therefore not possible to compare the results with
similar existing observations. Since the James Webb Space Telescope is right now in the
process of observing and detecting new systems of gravitational lensing, new data will
soon be available. Alternatively, the results obtained will be compared with various
combinations of lens and source redshifts.

The system RXJ0911 + 0551 is a quadruple quasar at z = 2.80, lensed by a cluster of
galaxies at z = 0.77 (Hjorth et al. 2002). A time delay of 146 ± 8 days was measured.
The the images distances are ΘAB = 15.77 microradians, ΘAC = 14.9 microradians,
ΘAD = 14.37 microradians, ΘBC = 2.31 microradians, ΘBD = 3.01 microradians and
ΘCD = 4.65 microradians.

The system HE0435− 1223 is located at z = 1.689 with a lens at z = 0.454 (Courbin,
Chantry, et al. 2011). The measured time delays are 8.4 ± 2.1 days, 0.6 ± 2.3 days,
14.9 ± 2.1 days, 7.8 ± 0.8 days, 6.5 ± 0.7 days and 14.3 ± 0.8 days. The images
distances are ΘAB = 12.35 microradians, ΘAC = 7.7 microradians,
ΘAD = 9.15 microradians, ΘBC = 7.34 microradians, ΘBD = 8.83 microradians and
ΘCD = 10.83 microradians.

Using different numbers of Bessel roots, galaxy cluster 2 is reconstructed. The minima,
maxima and saddle points of the time arrival surface are determined numerically. The
time arrival surface and the corresponding extrema as displayed in Figure 22 for 700
Bessel roots, in Figure 23 for 1000 Bessel roots, in Figure 24 for 1500 Bessel roots, in
Figure 25 for 2000 Bessel roots and in Figure 26 for 2238 Bessel roots. The time delays
predicted for the reconstructed cluster range from 5.31 days for zS = 0.25 to 384.34 days
for zS = 0.67. The predicted minimal image distance is 5.53 microradians for zS = 1.00
and zS = 0.25. The predicted maximum image distance is 36.14 microradians for
zS = 0.43 microradians. The values are within the expected range.

To obtain an estimate of the error-proneness of time delays, the reconstructed time delays
are compared with the time delays using the maximum number of 2238 Bessel roots. The
width of the interval containing 68 % of the values is 8.33 % for 700 Bessel roots. The
corresponding distribution is shown in Figure 27. For 1000 Bessel roots (see Figure 28),
the width of the interval containing 68 % of the values is 5.05 %. For 1500 Bessel roots it
decreases to 2.45 %, see Figure 29 and for 2000 Bessel roots to 0.56 %, see Figure 30. The
error decreases approximately linearly.

In a second approach,the potential of the reconstructed galaxy clusters is perturbed to find
some variation of the Hubble parameter. The galaxy clusters are reconstructed by a
Fourier-Bessel series. The coefficients of the series are perturbed, by adding normally
distributed random values. The random values are centered at 0 and have a standard
deviation equal to 10 %, 1 % resp. 0.1 % of the mean coefficient value, respectively.

For noise with a standard deviation of 10 % of the mean coefficient value, the median is
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1.002 and the standard deviation is 2.63 %, see Figure 31. For noise with a standard
deviation of 1 % of the mean coefficient value, the predicted Hubble parameters have a
median of 1.003 and standard deviation of 2.06 %, see Figure 32. For noise with a
standard deviation of 0.1 % of the mean coefficient value, the median is 1.003 and the
standard deviation of the predicted Hubble parameters is 1.95 %, see Figure 33.

Since all equations are linear, it would be expected that the standard deviation of the
distribution of the time delays would be equal to the standard deviation of the noise.
Comparing these three values shows that the time delay at 10 % does not have a scatter as
large as would be expected based on the linearity of Equation 61. On the other hand, the
standard deviation for noise corresponding to 0.1 % of the mean coefficient value has a
larger scatter than expected.
An explanation for this could be that the mean value of the coefficients is 0.0148, while the
median value is 0.0086. Thus, the median value is hence only 58.45 % of the mean. Hence,
for most coefficients, the perturbation is greater than 10 %, 1 % and 0.1 % of their own
value, respectively. This may explain the large standard deviation for 0.1 % noise.
Another important feature is that in the Fourier-Bessel series only few summands are
catching the most important features. Those are weighted strongly and have
correspondingly larger coefficients. The 10 % or 1 % of the mean coefficient value will have
a relatively smaller error. This explains the lower standard deviation for 10 % and 1 %.
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5 Conclusion

In the presented work, gravitational lensing is investigated as a tool to probe the model of
the universe and. In a first step the lens equation is solved for an analytic potential. In a
second step, an algorithm for approximation generic mass distribution with a
Fourier-Bessel series is written. The main features of point mass distributions are
captured. Additional noise is predicted in form of a fingerprint pattern.
To find more realistic predictions for lensing events, it is favorable to consider realistic
lenses. An analytic approximation is a suitable approach to determine the gravitational
potential of a mass distribution and it is straightforward to calculate the lensing potential
with it and this result can be inserted into the lens equation.

A simulation of a cosmological mass distribution is analyzed and two regions of high
density are cropped out of the simulation. The diameter of the cropouts is in the order of
5 Mpc, a scale corresponding to galaxy clusters. Galaxy cluster 1 is an approximately
spherically shaped cluster with a central peak, see Figure 13. Galaxy cluster 2 has a
central peak and a smaller non-central second peak, also see Figure 13. Both galaxy
clusters exceed the critical density, which means that there are regions with κ > 1. Thus,
the condition for lensing to occur is fulfilled and multiple images are possible. Both
clusters of galaxies are approximated with Fourier-Bessel series, varying the number of
Bessel roots considered. As expected, the more roots considered, the more accurate the
reconstruction becomes. Galaxy cluster 1 is reconstructed more successfully than galaxy
cluster 2. A plausible explanation for this phenomenon is that galaxy cluster 1 is
approximately spherically symmetric, a feature that is easier to catch using Bessel
functions combined with sine and cosine functions, since more features are shared.

To simulate lensing events, only the reconstructed potentials are required. It can be seen
that for both clusters of galaxies the RMS value of the potential error decreases by two
orders of magnitude as the number of Bessel roots increases. The specific values for galaxy
cluster 1 are 8.45 picoradians for 50 Bessel roots and 3.31 · 10−2 picoradians for 2238
Bessel roots. The specific values for galaxy cluster 2 are 7.15 picoradians for 50 Bessel
roots and 3.26 · 10−2 picoradians for 2238 Bessel roots. In between, the RMS value of the
error decreases monotonically, while the RMS value of the potential increases drastically at
the beginning and takes a constant value afterwards.

Different spiral galaxies are used as source images to simulate gravitational lensing, using
the reconstruction of galaxy cluster 2 as a gravitational lens. The lensing images are
determined using the lens equation, assuming different redshifts of the lens and source. All
resulting lensing images are overlaid with a Hubble Deep Field image that is also
gravitationally lensed.

For each lensing event, the time delay between different observed image positions in the
image plane is determined. The time delay is a sum of a geometrical and a gravitational
time delay. For any given lens, the time arrival surface is determined and images can be
seen to form at the specific positions where the time arrival surface has a minima, maxima
or a saddle point. By numerically determining these minima, maxima and saddle points,
the exact image positions are determined and the time delays are obtained.
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The distances between the image positions range from 3.91 microradians to
26.70 microradians. For a reconstruction with the maximum number of Bessel roots, time
delays are predicted in a range from 5.31 days to 384.34 days. The predicted time delays
using 700, 1000, 1500 and 2000 Bessel roots are compared to the reconstruction
corresponding to the maximum number. For 700 Bessel roots, the standard deviation of
the distribution is 8.33 %. For 1000 Bessel roots it is 5.05%, for 1500 Bessel roots 2.45 %
and for 2000 Bessel roots 0.56 %.

By inverting the equation for the time delay and using the fact that the angular diameter
distances depend on the Hubble parameter of the current epoch, the Hubble parameter
can be estimated.

The Hubble tension is still an issue in the recent ΛCDM model of the universe. The
approach of using gravitational lensing to determine the Hubble parameter of the current
epoch provides a completely independent strategy. With the James Webb Space telescope,
new data becomes available and a huge potential is unlocked for which this tool can be
helpful.
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A Appendix

A.1 Error in the Mass Distribution

A.1.1 Total Mass Error
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Figure 34: The total mass error of the reconstruction of galaxy cluster 1
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Figure 35: The total mass error of the reconstruction of galaxy cluster 2
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A.1.2 Fractional Mass Error
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Figure 36: The fractional mass error of the reconstruction of galaxy cluster 1
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Figure 37: The fractional mass error of the reconstruction of galaxy cluster 2
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A.1.3 Error in the Potential
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Figure 38: The potential error of the reconstruction of galaxy cluster 1
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Figure 39: The potential error of the reconstruction of galaxy cluster 2
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A.2 Time Delay

Lens Redshift 1.00 0.67 0.43 0.25
tAB in days 17.688479 38.634001 26.866454 5.309040
tAC in days 38.928795 71.132794 48.666734 11.068666
tAD in days 126.225431 133.247931 85.334051 30.591842
tAE in days 143.913910 141.329351 86.578610 35.900883
tBC in days 165.154226 171.881932 112.200505 40.724032
tBD in days 181.978339 204.380725 134.000786 41.660508
tBE in days 182.842705 212.462146 135.245344 46.969548
tCD in days 220.907134 243.014726 160.867240 51.792697
tCE in days 347.132565 345.710077 220.579395 82.384539
tDE in days 364.821043 384.344078 247.445850 87.693580

Table 2: The delay between image positions A,B,C,D and E for 2238 Bessel roots

Lens Redshift 1.00 0.67 0.43 0.25
tAB in days 16.928669 38.311339 26.666338 5.141693
tAC in days 38.631292 70.917397 48.447034 11.108782
tAD in days 126.282292 132.908444 85.138426 30.604366
tAE in days 143.210961 141.482061 86.744505 35.746059
tBC in days 164.913584 171.219783 111.804764 40.753511
tBD in days 181.842253 203.825841 133.585461 41.713148
tBE in days 182.605847 212.399459 135.191540 46.854841
tCD in days 221.237139 242.137180 160.251798 51.862293
tCE in days 347.519431 345.307903 220.329966 82.466659
tDE in days 364.448100 383.619241 246.996304 87.608352

Table 3: The delay between image positions A,B,C,D and E for 2000 Bessel roots

Lens Redshift 1.00 0.67 0.43 0.25
tAB in days 12.434384 36.590360 25.290163 4.518744
tAC in days 37.068574 71.816571 48.463902 10.958585
tAD in days 128.294562 131.360733 84.710078 30.629235
tAE in days 140.728946 140.997332 86.761950 35.147978
tBC in days 165.363137 167.951093 110.000241 40.793503
tBD in days 177.797520 203.177304 133.173980 41.587820
tBE in days 183.132570 212.813903 135.225852 46.106563
tCD in days 220.201144 239.767664 158.464143 51.752088
tCE in days 348.495706 344.174636 219.935930 82.381323
tDE in days 360.930090 380.764996 245.226093 86.900067

Table 4: The delay between image positions A,B,C,D and E for 1500 Bessel roots
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Lens Redshift 1.00 0.67 0.43 0.25
tAB in days 7.107244 32.447104 23.029324 3.270618
tAC in days 38.290131 69.750267 47.964585 10.420014
tAD in days 130.253987 130.778133 83.765194 30.842375
tAE in days 137.361231 142.483270 87.176057 34.112993
tBC in days 168.544118 163.225237 106.794518 40.727670
tBD in days 175.651362 200.528399 131.729779 41.262389
tBE in days 179.904103 212.233536 135.140642 44.533007
tCD in days 218.194234 232.975503 154.759103 51.147684
tCE in days 348.448221 343.011669 218.905836 81.990060
tDE in days 355.555466 375.458773 241.935160 85.260677

Table 5: The delay between image positions A,B,C,D and E for 1000 Bessel roots

Lens Redshift 1.00 0.67 0.43 0.25
tAB in days 1.980894 26.955936 19.475401 1.909074
tAC in days 39.084482 65.335299 45.280064 10.750235
tAD in days 130.997122 133.070589 84.953088 31.213764
tAE in days 132.978017 144.631481 88.688623 33.122838
tBC in days 170.081605 160.026525 104.428488 40.672066
tBD in days 172.062499 198.405887 130.233151 41.963999
tBE in days 181.047654 209.966780 133.968687 43.873073
tCD in days 220.132137 225.361824 149.708552 51.422301
tCE in days 351.129259 343.037368 218.921775 82.636065
tDE in days 353.110153 369.993304 238.397175 84.545139

Table 6: The delay between image positions A,B,C,D and E for 700 Bessel roots

A.3 Image Distances

Lens redshift 1.00 0.67 0.43 0.25
∆ΘAB in microradians 4.525797 8.420340 8.420340 4.525797
∆ΘAC in microradians 9.559548 12.800886 14.311825 9.138213
∆ΘAD in microradians 11.366592 13.864470 15.114972 11.366592
∆ΘAE in microradians 12.552301 17.840172 18.828452 13.343279
∆ΘBC in microradians 13.577390 18.870247 18.870247 14.638373
∆ΘBD in microradians 15.062762 21.338912 21.957559 15.114972
∆ΘBE in microradians 15.114972 21.486079 22.733184 15.114972
∆ΘCD in microradians 17.972160 23.449634 23.449634 17.751635
∆ΘCE in microradians 19.846931 25.104603 25.877232 20.587305
∆ΘDE in microradians 26.209974 34.966665 36.141038 27.038484

Table 7: The angular image distances
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