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Particle detection principle with a dual-phase TPC
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WIMPs 
or neutrons

γ or e– electronic recoils (ER)

nuclear recoils (NR)Xe

· Two signal channels (S1 and S2) 

· Ratio depends on dE/dx, different probability for 
electron-ion pairs recombination 

➝ event vertex reconstruction in 3D 
     (interaction depth from delay between S1 and S2) 

➝ particle type discrimination: (S2/S1)ER  > (S2/S1)NR 
     (factor ~ 200 and higher efficiency) 
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· Application: dark matter searches, neutrino detection
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Scintillation and ionisation yields in liquid xenon:   current status
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Light yield/Leff measurements: 

· below keVnr only LUX 
   (down to 1.1 keVnr @ 181 V/cm) 

· Plante down to 3 keVnr 

➝ new data below 3keVnr is valuable

Charge yield measurements: 

· mostly indirect measurements 

· LUX down to 0.7 keVnr @ 181 V/cm 

➝ uncertainties are large, order of 30-50%
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Xurich II detector design
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· Active volume: 3.1 cm diameter and 3.1 cm height 

· Two 2-inch PMTs, Hamamatsu Photonics R9869 
   bialkali photocathode (16 cm2) with QE ~35%  @ 178 nm 

  Torlon extraction spacer

  liquid level control

  inner PTFE reflector

  PTFE drift spacers/insulators

  copper field shaping rings

68 g
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Electric field configuration
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Electric field cage design optimised on simulations 
with COMSOL and KEMfield 

Electrodes from chemically etched stainless steel meshes: 

· wire diameter 100 μm, pitch 2.7 mm  

· 93% optical transparency
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Deviation of electric field from uniformity: 

· target volume 2.8% 

· fiducial volume 0.9%

· voltage divider circuit with R = 1.5 GΩ 

· cathode HV up to 6 kV 

   ➝  e– drift field 
        2 kV/cm 

· anode at 4 kV 

  ➝ extraction field 
      (10.32±0.14) kV/cm



Xenon Liquefaction, Purificatoin, DAQ
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· Cooling by a copper cold finger immersed  
in a liquid nitrogen bath (automatic refill system 
with a solenoid valve, 160L dewar lasts ~5 days) 

· Temperature control with 5W heater at the top 
flange of the inner cryostat vessel 

· Xenon gas is constantly purified by circulation 
through a hot metal getter with flow rate ~0.7 slpm

Neutron laboratory at UZH-Irchel

· Data digitised with CAEN V1724 Flash ADC: 
   10 ns sampling period 
    2.25V full scale 
   14-bit resolution 
   40 MHz bandwidth 
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Operational parameters and their stability

7Alexander Kish (UZH), SPS/OPG Joint Annual Meeting, Geneva, August 25, 2017

· PID-based feedback system for temperature control 

· Two Pt100 resistive thermometers: 
   – at the top flange (next to the heaters) – control T 
   – at the bottom of the LXe volume 

➝ T and P stable within 0.2%  
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· PMT gains regularly calibrated: 
   Top PMT        (2.90±0.04)×106  @ 870 V 
   Bottom PMT  (3.73±0.09)×106  @ 940 V

RMS 
~3%

· Electron lifetime ~200 μs 
   (TPC drift lentgh ~20 μs)
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· Calibration by injection of meta-stable 83mKr gas
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Signal search and identification algorithm
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S1 filter 
S2 filter 
χ2 filter 
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· Identification of S1- and S2-like pulses with two 
width-based filters and a χ2-likelihood filter

S1 template for χ2-likelihood 
pulse identification algorithm
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Scintillation light collection efficiency
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· Optical response studies with Monte Carlo 
simulations (GEANT4): 
   – 106 interaction vertices 
   – 103 photons at each point, generated 
      isotropically and with random polarisation 

data

MC

Z [mm]
0 5 10 15 20 25 30 35

To
ta

l S
1 

[P
E]

0

100

200

300

400

500

600

1−10

1

10

Z [mm]
0 5 10 15 20 25 30 35

R
es

id
ua

ls
, f

ra
ct

io
n

0.04−

0.02−

0

0.02

0.04

➝  2% variation after applying the correction

· 30% variation of response due to reflections of S1 
scintillation light from the PTFE surfaces and at the 
liquid/gas interface 

83mKr data, 32.1 keV line

· Volume-averaged LCE: 
top PMT          (12.5±0.1)% 
bottom PMT    (47.0±0.1)% 
top+bottom     (59.8±0.1)%

· Radial variation: 
top PMT ±5%, bottom ±0.5%, both ±1.5%
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Energy calibration
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· The proportion of light (S1) and charge (S2) is 
different at various drift fields, but their sum 
remains constant Θ

cathode HV = 3.0 kV 
(drift field ~1 kV/cm) 

anode    HV = 4.0 kV 
(extraction field ~10kV/cm)

83mKr, 32.1 keV· The energy shared between scintillation and 
ionisation fluctuates on an event basis with a 
strong anti-correlation 
➝ measure by fitting a 2D elliptical Gaussian 
function

W = (13.7±0.2) eV – energy required to produce 
an excited or ionised atom

· Photon detection efficiency for prompt 
scintillation 
   g1 = (0.191±0.006) PE/photon 

· Charge amplification gain 
   g2 = (24.4±0.4) PE/e– 
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Energy resolution
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83mKr, 32.1 keV

83mKr, 32.1 keV

· Fluctuation of the sum (S1+S2) is smaller than 
that of individual signals 

➝ energy resolution can be significantly improved 
by combining S1 and S2 

· S2 resolution is expected to be better than using 
S1 due to higher number of photons in the 
proportional scintillation channel 

➝ not the case, most likely due to edge-effects 
(charge trapping on PTFE surface and reduced 
electron collection efficiency) 

➝ will improve by replacing the top PMT with 
segmented photosensors (e.g. SiPM array) 
for (x,y) event localisation

σ/E:

(16.6±0.1)%

(20±1)%

(5.8±0.3)%
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Electron drift velocity measurement
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· Systematic measurement of the electron drift velocity 
as a function of drift field (0.2 kV/cm – 1.3 kV/cm) 

· Dominant uncertainty is due to 200 μm tolerance in 
the machining of structural components 

· Error bars on the electric field represent variation from 
average in the volume used for analysis (from MC) 

· Transverse diffusion will be studied with an upgraded 
(xy-position sensitive) detector

gate 

cathode 

measurement 
Gaussian convolution 
derivative 

electrons produced by 
photoionisation of the cathode by 
the proportional scintillation light
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Summary
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· High signal yields: 

   light yield:      15.0 PE/keV  @ 9.4 keV and 14.0 PE/keV  @ 32.1 keV   (at zero drift field) 
                        10.8 PE/keV  @ 9.4 keV and   7.9 PE/keV  @ 32.1 keV   (at drift field ~1kV/cm) 

   charge yield:  28 e–/keV  @ 9.4 keV and 31 e–/keV  @ 32.1 keV, with S2 yield of 24 PE/e– 

· Energy resolution using a linear combination of scintillation and ionisation signals is σ/E = (5.8±0.3)%, 
comparable to other state-of-the-art small-scale (x,y)-position sensitive xenon detectors 

· Energy (analysis) threshold is ~2.5 keVNR 

· A new, small-scale dual-phase xenon TPC has been developed at the University of Zurich, optimised 
for low-energy charge and light yield measurements 
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· Electron drift velocity systematically measured for 
the fields from 0.2 to 1.3 kV/cm 

· Instrument paper is at the final review stage
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· Theses with contributions to the Xürich II project: 

Hrvoje Dujmovic    (B.Sc. 2012) 
“Simulation and Optimisation of the Electric Field in a Liquid Xenon Time-projection Chamber” 

Dario Biasini          (B.Sc. 2014) 
“Monte Carlo Simulations of a Liquid Xenon Detector Response To Low-energy Neutrons” 

Hrvoje Dujmovic    (M.Sc. 2014) 
“Characterization and Calibration of a Liquid Xenon Time-projection Chamber” 

Payam Pakarha     (Ph.D. 2017) 
“Calibration System of the Photosensors for the XENON1T Dark Matter Search Experiment, and 
Response of Liquid Xenon to Low-energy Interactions” 

Francesco Piastra  (Ph.D. 2017) 
“Materials Radioassay for the XENON1T Dark Matter Experiment,and Development of a Time-projection 
Chamber for the Study of Low-energy Nuclear Recoils in Liquid Xenon” 

Yanina Biondi         (M.Sc. – defence by the end of 2017) 
“Measurement and Modelling of Scintillation and Charge Signals in a Dual-phase Xenon TPC” 

Chiara Capelli         (Ph.D. – ongoing) 

Julien Wulf              (Ph.D. – ongoing) 
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