

Top photosensor array

★ S1

Bottom photosensor array

Xenoscope: a full-scale vertical demonstrator for DARWIN

University of Zurich

Paloma Cimental on behalf of the Astroparticle Physics group of Prof. Laura Baudis

Dark matter direct detection

Direct dark matter detection experiments aim to detect Weakly Interacting Massive Particles (WIMPs) via nuclear recoils caused by WIMPnucleus elastic scattering in an Earth-bound detector

The detection technology:

Dual-phase Time Projection Chamber

- Prompt scintillation signal (\$1)
- Delayed secondary signal from ionisation electrons (S2)
- Energy determination

- x y from S2 hit pattern
- z from \$1-\$2 time delay

The Xenoscope R&D platform

Proof of principle of electron drift over 2.6 m LXe. To achieve this goal, the system requires:

- Excellent Xe purification system
- Efficient High-Voltage system
- Electric field uniformity
- R&D opportunities:
- Custom-made HV distribution
- Electron cloud diffusion
- Light attenuation measurements
- Test of various light sensors

The future DARWIN observatory

Amplitude

- Proposed next generation dark matter detector
- Search for WIMPs with unprecedented sensitivity [1]
- Dual-phase TPC: 2.6 m Ø, 2.6 m height 50 t of Liquid Xenon (LXe)

Multi-tonne scale LXe TPCs require R&D test platforms

- Full-scale vertical demonstrator at UZH [2] Full-scale horizontal
 - demonstrator at Uni Freiburg

Goal: Test full-size detector subsystems under real conditions in LXe

First results from the purity monitor

Goal: Investigate the LXe purity as a function of the recirculation speed

- Drift length: 0.53 m
- Pulsed xenon flash lamp
- Charge readout on top (Q_A) and bottom (Q_C)
- Ratio of signals proportional to the e-lifetime $au_{
 ho}$

SiPM array

PM was successfully operated under stable conditions for more than 70 days

Towards a 2.6 m TPC at UZH

 $\tau_{e} > (660 \pm 50) \,\mu s$

For the following phase the PM will be converted to a dual-phase xenon TPC. Three major upgrades will be implemented:

Generation and transmission For light signals of nominal voltage readout

Liquid gas interface High-voltage system

and level control Real-time monitoring and setting of the liquid level

Stay tuned for upcoming results!

@DarwinObserv

Would you like to know more? DARWIN darwin-observatory.org Come and join the effort!

References:

[1] DARWIN collaboration, J. Aalbers et al., DARWIN: towards the ultimate dark matter detector, JCAP 11 (2016) 017. [2] L. Baudis et al., Design and construction of Xenoscope – a full-scale vertical demonstrator for the DARWIN observatory, JINST 16 (2021) P08052.

