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Neutrinoless double-beta decay (0νββ)

• Can explain mass of neutrino with small Majorana mass component
• Hypothetical lepton number violating process
• Potentially allowed for even-even nuclei with 2νββ decay
• O(10) experimentally interesting nuclei → but no clear winner

T−1
1/2 = G|M |2m2

ββ

for simple light Majorana neutrino exchange (G is phase-space factor,
M is nuclear matrix element), ∼const. between isotopes
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0νββ: isotopes

• Different isotope choice for different experimental approaches
• Various considerations: natural abundance/ enrichment, detector

technology, resolution etc.
• If signal, potential complementarity between experiments for

determining process mechanism
Isotope Natural abundance Qββ (keV)

48Ca 0.2% 4263
76Ge 7.6% 2039
82Se 9.2% 2998
96Zr 2.8% 3348

100Mo 9.6% 3035
116Cd 7.6% 2813
130Te 34.1% 2527
136Xe 8.9% 2459
150Nd 5.6% 3371
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Experimental techniques
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Detecting 0νββ

• Signature in calorimeters would be
monoenergetic line, Qββ , in energy
spectrum of emitted electrons

• Sensitivity to half-life of decay depends
on background

• Background limited:

T 0ν
1/2 ∝ ε

√
Mt

BI ·∆E

• Background free:

T 0ν
1/2 ∝ εMt

where ε: efficiency; Mt: exposure;
BI: background events per kg·yr·keV;
∆E: resolution

2νββ

0νββ

Qββ

Summed electron energy

dN
/

dE
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GERDA collaboration
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Part I

GERDA working principle
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Searching for 0νββ with GERDA

• GERDA searches for 0νββ of 76Ge at LNGS
[The European Physical Journal C 73.3 (2013) 2330]

• 3500 m.w.e., muons flux reduction 106 → 1 per m2h

• Qββ = 2039 keV
• Diodes isotopically enriched up to 88%, act as both source and

detector
• Ge detectors have high intrinsic purity, excellent energy resolution

(3-4 keV FWHM, ∼0.2% at Qββ)
• Well established, commercially available technology
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GERDA experiment

plastic scintillator panels
muon veto

clean room

ultra-pure water
muon Cherenkov veto

LAr cryostat

LAr veto 
instrumentation

Ge detector array with 
low activity electronics

BEGe detector module 
in low mass holder

wavelength 
shifting fibers with 

SiPM read-out

low activity PMTs
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Detector types

Semi-coaxial Ge detector (Coax)

• 7 enriched detectors
• 3 non-enriched detectors
• Total enriched mass 15.6 kg

Broad Energy Ge detector (BEGe)
[The European Physical Journal C 75.2
(2015): 39.]

• 30 enriched detectors
• Superior pulse shape

discrimination (PSD), energy
resolution

• Total enriched mass 20.0 kg
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Ge detector signals
• Ionising radiation... ionises!
• Number of charge carriers proportional

to energy deposition
• Electron/hole pairs drift in electric field
• Shockley-Ramo theorem gives

charge/current at readout electrode
• Different electric field for Coax/BEGe

detectors
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Data taking
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[Nature 544 (2017) 47]

[PRL 120 (2018) 13]

PRELIMINARY

Phase II data taking
since December 2015

Events with energy
Qββ±25 keV ‘blinded’

before analysis and
cuts finalised

June 2016: 10.8 kg· yr (”PhIIa”)
• Published in Nature 554 (2017)

June 2017: 23.2 kg· yr (”PhIIa + PhIIb”)
• Published in PRL 120 (2018)

June 2018 (this presentation): 58.9 kg· yr
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Part II

Energy scale and resolution
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Energy scale calibration

• Knowledge of energy
scale, resolution vital for
all physics analyses

• Energy scale calibrated
by 228Th sources ea.
7-10 days

• Remotely lowered to
three positions from
above cryostat for ≈ 2h
→ all detectors exposed

• Source Insertion System
(SIS): two independent
measurement systems
determine position of
source to ±1 mm

parking position, shielded
cryostat

source
array
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Energy calibration sources
[Journal of Instrumentation 10.12 (2015): P12005.]

• 3 low neutron emission
228Th sources
∼ 10−6 n/(s·Bq)

• Half-life 1.9 yr
→ new sources in
production

• Strong peaks at
2615 keV, 583 keV,
range of peaks between
for accurate calibration
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Energy scale stability

• Stability monitored via 2.6 MeV 208Tl line
• Between calibrations, stability monitored via pulser
• If detector shifts beyond its resolution, excluded from analysis dataset
• Resolution stable for more than two years
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Part III

Background reduction
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Physics spectrum
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• After muon veto, detector anti-coincidence cuts
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Background model
[The European Physical Journal C 74.4 (2014): 2764.]
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• Spectrum before LAr and PSD cuts
• Fitted using screening measurements as priors
• Low energy region dominated by 2νββ continuum

C. Ransom (UZH) GERDA experiment 11th July 2018 20 / 43



Background model: predictions at Qββ

Single-detector energy (keV)
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• Predicted flat background in Qββ region
• Even contributions from α, 42K β−, γ from 232Th and 238U chains
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Background reduction techniques

Water tank

Liquid Ar

Ge

μ

γ

γ

α

ββ

42K

β

γ
F Signal! Single-site event
F Cherenkov water veto for

muons
F LAr scintillation veto for

γ, β
F Detector

anti-coincidence cut
F Pulse shape

discrimination (PSD) for
multi-site and surface α
events
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LAr veto

• Background γs and βs deposit
energy in LAr → scintillation

• Scintillation light wavelength
shifted: 128 nm→ 430 nm

• Light observed by PMTs, SiPMs
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LAr veto: suppression
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• Suppression of 42K β peak observed → factor of 5 suppression
[The European Physical Journal C, 78(5), 388]

• Acceptance calculated through pulser events (97.7±0.1)%
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Pulse shape discrimination
• Reject multi-site events by pulse shape differences

[The European Physical Journal C 73.10 (2013): 2583.
HPGe
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• BEGe: cut on ratio of current amplitude (A) to energy (E)
• Coax: artificial neural network (ANN)
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Pulse shape discrimination

• Coaxials have large p contact → uniform field, electrons and holes
contribute to signal

• BEGes have point p contact → only holes contribute to signal
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Pulse shape discrimination: calibration
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• Double escape peak (DEP) from 208Tl: single-site sample
• Full energy peak (FEP) from 212Bi: multi-site sample
• Cut value at 90% DEP survival for A/E and ANN
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Pulse shape discrimination: suppression
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• Both K lines, high energy α events strongly suppressed
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Physics spectrum: revisited
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• After muon veto, detector anti-coincidence cuts
• Compton continuum suppressed
• Remaining features: 2νββ, 40K, 42K, α
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Part IV

Final Analysis and Results
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Deviations from linearity

• Combined calibration spectrum tests
deviations from linearity: deviation of
peak positions from literature positions

• Systematic uncertainty on energy scale:
0.2 keV for BEGe/Coax
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Resolution at Qββ: combining detectors

• Knowledge of resolution at Qββ

vital for 0νββ analysis
• Detector resolutions measured

from combined calibration
spectra: best statistics

• Effective dataset resolution
combines individual detectors
according to individual
exposures

• Combination of many Gaussians
with negligible offsets:
FWHM2 = 1

εΣiεiFWHM2
i

with sum over detectors, ε is
exposure
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Resolution at Qββ

• Dataset resolution curves are fit:

FWHM =
√
A+BE

where A accounts for electronics
noise, B is fluctuations in
produced charge carriers

• Some peaks excluded due to
topology

• Resolution at Qββ (preliminary):
Coax: 3.6(1) keV
BEGe: 3.0(1) keV
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Resolution: cross-check with physics data

• Resolution curve from
calibration data cross-checked
with resolution of background
peaks in physics data

• Previously, statistics too low for
many background peaks

• Ad-hoc constant term applied to
Coax as a correction for 42K

• Now none, disfavoured by other
lines
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Background index
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PRELIMINARY

• Background index determined in region 1930-2190 keV, excluding two
known γ lines and Qββ±5 keV

• Estimated background index at Qββ from unblinded region:
Coax: 0.7+0.5

−0.3 · 10−3 cts/(keV·kg· yr)
BEGe: 0.6+0.4

−0.3 · 10−3 cts/(keV·kg· yr)
• Sensitivity is not limited by background, but by exposure
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Unblinding
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New event at 2042 keV
Event is 2.4σ from Qββ

Background index Events in 50 keV Events in Qββ±2σ
10−4 cts/(keV·kg·yr)

Dataset Expected True Expected True Expected True
Coax 7+5

−3 5.7+4.1
−2.6 0.8 0 0.11 0

BEGe 6+4
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Statistical analysis

• Combined fit of Phases I and II
• Flat background + Gaussian signal

Frequentist (preliminary)
• Sensitivity for limit setting:

1.06 · 1026 yr (90% C.L.)
• Best fit: no signal
• T 0ν

1/2 > 0.90 · 1026 yr (90% C.L.)

Bayesian (preliminary)
• Sensitivity for limit setting:

0.82 · 1026 yr (90% C.I.)
• Best fit: background only
• T 0ν

1/2 > 0.76 · 1026 yr (90% C.I.)
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Part V

Towards the inverted hierarchy
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GERDA upgrade: new detectors
• Upgrade April-May 2018
• 5 new enriched detectors (9.5 kg)
• Inverted Coaxial Point Contact (IC)

detectors
• Similar energy resolution and PSD

power as BEGe detectors
• Larger mass → make up loss in

exposure due to upgrade time with
mass increase
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GERDA upgrade: other activities

• Denser fibre shroud → increase in veto efficiency
• Lower activity cables
• JFET repair and exchange → improved reliability
• Detector holder modification → less ‘dead’ material per Ge mass
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LEGEND

• Large Enriched Germanium Experiment for Neutrinoless ββ Decay
• Majorana and GERDA collaborations join (among others)
• Aim for discovery potential above 1027 yr
• Phased approach, 200 kg → 1 t Ge
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LEGEND

LEGEND-200
• 200 kg stage at LNGS using GERDA

cryostat
• Begin operation ∼ 2021
• Use IC detectors as tested in GERDA
• Background aim 0.2 cts/(keV·t·yr)
→ 1/5 GERDA Phase II

LEGEND-1T
• Modular approach, deploy 200-250 kg

stages

C. Ransom (UZH) GERDA experiment 11th July 2018 42 / 43



Conclusion

• GERDA continues to operate smoothly
• 58.9 kg· yr collected (c.f. aim of 100 kg· yr)
• New limit on half-life of 0νββ-decay for 76Ge:
T 0ν

1/2 > 0.90 · 1026 yr (90% C.L.)
• World’s best sensitivity > 1 · 1026 yr
• Upgrade will improve final sensitivity of GERDA
• Success suggests path to ton-scale experiment: LEGEND

C. R. is funded by the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 674896.
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Bonus slides
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Energy reconstruction
Two main energy filters reconstruct energy: [Physics Procedia 61 (2015) 673]

Pseudo-Gaussian:
• 25×5µs moving average
• Fast, robust → online

processing

Zero area cusp (ZAC):

• Finite cusp with zero-area constraint
• Parameters optimised for each

detector/calibration
• Improved energy resolution

(Coax: 0.2-0.5 keV)
• Used for all final physics analysis

In both cases, extracted energy observable is height of filtered signal
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K lines comparison

• Discrepancy in K lines resolution
partially due to inhomogeneous
exposure of detectors

0 5 10 15 20 25 30 35 40
Channel

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

FW
HM

 [k
eV

]

fitted K42 fwhm
evaluated fwhm from resolution curve

2.7

2.8

2.9

3.0
BEGe K40BEGe K40BEGe K40

FWHM (keV)

2.7

2.8

2.9

3.0
BEGe K42BEGe K42BEGe K42

3.2

3.4

3.6

3.8 Coax K40Coax K40Coax K40

weightedmeasured calibration
3.2

3.4

3.6

3.8 Coax K42Coax K42Coax K42

C. Ransom (UZH) GERDA experiment 11th July 2018 46 / 43



Checking of event 3 keV from Qββ

• Waveform checked by eye
• Detector stable in energy and

resolution at time of event
• No significant deviations from

linearity observed
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