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Fig.1: Compressive Sensing (CS) can be used to reconstruct a signal, here a 2D image, by using
just a fraction of the total data points. Original image in black-white by Menno Boermans.

Application in Scanning Tunneling Microscopy (STM)

 Massive decrease in measurement time of Quasi-particle interference (QPI): assuming
5% measurement data is sufficient for the sparse recovery, a 5-day measurement
could be done in about 6 hours as shown by the method of Oppliger and Natterer [2]

« The usage of a pre-calculated near optimal open Traveling Salesman path which
connects the random measurement locations leads to a further time reduction

« Compressive Sensing in an STM is here achieved by the sparsity of the signal (in this
case seen as wave vectors) in Fourier space

« The sparse recovery itself has been handled by the large-scale sparse reconstruction
algorithm SPGL1 [3]

 Robust denoising of the sparse signal recovery includes effects like white noise, drift,
creep or achange of the STM tip
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Fig.2: The simulated Cu(111) surface states with underlying FCC atomic structure can be fully
recovered by measuring a small fraction of the total Local Density of States (LDOS) (here: 20%)
which is represented on a 64x64 pixel grid. The Bragg Peaks are clearly visible and a near optimal
tip path is shown for completeness as shown by Oppliger and Natterer [2].

Random sampling and Informed sampling

* Informed sampling: sampling the regions near the scattering sites with a higher
probability than further away using a Lorentzian line shape

* Informed sampling leads to better a reconstruction probability at very low
measurement rates as shown by Oppliger and Natterer [2]

* “Inverse Informed sampling” can be used to avoid certain regions in order to minimize
and exclude the influence of effects which provoke a STM tip-instability like mask

point impurities or step-edges
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Random Sampling vs. Informed Sampling
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Fig.3: Comparison between two different
data sampling approaches on a
1024x1024 pixel grid using the technique
of general random sampling and informed
sampling by Oppliger and Natterer [2].

Conclusion / Outlook
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Fig.4. The surface state of a topological
Insulator made from SnTe at 104 mV
represented on a 1024x1024 pixel grid [4]
and Iits corresponding full QPI pattern (by
measuring 100% of the data) compared to
the sparse recovery of the same by using
only a fraction of random measurements.

» Applying compressive sensing in the field of STM quasi-particle interference
can be used to massively reduce the time needed to resolve parts of the band
structure by using the property of sparse signals and incoherent measurements

» The usage of an open Traveling Salesman path can be utilized for further

measurement time reduction

» Time saving factors of 5—-50 can be reached which means ...

v More different LDOS energies can be probed
v' Higher resolution measurements can be recorded to reveal more

details in momentum space

v Less wasted measurements since surface areas with bad artifacts
can be skipped without loosing sparse information

Compressive Sensing: sparse signal reconstruction

 Representing a signal with K << N sparse (non-zero) coefficients in a vector domain
where N represents the total signal length

 Requires incoherent m measurements with K K m < N

* {4 minimization subject to ||[Ax — b||, < o

« Random measurement matrix A € R™ N : sparse recovery for m = cK log(N/m) [1]
 Achieves sampling rates much lower than stated in the Nyquist theorem
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