The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay

Gabriela R. Araujo, Marta Babicz, Pin-Jung Chiu, Yannick Müller - Astroparticle physics group of Professor Laura Baudis

Physik-Institut, University of Zurich, laura.baudis@physik.uzh.ch

Physics goal: Search for neutrinoless double beta decay $(0\nu\beta\beta)$ with enriched high purity germanium detectors (⁷⁶Ge).

Two neutrinos emitted $(2\nu\beta\beta)$: observed SM process

 76 Ge→ 76 Se + 2e⁻ + 2 $\bar{\nu}_{e}$ (ΔL=0)

e v

Continuous broad energy spectrum

No neutrino emitted $(0\nu\beta\beta)$: physics beyond the SM

 76 Ge→ 76 Se + 2e⁻ (ΔL=+2)

Energy peak at $Q_{BB} = 2039 \text{ keV}$

Ge detectors achieve excellent energy resolutions, needed to resolve the 0νββ peak.

Physics motivation: An observation of **0vββ** would have important implications for particle physics & cosmology:

- Majorana nature of neutrinos (particle = antiparticle)
- ❖ Absolute neutrino mass scale and ordering (normal vs. inverted)
- Lepton number violation
- Hint on matter-antimatter asymmetry of the Universe

The LEGEND-200 experiment is located underground at Laboratori Nazionali del Gran Sasso (LNGS). A 1.4 km thick layer of rock reduces cosmic muons by $\mathcal{O}(10^6)$. LEGEND-200 is currently under commissioning with ~ 140 kg of 76 Ge detectors and will start physics data taking by the end of 2022. The final array will comprise ~ 200 kg of 76 Ge detectors to be ready by the end of 2023.

Background reduction: LEGEND uses multiple techniques to reject background events to clearly identify the $0\nu\beta\beta$ peak.

- ❖ ββ decay signal: single-site
- * Cosmic μ: water Cherenkov veto
- * γ: multi-site
 - ➤ LAr veto
 - ➤ Anti-coincidence
 - ➤ Pulse shape discrimination (PSD)
- Surface α and β: PSD

Sensitivity: Discovery sensitivity aim of $T_{1/2} > 10^{27}$ yr (with an exposure of 200 kg · 5 yr) of LEGEND-200 is an order of magnitude better than the current world-leading $T_{1/2}$ constraint in Ge from GERDA $T_{1/2} > 1.8 \times 10^{26}$ yr (90% C.L.).

Next: LEGEND-1000

- ❖ ~ 1 ton of enriched ⁷⁶Ge
- ❖ Goal (10 yr run time):
 - ➤ Background < 1 count
 - > Sensitivity: $T_{1/2} > 10^{28} \text{ yr}$

Photos: Enrico Sacchetti and Michael Willers

11 countries,~ 50 institutions,> 250 members

