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Z U S A M M E N FA S S U N G

Der neutrinolose Doppelbetazerfall (0νββ) ist ein nuklearer Prozess, der durch
verschiedene Erweiterungen des Standardmodells der Teilchenphysik vorherge-
sagt wird. Die Beobachtung dieses Prozesses würde beweisen, dass die Lepton-
zahl nicht erhalten ist und dass ein nichtverschwindender Majorana-Massenterm
für Neutrinos existiert. Im Fall, dass ein leichtes Neutrino ausgetauscht wird,
würde diese Beobachtung es ermöglichen, die effektive Neutrinomasse zu bestim-
men und letztendlich zwischen normaler und invertierter Massenhierarchie zu
unterscheiden.

Das “Germanium Detector Array” (Gerda) ist ein Experiment, das nach dem
0νββ-Zerfall in 76Ge sucht. Es befindet sich im Laboratori Nazionali del Gran
Sasso (LNGS) in Italien. In Gerda fungieren 18 kg auf 86% 76Ge angereicherte
high-purity Germaniumdetektoren (HPGe) gleichzeitig als Quelle, als auch als
Detektor für diesen Prozess. Diese hängen innerhalb von flüssigem Argon (LAr),
das sowohl für die Kühlung der Detektoren verwendet wird, als auch eine Abschir-
mung gegen externe Strahlung darstellt. Phase I wurde im Jahr 2013 abgeschlossen
mit einem Produkt aus Detektormasse und Messzeit von 21.6 kg·yr und einen
Background-Index BI ' 10-2 counts/(keV·kg·yr) bei 2039 keV, dem Q-Wert dieser
Reaktion (Qββ). Sie führten zu einem Limit von T0ν1/2 > 2.1 · 10

25 yr, bei 90% confi-
dence level. Für Phase II des Gerda-Experimentes wurden weitere 20 kg Broad En-
ergy Germanium Detektoren (BEGes) hergestellt und charakterisiert. Zusätzlich
wurde das LAr-Volumen mit Lichtsensoren ausgestattet, die das Szintillationslicht
von LAr detektieren sollen. Wird der angestrebte BI von 10-3 counts/(keV·kg·yr)
erreicht, dann kann Gerda mit Phase II eine mediane Sensitivität von 1.4 · 1026 yr
erreichen, bei einem Produkt aus Detektormasse und Messzeit von 100 kg·yr.

In dieser Arbeit wird eine komplette Rekonstruktion der Daten von Phase I
vorgestellt, sowie die darauf folgende erneute Auswertung. Es wurde ein neuer
digitaler Shapingfilter für die Energiebestimmung entwickelt und optimiert. Da-
durch konnte eine Verbesserung der Energieauflösung von etwa 12% bei Qββ
erreicht werden. Ausserdem wurde eine vollautomatische Energiekalibrierung er-
stellt, die auf alle Daten von Phase I angewendet wurde. Das Ergebnis dieses Ver-
fahrens wird benutzt, um die systematischen Unsicherheiten für die Energiebes-
timmung jedes einzelnen Events und der Energieauflösung bei Qββ zu bestimmen.
Zusätzlich dazu wird die Analyse des 0νββ-Zerfalls auf die reprozessierten Daten
angewendet. Dabei wurden mögliche Verbesserungen des statistischen Ansatzes
genau überprüft. Insgesamt konnte eine Verbesserung von & 5% auf die T0ν1/2-
Sensitivität erreicht werden. Letztendlich wurde dann die Optimierung über
den digitalen Filter auf die Rekonstruktion von Pulsen für die Pulse Shape Dis-
crimination angewendet. Dabei wurden Hinweise gefunden, dass sich die T0ν1/2-
Sensitivität um & 10% verbessert.

Für die Phase II von Gerda wurden vier 228Th Kalibrierungsquellen mit re-
duziertem Neutronenhintergrund hergestellt. Die γ- und Neutronenaktivität wur-
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de durch geeignete Messungen in einer Low-Background-Umgebung charakter-
isiert. Darüber hinaus wurde eine neu entwickelte Technik verwendet, um ein
mögliches Entweichen radioaktiven Materials aus der Quellenummantellung auf-
zuspüren. Dadurch wurde die Stärke der Neutronenquelle um eine Grössen-
ordnung unterdrückt im Vergleich zu kommerziell erhältlichen Quellen und die
Existenz von Lecks konnte bis zu 10 mBq ausgeschlossen.

Gleichzeitig zu den experimentellen Arbeiten für Gerda, wird eine Studie über
die Aussichten der Suche nach dem 0νββ-Zerfall vorgestellt. Für die Wahrschein-
lichkeitsverteilung der effektiven Majorana-Masse im Fall des Austausches leichter
Neutrinos wurden Zufallsereignisse der Neutrino-Mischungswinkel und der qua-
drierten Massendifferenzen erzeugt unter Berücksichtigung der kosmologischen
Grenzen auf der Summe der Neutrinomassen. Darauf beruhend wird die benötigte
Sensitivität auf T0ν1/2 für Experimente angegeben, die den 0νββ-Zerfall mit 76Ge
untersuchen.



A B S T R A C T

Neutrinoless double beta (0νββ) decay is a nuclear process predicted by several
extensions of the Standard model of particle physics. Its observation would prove
the non-conservation of total lepton number and the existence of a non-vanishing
Majorana mass term for neutrinos. In case of light neutrino exchange, it would
also provide a measurement of the effective Majorana mass and eventually allow
to disentangle between the normal and inverted neutrino mass schemes.

The Germanium Detector Array (Gerda) is an experiment for the search of 0νββ
decay in 76Ge, located at the Laboratori Nazionali del Gran Sasso (LNGS), Italy. In
Gerda, 18 kg of high-purity germanium crystals (HPGe) with ∼ 86% enrichment
in 76Ge are simultaneously operated as source and detector of the process. They
are directly inserted in liquid argon (LAr), acting as cooling medium and shielding
against external radiation. The first data collection (Phase I) was completed in 2013
with a total exposure of 21.6 kg·yr. It was characterized by a background index
BI ' 10-2 counts/(keV·kg·yr) at 2039 keV, the Q-value of the reaction (Qββ). This
led to a lower limit on the 0νββ decay half-life (T0ν1/2) of T0ν1/2 > 2.1 · 10

25 yr at 90%
confidence level. In view of Gerda Phase II, additional 20 kg of Broad Energy
Germanium (BEGe) detectors were successfully produced and characterized, and
the LAr volume was instrumented with light sensors to detect the LAr scintillation
light induced by background radiation. If the aimed BI of 10-3 counts/(keV·kg·yr)
is achieved, Gerda Phase II will reach a median sensitivity on the 0νββ decay
half-life of 1.4 · 1026 yr with an exposure of 100 kg·yr.

In this work, a complete reconstruction of the Phase I data and a re-analysis of
0νββ decay are reported. A new digital shaping filter for energy reconstruction
is developed and optimized, yielding a ∼ 12% improvement in energy resolution
at Qββ. Moreover, an automatic procedure for the energy calibration is developed
and applied to all Phase I data. The output of this procedure is used for comput-
ing the systematic uncertainty on the energy reconstruction of each single event,
as well as the energy resolution at Qββ. In addition, the 0νββ decay analysis is
applied on the reprocessed data, and possible improvements of the statistical ap-
proach, which can yield a & 5% improvement in T0ν1/2 sensitivity, are scrutinized.
Finally, the optimization of digital filters is applied to the reconstruction of current
pulses for pulse shape discrimination, and an indication for a & 10% improvement
in T0ν1/2 sensitivity is found.

In view of Gerda Phase II, four 228Th calibration sources with reduced neutron
emission rate were produced. Their γ and neutron activities were characterized
with dedicated measurements performed in low background environments, and a
newly developed technique was employed to detect possible leaks of radioactive
material from the source encapsulation. As a result, the neutron source strength
is suppressed by one order of magnitude with respect to commercially available
sources, and the presence of leaks is excluded down to a 10 mBq level.
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In parallel to the experimental work for Gerda, a study of the perspectives for
0νββ decay searches is described. The probability distribution for the effective
Majorana mass in case of light neutrino exchange is extracted through a random
sampling of the involved neutrino mixing angles and squared mass differences,
with the inclusion of the cosmological bound on the sum of neutrino masses.
Based on this study, the required discovery sensitivity on T0ν1/2 for experiments
investigating 0νββ decay in 76Ge is reported.
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1
I N T R O D U C T I O N

85 years after the postulation of neutrinos by W. Pauli and 62 years after the dis-
covery of the electron neutrino by F. Reines and C. L. Cowan Jr., neutrinos are still
a topic of major interest in particle physics. Despite the measurement of all mixing
angles and of the squared mass differences, a list of questions remains open today:
what is the absolute neutrino mass scale? Do neutrino masses follow the normal
or the inverted hierarchy scheme? Are neutrinos pure Dirac particles, or do they
have a Majorana mass component, as well? Is the total lepton number a conserved
quantity?

An answer to all – or at least some – of these questions can be given by neutri-
noless double beta (0νββ) decay. It is a nuclear process violating the total lepton
number conservation predicted by several beyond the Standard Model (BSM) the-
ories. The discovery of 0νββ decay would prove that neutrinos have a Majorana
mass component, and provide information regarding the neutrino mass hierarchy
and the absolute neutrino masses.

The Gerda experiment is searching for 0νββ decay in 76Ge. The aim of the PhD
work presented here is the enhancement of the Gerda sensitivity to a 0νββ decay
signal through the optimization of the data reconstruction algorithms. In parallel,
the production of 228Th calibration sources with reduced neutron strength is per-
formed, and the perspectives for the future of 0νββ decay search are investigated.

The thesis is structured as follows. In Ch. 2 an overview of the theoretical as-
pects of neutrino physics and 0νββ decay is given. Moreover, a phenomenological
study of the future perspectives of the experimental search is reported, and its cur-
rent status summarized. A description of the interaction processes which can be
detected by a 0νββ decay experiment, of the working principles and of the main
characteristics of germanium detectors is given in Ch. 3. The physics program,
the experimental setup and the data structure of Gerda are presented in Ch. 4,
together with the most important results of Gerda Phase I.

The main content of the thesis starts with Ch. 5, where the full analysis of cali-
bration data is described, as well as the determination of the energy resolution at
Qββ and the systematic uncertainties on the reconstructed energy of each single
event. The development of a new digital shaping filter and the consequent repro-
cessing of all Phase I data can be found in Ch. 6. In the same chapter, a re-analysis
of 0νββ decay with the reprocessed data and the sensitivity of Gerda Phase I
are reported. In Ch. 7, the optimization of digital shaping filters is applied to the
reconstruction of current pulses for pulse shape discrimination, with encouraging
results in view of Phase II.

1



2 introduction

Finally, Ch. 8 describes the production and characterization in terms of γ and
neutron activity of 4 custom 228Th calibration sources for Gerda Phase II, together
with a new procedure for testing the source capsule tightness after the deployment
in cryogenic environment.

As it can be expected, most of the introductory parts result from the comparison
between several literature sources, which are cited in the text. The original contri-
bution of the author comprises Secs. 2.4 and 8.1–8.3, Chs. 5–7, and Apps. A–D.

Part of the material presented here is already pubished in peer-reviewed jour-
nals [1, 2, 3].



2
N E U T R I N O S A N D D O U B L E B E TA D E C AY

In this chapter, a theoretical introduction to 0νββ decay and an overview on the
status of the experimental search are given. In Sec. 2.1 a historical summary of
the discoveries and open questions in neutrino physics is given. Sec. 2.2 describes
the possible neutrino mass term in the SM Lagrangian, while the theoretical de-
scription of 0νββ decay is given in Sec. 2.3. A phenomenological study of the
perspectives of 0νββ search based on the results of oscillation experiments and of
cosmological measurements is reported in Sec. 2.4. Finally, the status of the 0νββ
decay search is revised in Sec. 2.5. More details on 0νββ decay search with 76Ge
are given in Sec. 2.6.

2.1 historical overview

The strong effort in the study of neutrino properties is motivated by recursive
tensions between the results of neutrino experiments and the Standard Model
(SM) of particle physics. In order to provide a comprehensive description of the
current situation, the historical development of neutrino physics is summarized.
A large fraction of the information reported here is taken from [4].

The idea of the existence of a light neutral particle dates back to the late 19th

century. After the discovery of radioactivity by H. Becquerel in 1896, E. Rutherford
proved that the particles emitted by uranium are not X-rays, but of other two
types characterized by different penetration depths and denoted as α and β [5].
Thanks to the development of the Geiger-counters, J. Chadwick measured the
β spectrum, which turned out to be a superimposition of sharp lines over a broad
continuum [6]. If only β particles are emitted and energy is conserved, the β Ein Abdruck ihrer

Forme in γ-
Strahlenhintergrund.
Einstürzende
Neubauten,
Die Explosion im
Festspielhaus

spectrum should be characterized by one (or several) sharp lines. The explanation
of the presence of the continuum was introduced by W. Pauli in 1930 in a letter
to the “radioactive folk” in occasion of the Gauverein meeting in Tübingen [7].
Energy and momentum conservation was restored by postulating the existence
of another neutral particle emitted in β-decay. This particle, originally denoted
as “neutron”, must have spin 1/2, obey the exclusion principle,and have a mass
of order of the electron mass. In the same letter, Pauli formulated the question
regarding the possibility of measuring these neutral particles, which have a greater
penetration depths than γ rays.

In 1932, J. Chadwick discovered the neutron, and the particle postulated by
Pauli was renamed the neutrino. In the same year, W. Heisenberg published an
explanation of the stability of isobars [8]. Assuming that the isobars with the
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Figure 2.1.: Mass excess ∆ = (mA −

A) · u for isobars with mass mA and
mass number A = 76, where u is the
atomic mass unit. Even-even nuclei
are distributed on the lower curve,
odd-odd nuclei on the top one.

same mass number do not have exactly the same mass, only one of them can be
considered stable, and the others are expected to undergo subsequent β-decays
until they are transformed into it. The isobar masses are expected to lie on a
parabolic line as function of the atomic number. In truth, due to the peculiar
stability of 4He, the isobars with even mass and atomic number (even-even) lie on
a lower curve with respect to the isobars with odd atomic number. A nucleus can
go from the lower to the upper curve, or vice versa, through a β-decay. The curves
and mass distribution for the nuclei with mass number 76 are shown in Fig. 2.1.

Two years later, E. Fermi provided a theoretical description of β-decay giving
the first example of an effective field theory. In [9], the transition probability for
β-decay was computed and the concept of forbidden transition was introduced.
Moreover, Fermi pointed out that the neutrino mass can be measured by looking
at the shape of β spectrum in vicinity of its end-point.

In 1935, M. Goeppert-Mayer theorized double beta decay [10]. Taking 76Ge as
an example and with reference to Fig. 2.1, it can happen that a nucleus on the
lower curve has a smaller mass than its neighbor on the upper curve. If this is
the case, the β-decay is energetically forbidden. However, the same nucleus can
reach a more stable state through the simultaneous emission of two electrons and
two neutrinos. This process is called two-neutrino double beta decay (2νββ). The
application of the Fermi method to 2νββ decay yields a half-life estimation of
> 1017 yr.

In 1937, E. Majorana introduced a new quantization process [11] as an alter-
native to the Dirac formalism. Using a different variational principle, Majorana
reduced the “number of hypothetical entities”. The result is the absence of the
states with negative energy introduced by Dirac. In the case of neutral particles,
this is equivalent to the absence of the corresponding antiparticle.

In 1939, W. H. Furry merged the Majorana theory with the Goeppert-Mayer
description of ββ decay. In [12], neutrinoless double beta decay (0νββ) was intro-
duced, in which only two electrons are emitted. In this first treatment, a virtual
neutrino is supposed to be emitted in one of the two β-decays and re-absorbed in
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the other. Using the Fermi method for the calculation of the transition probability,
Furry claimed shorter half-lives with respect to those for 2νββ decay.

The concept of lepton number was introduced in 1953 by E. J. Konipinski and
H. M. Mahmoud for the explanation of the missing observation of them in some
decays [13]. A few years later, B. Pontecorvo suggested the use of separate lepton
numbers for electrons and muons in order to explain the non-observation of µ →
e+ γ [14].

A major milestone was the discovery of the electron anti-neutrino (ν̄e) by F. Reines
and C. L. Cowan Jr. in 1953 [15]. The experiment consisted of a Cd-loaded scin-
tillator in vicinity of a nuclear reactor. The measurement of inverse beta decay
ν̄e + p → n+ β+ is possible through the detection of both the prompt positron
signal and the delayed Cd de-excitation after the neutron absorption.

In 1958 the experiment of M. H. Goldhaber, L. Grodzins and A. W. Sunyar [16]
proved that the helicity of the electron neutrino νe is negative, exploiting the
reaction e- +152 Eu →152 Sm∗ + νe and the decay 152Sm∗ →152 Sm + γ. The
same was confirmed later for νµ [17, 18] and ντ [19, 20, 21].

The first successful accelerator neutrino experiment, performed in 1962 at the
Brookhaven National Laboratory (BNL) by L. M. Lederman, M. Schwartz, J. Stein-
berger and others, lead to the confirmation of Pontecorvo’s theory thanks to the
detection of the muon neutrino (νµ) [22]. The measurement of the charged pion
decay π± → µ± + ν(ν̄), together with the non-observation of the alternative chan-
nel π± → e± + ν(ν̄), can only be interpreted with the existence of two types of
neutrinos, denoted as νe and νµ.

A complete description of all the known particles and interactions is given in
the formulation of the SM by S. Weinberg [23] and A. Salam [24] in 1967. In the
first version of the SM, the neutrinos were considered massless, and therefore no
mixing was contemplated.

Already in 1957, the idea of neutrino oscillation was introduced by Pontecorvo [25,
26] to explain the oscillation K0 →← K0 and the claimed observation of ν̄+37 Cl→
37Ar + e- via the ν →← ν̄ oscillation of Majorana neutrinos. This is in contrast
with the conservation of helicity. A solution is given by the parametrization of the
neutrino flavor eigenstates as a mixing of the neutrino mass eigenstates [27, 28, 29].

The existence of neutrino oscillation has been proven by dozens of experiments
involving solar, atmospheric, reactor and accelerator neutrinos. The first anomaly
was the disappearance of solar νe detected by the Homestake experiment [30, 31]
and further confirmed by Kamiokande [32, 33], SAGE [34, 35], GALLEX/GNO [36,
37], Super-Kamiokande [38, 39], SNO [40, 41], Borexino [42, 43] and KamLAND [44].
Neutrino oscillations have also been measured with atmospheric neutrinos exper-
iments, e.g. IBM [45], Kamiokande [46, 47], MACRO [48, 49], MINOS [50, 51],
Soudan 2 [52, 53], Super-Kamiokande [54, 55], ANTARES [56] and IceCube [57]. A
further confirmation is provided by the reactor experiments KamLAND [58, 59],
Daya Bay [60, 61], Double Chooz [62, 63] and RENO [64], and by the accelerator
experiments K2K [65, 66], MINOS [67, 68], T2K [69, 70] and OPERA [71, 72].
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2.2 dirac and majorana neutrinos

In order to motivate the search for 0νββ decay, a short review of the current
knowledge of neutrino physics is necessary. As for the previous section, the mate-
rial presented here is taken from elsewhere, mostly from [73].

The discovery of neutrino oscillations can only be explained if neutrinos have
non-zero mass, and if the neutrino flavor eigenstates νe, νµ and ντ are a super-
imposition of the neutrino mass eigenstates νi (with i = 1, 2, 3) [74, 4]. Moreover,
there is an established experimental evidence that only left-handed neutrinos (νL)
participate in weak interaction processes. The two experimental facts are taken
into consideration writing:

νlL =

3∑
i=1

UliνiL , (2.1)

where l denotes the lepton family (e,µ, τ), and the subscript L indicates the left-
handed component of the neutrino field. The matrix U is the Pontecorvo, Maki,
Nagakawa, Sakata (PMNS) mixing matrix:

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 . (2.2)

The symbols cjk(sjk) stand for cos θjk(sin θjk). The transition probability for the
oscillation νl → νl ′ is:

P(νl → νl ′) = δll ′ − 4
∑
i>k

<
[
U∗liUl ′iUlkU

∗
l ′k

]
sin2

(
∆m2kiB

4E

)

+ 2
∑
i>k

=
[
U∗liUl ′iUlkU

∗
l ′k

]
sin
(
∆m2kiB

2E

)
, (2.3)

where ∆m2ki = m2i −m
2
k, E is the neutrino energy, and B is the baseline of the

experiment, i.e. the distance between the neutrino source and the detector. If the
PMNS matrix is complex (U 6= U∗), the imaginary part of Eq 2.3 changes under
the substitution U ↔ U∗. This means that P(νl → νl ′) 6= P(ν̄l → ν̄l ′). In other
words, if δ 6= {0,π} CP is violated. For this reason, δ is denoted as the CP-violating
phase.

If right-handed neutrinos (νR) are SM particles, the standard Higgs mechanism
can generate the neutrino masses with a Yukawa interaction. Denoting the di-
mensionless Yukawa coupling constants with Yl ′l, the neutrino mass term in the
extended SM Lagrangian is:

LYI = −
√
2
∑
l ′l

Ll ′LYl ′lνlRφ̃+ h.c., (2.4)

where L is the lepton doublet, and φ is the Higgs doublet:

LlL =

(
νlL
lL

)
, φ =

(
φ(+)

φ(−)

)
, (2.5)
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with φ̃ = iσ2φ
∗, where σ2 is the second Pauli matrix. After spontaneous symme-

try breaking:

φ̃ =
1√
2

(
v+H

0

)
, (2.6)

Here H is the physical Higgs boson field and v ∼ 246 GeV its vacuum expectation
value. Plugging Eq. 2.6 in Eq. 2.4 we obtain the Dirac mass term:

LD = −
∑
l ′l

νl ′LM
D
l ′lνlR + h.c., (2.7)

where MD
l ′l = vYl ′l. The Dirac neutrino masses can be obtained by diagonalizing

the matrix Y, which yields:
mi = vyi . (2.8)

From oscillation experiments we know that the mass of the heaviest neutrino is
. 10-1 eV [75], hence yi . 4 · 10-13. This value is at least 10 order of magnitude
smaller than the corresponding Yukawa couplings for charged leptons.

At this point the neutrino masses are included in the SM and the neutrino oscil-
lations explained. What is not explained is the presence of right-handed particles In realtà questo

materiale era ben
poco: radiazioni
fotoelettriche,
limatura di campi
magnetici, qualche
neutrino perduto per
via; ma a furia
d’appallottolare e
umettare di saliva
riuscivo a far stare
tutto insieme.
I. Calvino,
Le Cosmicomiche

which are sterile, i.e. they do not participate in SM interactions, and the smallness
of the Yukawa coupling constant for neutrinos.

In the Majorana framework [11] the right-handed neutrinos are parametrized as
a function of the left-handed. We can require the the right-handed neutrino field
to be equal to the charge conjugated of the left-handed (Majorana condition):

νlR = CνlL
T = νClL , (2.9)

where C is the charge conjugation operator:

CγTαC
-1 = −γα, CT = −C , (2.10)

and γα(α = 0, · · · , 3) are the Dirac matrices. The Majorana neutrino field is:

νl = νlL + νlR = νlL + ν
C
lL , (2.11)

and its charge conjugate is:

νCl =
(
νlL + ν

C
lL

)C
= νClL + νlL = νl , (2.12)

This means that the Majorana neutrino is its own anti-particle, with no electric
charge and no lepton number.

Using Eq. 2.9, a lepton number violating Majorana mass term can be written as:

LM = −
1

2

∑
l ′l

νl ′LMl ′lν
C
lL + h.c., (2.13)

in which the matrix M can be diagonalized with the unitary PMNS matrix U:

M = UmUT , (2.14)

This leads to:

LM = −
1

2

3∑
i=1

miν̄iνi , (2.15)

where νi are the neutrino mass eigenstates mentioned above. The question emerg-
ing at this point is which mechanism can generate the Majorana mass term of
Eq. 2.13.
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2.2.1 Seesaw Mechanism

In the SM the renormalizability requires that all terms in the Lagrangian have
dimension 4. Under this condition, it is not possible to write a term which violates
the total lepton number. A possible trick is to write a non-renormalizable term
with higher dimensionality which is suppressed at low energy. This term must be
BSM. A possibility is to use an effective Lagrangian:

Leff = −
1

Λ

∑
l ′l

Ll ′Lφ̃Ỹl ′lφ̃
tLClL + h.c., (2.16)

where Λ � v is the energy scale at which the total lepton number is violated.
Proceeding as for the Higgs-generated neutrino mass (Eqs. 2.4, 2.6 and 2.8), after
spontaneous symmetry breaking the neutrino masses are given by:

mi =
v2

Λ
ȳi . (2.17)

Assuming mi = 10-1 eV, ȳi ∼ 1 and with g ∼ 246 GeV, the high energy scale
is Λ ∼ 1015 GeV. This means that the electron masses are suppressed by the ratio
between the electroweak scale g and the BSM scale Λ. Such a suppression is called
the “seesaw mechanism”.

Several implementations of a mechanism for the generation of the neutrino
masses are given in literature. In the “Type I” seesaw [76, 77, 78], the existence
of right-handed Majorana neutrino fields is postulated in the framework of grand
unification theories (GUT) additionally to the three light neutrino masses, which
are also of Majorana type. The model is based on the assumptions that the Dirac
mass term is generated by the usual Higgs mechanism, that no left-handed Majo-
rana mass term enters the Lagrangian, and that the right-handed Majorana mass
is much larger than the Dirac mass term, such that the lepton number violation
takes place only at high energy. In the “Type II” seesaw [78, 79], a small but non-
zero left-handed Majorana mass is present, generated by a scalar Higgs triplet.
A further possibility is the “Type III” seesaw mechanism [80, 81], in which two
fermion triplets are introduced.

2.3 neutrinoless double beta decay

The Feynman diagrams for 2νββ and 0νββ decays are depicted in Fig:2.2. In
2νββ decay, the final state consists of two electrons and two anti-neutrinos. The
derivation of the decay rate of the processes from the interaction Lagrangian is
out of the scope of the present document. For 2νββ decay, the calculation is given
in [82], while for 0νββ decay it is available in [73].

The 2νββ decay is a SM process of second order in the Fermi constant GF [82,
83]. Its half-life can be expressed as [83]:

1

T2ν
1/2

= G2νg
4
A|mec

2M2ν|
2 , (2.18)

where G2ν is the phase space integral, gA is the axial vector coupling constant,
me is the electron mass, and M2ν is the nuclear matrix element.
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Figure 2.2.: Feynman diagrams for 2νββ decay (left) and 0νββ decay (right)
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Figure 2.3.: Schechter-Valle theorem.

On the contrary, 0νββ decay is a non SM process which involves total lepton
number violation by two units. The final state in this case consists of only two elec-
trons. Independent from the mechanism inducing it, the observation of 0νββ de-
cay would prove the existence of BSM physics, the non-conservation of total lepton
number at high energy scale, and that neutrinos have a Majorana mass component.
While the first two points have already been discussed, the third needs some fur-
ther explanation. So far it was only shown how the presence of massive Majorana
neutrinos would involve the existence of 0νββ decay1. On the other hand, we can
ask whether the experimental observation of 0νββ decay proves the existence of
massive Majorana neutrinos. A possible answer comes from the Schechter-Valle
theorem [84]. As depicted in Fig. 2.3, the external lines of the quarks and elec-
trons involved in 0νββ decay can be connected via SM weak interaction, yielding
a ν̄e → νe transition. The black box represents radiative corrections at four-loop
level. It can be proven [4] that no global symmetry is possible which forbids a Ma-
jorana mass term for the electron neutrino. Hence, a cancellation of this black box
contribution is possible only with a fine tuning of all involved masses and mixing
angles at all orders, which is very unlikely. For a long time the Schechter-Valle
theorem was exploited to justify the search for 0νββ decay. Recently, a detailed
calculation [85] proved that the contribution to the Majorana mass term of the
electron neutrino mass provided by these radiative corrections is of O(10-24) eV.
This is many orders of magnitude smaller than the value of the electron neutrino
mass expected from the combination of the measured mass splittings and mixing

1 In truth a very small or even vanishing decay rate is possible in case of fine tuning of the involved
parameters (see Sec. 2.4).
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angles. This implies that other Majorana and/or Dirac mass terms must exist in
order to explain the known mass splittings and mixing angles.

The simplest mechanism for the generation of 0νββ decay is light neutrino ex-
change. Other possible mechanisms would involve the existence of new particles
or interactions not described by the SM, and are not considered here. For 0νββ
decay and with light neutrino exchange only the half-life is:

1

T0ν
1/2

= G0ν(Qββ,Z)g4A
∣∣M0ν

∣∣2 |mββ|2
m2e

, (2.19)

where the dependence of the phase space integral on the Q-value of 0νββ decay
(Qββ) and on the atomic number Z is highlighted. The quantity |mββ| is the
effective Majorana mass, and contains BSM physics. For a fixed effective mass,
greater values of the phase space integral and NME correspond to a shorter 0νββ
decay half-life and, consequently, to a greater specific activity.

If a higher Qββ would in principle allow for a greater phase space integral,
the Coulomb potential of the daughter nucleus would play a strong role in the
calculation [83]. The value of G0ν(Qββ,Z) is around 10-15-10-14 yr-1, depending
on the isotope.

The calculation of
∣∣M0ν

∣∣ is usually the bottleneck for the extraction of |mββ|

from Eq. 2.19. Despite a strong effort, different nuclear models yield
∣∣M0ν

∣∣ values
which can vary by more than a factor two. A compilation of possible estimations
for the most investigated ββ emitting isotopes is given in [86].

The phase space integrals and NMEs for light neutrino exchange of the isotopes
most commonly employed for 0νββ decay search are reported in Tab. 2.3.

The estimation of gA is an even more delicate topic. As pointed out in [87], typi-
cally the value of gA for the free neutron is used. In literature, this ranges between
1.25 and 1.27. A problem arises from the comparison between the predicted and
measured 2νββ decay half-lives of several isotopes, which is given by:

1

T2ν
1/2

= G2νg4A
∣∣M2ν

∣∣2 . (2.20)

The experimental values of T2ν1/2 are systematically smaller than the estimated ones.
A possible explanation is the “quenching” of gA induced by either some limitation
in the calculation, or by the omission of non-nucleonic degrees of freedom [87].
The quenching of gA is related to the mass number A via the formula:

gA,eff = gA ·Aγ , (2.21)

where γ depends on the model used for the NME calculation and varies between
−0.12 and −0.18. For a free neutron (A = 1), the effective coupling constant
equals gA. Going back to the case of 0νββ decay, we can ask if the value of gA is
quenched in the same way as for 2νββ decay or not. So far, no commonly shared
answer exists, and the question is a matter of debate. Given this ambiguity, the
effect of the quenching of gA is not considered here, and only unquenched values
are used.
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2.4 effective majorana mass

The parameter of interest in 0νββ decay search is the effective Majorana mass. It
is a combination of the neutrino mass eigenstates and the neutrino mixing matrix
terms. Under the hypothesis that only the known three light neutrinos participate
in the process, the effective mass is given by:

|mββ| =

∣∣∣∣∣
3∑
i=1

U2eimi

∣∣∣∣∣ , (2.22)

where U is the PMNS mixing matrix multiplied by the matrix containing the two
Majorana phases α and β:

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13


×

1 0 0

0 eiα 0

0 0 eiβ

 . (2.23)

The symbols cjk(sjk) stand for cos θjk(sin θjk). While all the mixing angles θ12,
θ13 and θ23 are known with good precision, only hints are available for the Dirac
CP-violating phase δ. No knowledge at all is available for the Majorana phases α
and β. Expanding Eq. 2.22, we obtain:

|mββ| =
∣∣c212c213m1 + s212c213m2eiα + s213m3e

iβ
∣∣ =

=
∣∣(c212c213m1 + s212c213m2 cosα+ s213m3 cosβ

)
+

+ i
(
s212c

2
13m2 sinα+ s213m3 sinβ

)∣∣ , (2.24)

where the substitutions 2α(β)→ α(β) and (−δ+ β) → β are applied, exploiting
our complete ignorance on the values of α and β. Following the definition of the
absolute value for complex numbers:

|mββ| =

√(
c212c

2
13m1 + s

2
12c

2
13m2 cosα+ s213m3 cosβ

)2
+

+
(
s212c

2
13m2 sinα+ s213m3 sinβ

)2 . (2.25)

The parameters involved are:

– the angles θ12 and θ13, measured with good precision by the solar and short-
baseline reactor neutrino experiments, respectively;

– the neutrino mass eigenstates m1, m2 and m3, which are related to the solar
and atmospheric squared mass differences δm2☼ and ∆m2atm:

δm2☼ = ∆m212 ,

∆m2atm =
1

2

∣∣∆m231 +∆m232∣∣ . (2.26)
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These are known with ∼ 3% uncertainty thanks to the oscillation experi-
ments [75]. The mass eigenstates are also related to the total neutrino mass:

Σ =

3∑
i=1

mi , (2.27)

for which several upper limits of about 0.1–0.2 eV are set by cosmological
observations [88, 89, 90];

– the two Majorana phases α and β, for which no experimental information is
available.

The relation between the mass eigenstates and the squared mass differences
given in Eq. 2.26 allows two possible orderings of the neutrino masses. A first
scheme, denoted as Normal Hierarchy (NH), corresponds to:

m1 = mmin ,

m2 =
√
m2min + δm2☼ ,

m3 =

√
m2min +∆m2atm +

δm2☼
2

, (2.28)

where mmin is the mass of the lightest neutrino. The so-called Inverted Hierarchy
(IH) is given by:

m1 =

√
m2min +∆m2atm −

δm2☼
2

,

m2 =

√
m2min +∆m2atm +

δm2☼
2

,

m3 = mmin . (2.29)

Present data show no clear preference for either of the two schemes.
The effective mass can be expressed as a function of the lightest neutrino mass,

as first introduced in [92]. This is normally done via a χ2 analysis [91], where
the uncertainties on the oscillation angles θ12 and θ13, and on the squared mass
differences δm2☼ and ∆m2atm are propagated, while the values of the Majorana
phases leading to the largest and smallest |mββ| are considered. As a result, the
1σ, 2σ and 3σ allowed regions are shown (Fig. 2.4), but no clear information about
the relative probability of different |mββ| values for a fixed mmin is provided.
This can become of dramatic importance in case near-term experiments prove that
nature chose the NH regime. With reference to Fig. 2.4, in NH the effective mass
is distributed within a flat area between ∼ 10-3 eV and ∼ 5 · 10-3 eV if mmin <
10-3 eV, while it can vanish for mmin ∈ [10-3; 10-2] eV due to the combination of
the Majorana phases. The case of a vanishing |mββ| is possible only for a smaller
subset of values of the Majorana phases than the entire [0; 2π] range. This does not
necessarily mean that a vanishing effective mass implies that the theory suffers
from a dangerous fine-tuning. Namely, in some models the effective mass can
assume a naturally small value that remains small after renormalization due to
the chiral symmetry of fermions [93, 94].
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Figure 2.4.: Effective
mass |mββ| as a func-
tion of the lightest
neutrino mass for the
NH case. The figure is
taken from [91].

Without giving a preference to any model, we can ask what is the distribution
probability for |mββ| given a fixed value of mmin. Moreover, we can ask which
is the probability for the NH case of having |mββ| < 10-3 eV given the present
knowledge (or ignorance) of the various parameters involved. An answer is ob-
tained using a toy Monte Carlo (MC) approach, where a random number is sam-
pled for each parameter according to its (un)known measured value, and |mββ| is
computed for each trial.

The values for the experimentally measured parameters are taken from Tab. 3

of [75]. In case the upper and lower uncertainties on some parameter are different,
the random sampling is performed using a Gaussian distribution with the mean
given by the best fit of [75] and σ taken as the greater among the upper and lower
uncertainties. These values are reported in Tab. 2.1. The effect of this conservative
choice on the estimated allowed regions for |mββ| vs mmin is small, and the
message of this study is not changed. Similarly, the use of a more recent and
precise value for θ13 does not significantly affect the result.

The choice not to prefer any model is reflected on the distribution assigned to
the Majorana phases. Assuming a complete ignorance on α and β, their values
are sampled from a flat distribution in the [0; 2π] range.

In order to keep the bi-logarithmic scale normally used in literature but with
the aim of maintaining the same normalization over all the considered area, a two-
dimensional histogram with increasing bin size is exploited. In particular, the bin
width ∆i is given by ∆i = k∆i-1 with k > 1, for both the x and the y directions.
For each bin of the x-axis, 106 random parameter combinations are used to cal-
culate the probability distribution for |mββ|, leading to the plot shown in Fig. 2.5.
The different color levels correspond to the 1, 2, . . . , 5σ coverage regions. The sen-
sitivity of current experiments, at the 10-1 eV level, is reported, together with the
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Figure 2.5.: Effective Majorana mass as a function of the lightest neutrino mass.
The top band corresponds to the IH regime, the bottom to NH. The different
colors correspond to the 1, . . . , 5 σ coverage regions.
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Figure 2.6.: Probability for |mββ| < 10-3 eV in the NH regime.
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Table 2.1.: Parameters for the evaluation of the effective Majorana mass. The val-
ues are taken from [75].

Parameter Value

δm2sol (7.54± 0.26) · 10-5 eV2

∆m2atm (NH) (2.43± 0.06) · 10-3 eV2

∆m2atm (IH) (2.38± 0.06) · 10-3 eV2

s212 (3.08± 0.17) · 10-1
s213 (NH) (2.34± 0.20) · 10-2
s213 (NH) (2.40± 0.22) · 10-2

sensitivity of an hypothetical ton-scale experiment and the ultimate sensitivity of
a 100 ton-scale setup with the assumption of zero background.

Looking at the |mββ| population for both the IH and NH, high values of |mββ|
are favored for all values of mmin. This can have a strong impact on the perspec-
tives of 0νββ decay search in the next decades. For the NH case, the probability of
having |mββ| < 10

-3 eV is reported in Fig. 2.6. Even for the most unfortunate case
of mmin ∼ 3–4 · 10-3 eV, given the present knowledge of the oscillation parameters,
we have at least 93% probability of detecting a 0νββ decay signal if an experiment
with 10-3 eV discovery sensitivity on |mββ| is available. Such a sensitivity would
involve the realization of an experiment with ∼ 100 ton active mass operating in
zero-background condition (see Sec. 2.5). If this is presently hard to imagine, some
case studies are already published on the topic. On the other hand, an experiment
with 10-5 eV sensitivity would most probably be out of reach because it would
involve the deployment of & 106 ton of active material.

One can ask which values of the Majorana phases are needed in order to obtain
|mββ| < 10-3 eV. This is shown in Fig. 2.7: small values of the effective mass
are only possible if α and β differ by a value ∼ π. With reference to Eq. 2.25,
neglecting for the moment the term c212c

2
13m1 and supposing all other terms have

the same amplitude, |mββ| approaches zero only if both the pairs (sinα, sinβ)
and (cosα, cosβ) have opposite signs. The condition is satisfied only if α and β
belong to opposite quadrants. In the real case, the major difference is that |mββ|
can become small for mmin ∈ [10-3; 10-2] eV, instead of at zero, but the required
correlation between the Majorana phases is unchanged. Hence, our result shows
that in the type of models mentioned above [93, 94], the Majorana phases are
closely correlated.

One remark has to be made regarding the sparsely populated region for α ∈
[π/2; 3π/2] and β ∼ π of Fig. 2.7. These points correspond to those in the region
with mmin < 10-3 eV and |mββ| < 10-3 eV of Fig. 2.5, or in other words to
the bottom left part of the horizontal NH band. Hence, they can be considered
a spurious contamination coming from the choice of selecting the events with
mmin < 10

-3 eV.
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Figure 2.7.: Majorana phases α and β for |mββ| < 10
-3 eV in the NH regime. The

different colors correspond to the 1, . . . , 4 σ coverage regions.

2.4.1 How Does Cosmology Affect 0νββ Decay Search?

In the analysis presented so far the effective mass depends on the three free pa-
rameters: the mass of the lightest neutrino and the two Majorana phases. The
latter are considered as nuisance parameters with uniform distribution, and the
probability distribution for |mββ| as a function of mmin is obtained.

Several cosmological measurements put upper bounds on the sum of neutrino
masses, Σ. These limits are typically around 0.1–0.2 eV, depending on the con-
sidered data sets. Recently, a combined analysis of the Planck 2013 data and
several Lyman-α forest data sets lead to a Gaussian probability distribution with
Σ = (22± 62) · 10-3 eV [89, 90]. The corresponding 95% CL limit is Σ < 0.146 eV.
The distribution was already used in [90] to extract the allowed range for |mββ|

as a function of Σ. In that case, the allowed regions for NH and IH are weighted
with the cosmological bound on Σ, and it is pointed out that the allowed region
for IH is strongly reduced.

The study can be extended including the cosmological bound following a dif-
ferent approach than that used in [90]. Considering Eqs. 2.27, 2.28, and 2.29, the
three parameters m1, m2 and m3 depend on δm2☼, ∆m2atm and Σ, for all of which
a measurement is available. Hence, a random sampling is performed on δm2☼,
∆m2atm and Σ, and the values of the mass eigenstates are extracted numerically
after solving the system of Eqs. 2.27, 2.28 for NH, and 2.27, 2.28 for IH. If we con-



2.4 effective majorana mass 17

sider the NH case and given the measured values of the squared mass differences,
Eq. 2.28 states that the minimum value of Σ is:

ΣNHmin =
√
δm2☼ +

√
∆m2atm +

δm2☼
2
' 0.058 eV , (2.30)

where mmin has been set to zero. Similarly, for NH:

ΣIHmin =

√
∆m2atm −

δm2☼
2

+

√
∆m2atm +

δm2☼
2
' 0.098 eV . (2.31)

The combination of the cosmological bound with the measurements of δm2☼ and
∆m2atm will therefore induce a probability distribution for Σ with a sharp rise at
about 0.058 (0.098) eV and a long high-energy tail for the NH (IH) regime.

The probability distributions for |mββ| as a function of Σ in the NH and IH
cases are shown in Figs. 2.8 and 2.9, respectively. In total, 108 points are sampled.
The thresholds on Σ correspond to the lower bounds mentioned above, while the
shading for Σ > 10-1 eV comes from the Gaussian distribution obtained from
the cosmological data. In NH case, the vertical shading for Σ ∈ [6; 7] · 10-2 eV and
|mββ| < 10

-3 eV is related to the combination of the Majorana phases, as explained
in Sec. 2.4.

It is worth mentioning that the approach used here does not allow any statement
regarding the overall probability of the NH with respect to the IH regime. The
plots are populated by generating random numbers for δm2☼, ∆m2atm and Σ. If
Σ > Σmin, with Σmin given by Eqs. 2.30 and 2.31, the three values are accepted
and |mββ| is computed, otherwise another random number is extracted for Σ until
the condition is satisfied. In this way, Figs. 2.8 and 2.9 are equally populated, and
give no hint about the probability that nature chose either of the two regimes.

The plot of |mββ| as a function of mmin with the application of the cosmo-
logical bound is shown in Fig. 2.10. Differently from Fig. 2.5, it provides not
only the probability distribution for |mββ| as a function of mmin, but also the
2-dimensional probability distribution for both the parameters together. The main
difference with respect to Fig. 2.5 are the shadings for mmin ∈ [5 · 10-2; 10-1] eV,
and for mmin . 7 · 10-3 eV. Both effects are due to the cosmological bound on
Σ. Choosing arbitrarily different values for both the mean value and width for
the Gaussian distribution of the total neutrino mass leads to different shadings on
both sides, and induces the highly populated region around mmin ∼ 3 · 10-2 eV to
move. In particular, a looser bound on σ would favor the degenerate mass region,
while a tighter limit would favor smaller values of mmin, as expected, with strong
consequences for the expected |mββ|. With the present assumptions, values of
|mββ| close to the degenerate region are favored.

With an eye on the future experiments, the probability distribution for |mββ|

can be obtained only by marginalizing the 2-dimensional distribution in Fig. 2.10

over mmin. This is performed separately for three ranges of the lightest neutrino
mass: mmin ∈ [10-4; 10-3] eV, mmin ∈ [10-3; 10-2] eV and mmin ∈ [10-2; 10-1] eV,
as shown in Figs. 2.11, 2.12 and 2.13. In case of a small mmin (Fig. 2.11) the 90%
coverage is obtained for |mββ| > 1.54 · 10-3 eV and |mββ| > 1.96 · 10-2 eV for NH
and IH, respectively. In general, for IH high values of |mββ| are favored. The
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Figure 2.8.: Effective Majorana mass as a function of the sum of neutrino masses
for the NH regime with the application of the cosmological bound. The different
colors correspond to the 1, . . . , 5 σ coverage regions.
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Figure 2.9.: Effective Majorana mass as a function of the sum of neutrino masses
for the IH regime with the application of the cosmological bound. The different
colors correspond to the 1, . . . , 5 σ coverage regions.
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Figure 2.10.: Effective Majorana mass as a function of the lightest neutrino mass
with the application of the cosmological bound. The different colors correspond
to the 1, . . . , 5 σ coverage regions.

90% coverage on |mββ| for the three considered ranges are reported in Tab. 2.2,
together with that of the overall range mmin ∈ [10-4; 1] eV. This case shows that
a 3.32 · 10-3 eV discovery sensitivity is required for future experiments in order to
have 90% probability to measure a 0νββ decay signal in case of NH, and 2.14 ·
10-2 eV for IH.

The strong dependence of the result on both the choice of the Majorana phases
distribution and on the cosmological bound should invoke some caution in the
interpretation of Figs. 2.10–2.13 as the correct probability distributions for |mββ|. It
is rather important to highlight the fact that it is in principle possible, making some
arbitrary assumption on the Majorana phases and provided a reliable cosmological
limit on the total neutrino mass, to extract a probability distribution for |mββ|. A

Table 2.2.: 90% coverage on |mββ| for NH and IH and different ranges of mmin.

|mββ| 90% coverage [eV]
mmin [eV] NH IH

[10-4, 10-3] > 1.54 · 10-3 > 1.96 · 10-2
[10-3, 10-2] > 1.68 · 10-3 > 1.96 · 10-2
[10-2, 10-1] > 7.16 · 10-3 > 2.20 · 10-2

[10-4, 1] > 3.32 · 10-3 > 2.14 · 10-2
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Figure 2.11.: Probability distribution for |mββ| with mmin ∈ [10-4, 10-3] eV. The
darker regions correspond to the 90% coverage on |mββ|.
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Figure 2.12.: Probability distribution for |mββ| with mmin ∈ [10-3, 10-2] eV. The
darker regions correspond to the 90% coverage on |mββ|.
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Figure 2.13.: Probability distribution for |mββ| with mmin ∈ [10-2, 10-1] eV. The
darker regions correspond to the 90% coverage on |mββ|.

higher precision of the cosmological measurement, e.g. by EUCLID [95, 96], would
strongly improve the reliability of a prediction on |mββ|.

As a last step it is worth mentioning what is the required sensitivity on T0ν1/2 in
order to cover the IH or the NH region using 76Ge, which is the ββ decaying iso-
tope under investigation in the Gerda experiment. The probability distributions
for T0ν1/2 as a function of mmin with the application of the cosmological bound
is shown in Fig. 2.14. The contour lines correspond to the 1, 2, . . . , 5 σ coverage
regions. The distributions have been extracted from that of |mββ| with the appli-
cation of Eq. 2.19. The values for the phase space integral are taken from [83], and
the NME from [86], as reported in Tab. 2.3. Given the big span between differ-
ent NME estimations, the largest and the smallest NME reported in [86] are used.
These correspond to the blue and red distributions in Figs 2.14. The IH band for
the optimal NME starts at 6–7 · 1027 yr. Assuming IH and considering the worst
case NME scenario, an experiment aiming to measure 0νββ decay needs a sensi-
tivity on T0ν1/2 of ∼ 4 · 1028 yr. Assuming NH and an effective mass of 10-3 eV, a
76Ge based experiment would need a sensitivity of ∼ 6 · 1030 yr.

One remark can be made with respect to the debated Klapdor-Kleingrothaus
claim of 0νββ decay observation in 76Ge [97] (see Sec. 2.6). In Fig. 2.14 the 5 σ
coverage region for the largest NME (blue curves) does not extend below 1026 yr.
This is in very strong tension with the published 99.73% CL interval for the 0νββ
decay half-life, T0ν1/2 = (0.69− 4.18) · 1025 yr [97]. In other words, assuming that
only the standard three light neutrinos participate to 0νββ decay and using the
largest NME and an unquenched gA, a > 5 σ disagreement is present between the
cosmological bound and the Klapdor-Kleingrothaus claim.
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Figure 2.14.: 0νββ decay half-life for 76Ge as a function of the lightest neutrino
mass with the application of the cosmological bound. The blue regions are ob-
tained with |M0ν| = 5.16, the red curves with |M0ν| = 2.81. The different color
shadings correspond to the 1, . . . , 5 σ coverage regions.

All the information described in this section is available also in [1].

2.5 double beta decay search

The final state of 0νββ decay consists of the daughter nucleus and two emitted
electrons. Given the O(104) difference between the nucleus and the electron mass,
the nuclear recoil can be safely neglected in all calculations. Hence, the two elec-
trons share all the available energy, which is equal to the Q-value of the reaction
(Qββ). Most of the ββ emitting isotopes have a Qββ of ∼ 2–4 MeV. For high-Z
elements, the range of an electron with O(1) MeV kinetic energy is a few mm
in liquid or solid, and some cm in gas. While gaseous detectors can distinguish
the trajectories of the two emitted electrons, this is usually not possible for exper-
iments based on liquid or solid targets. In this case the sum of the two electron
energies is detected, and the 0νββ decay signature is a peak at Qββ.
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Figure 2.15.: Theoretical spectra for
2νββ and 0νββ decays with 1.5%
energy resolution (FWHM), corre-
sponding to a factor 10 worse than
what is achievable with germanium
detectors. The relative normalization
of the two is for illustrative purpose
only.

In the case of 2νββ decay the final state consists of two electrons and two anti-
neutrinos. The summed electrons energy is therefore a continuum ranging from
zero to Qββ, described by [98]:

F(E) =
(
E4 + 10E3 + 40E2 + 60E+ 30

)
· E · (Qββ − E)5 . (2.32)

The experimental signatures of 0νββ and 2νββ decays are shown in Fig. 2.15.
In order to maximize the detection efficiency and the sensitivity to a potential

0νββ decay signal, the detectors are typically built with material containing the
ββ emitting isotope. For some isotopes an enrichment is possible, leading to an
increase of one order of magnitude in the fraction of the considered isotope.

The number of decays nd taking place during a measurement time t is:

nd = N0

(
1− exp

(
−

ln 2
T0ν
1/2

t

))
' N0

ln 2
T0ν
1/2

t , (2.33)

where N0 is the initial number of 0νββ decay emitting isotopes. The exponential
has been expanded in Taylor series due to the very small ratio t/T0ν1/2 < 10

-20.
The initial number of isotopes in a given mass m of material with enrichment

fraction fenr is:

N0 =
NA
ma

fenrm , (2.34)

where NA is the Avogadro number and ma is the atomic mass of the considered
isotope. The number of detected signal events ns depends on the active volume
fraction of the detector, fAV , and on the total detection efficiency ε:

ns = nd · fAV · ε =
1

T0ν
1/2

NA ln 2
ma

fenr · fAV · ε ·mt . (2.35)

Hence, a higher number of signal events is obtained by maximizing the exposure
mt, the enrichment and active volume fraction, and the total efficiency, which
includes the detection efficiency for 0νββ decay events and that of the event selec-
tion algorithms.

Typically the 0νββ decay search is performed by counting the events or fitting
the energy spectrum in a region of interest (ROI) of width ∆E around Qββ. The
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cosmic radiation and radioactive contamination of the experimental setup can in-
duce a number of background events nb in the ROI. nb is proportional to ∆E and
to the exposure, and can be written as:

nb = BI ·∆E ·mt , (2.36)

where BI, the background index, represents the average background level in the
ROI, expressed in counts/(keV·kg·yr).

In order to maximize the sensitivity, the BI has to be minimized. One possibil-
ity is to apply pulse shape discrimination (PSD). Neglecting the bremsstrahlung,
0νββ decay like events release energy in a limited fraction of the detector volume,
and are denoted as single site events (SSE). On the other hand, γ’s can undergo
multiple Compton scattering within the detector volume, inducing a multi site
event (MSE). For several detector technologies an event selection is possible thanks
to the different properties of the signal traces recorded for SSE and MSE. If PSD is
applied, the number of signal and background events will be modified into:

ns → εSSEpsdns ,

nb → εMSEpsd nb , (2.37)

where εSSEpsd and εMSEpsd are the survival probabilities of SSE and MSE events, re-
spectively.

Another ingredient in the improvement of sensitivity is energy resolution. With
no loss of generality, we can consider a Gaussian distribution for the potential
0νββ decay signal, and a flat background distribution around Qββ. Both in case
of events counting or spectral fitting, the choice of ∆E depends on the width of
the expected signal distribution. This is normally quantified as the full width at
half maximum (FWHM) of the Gaussian distribution. A higher energy resolution
allows the ROI width ∆E to be reduced, increasing the signal to background ratio.

To summarize, the number of signal and background events in the ROI is:

ns =
1

T0ν
1/2

NA ln 2
ma

fenr · fAV · εγ · εSSEpsd ·mt ,

nb = BI ·∆E ·mt , (2.38)

where εγ is the detection efficiency of 0νββ decay events, and where the substitu-
tion εMSEpsd BI→ BI has been applied for simplicity.

A possible expression of the sensitivity on T0ν1/2 is obtained computing the half-
life required to collect a number of signal events equal to the uncertainty on the
number of background events. Given the Poisson distribution of nb, we can set
ns =

√
nb:

1

T0ν
1/2

NA ln 2
ma

fenr · fAV · εγ · εSSEpsd ·mt =
√
BI ·∆E ·mt . (2.39)

Hence:

T0ν1/2 =
NA ln 2
ma

fenr · fAV · εγ · εSSEpsd

√
mt

BI ·∆E
. (2.40)
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Typically, 0νββ decay experiments are operated in quasi background-free mode:
the measurements are planned to last until the sensitivity curves becomes back-
ground dominated. At this point a new experiment with higher mass and lower
background should then be started. It is worth mentioning how the T0ν1/2 sensi-
tivity is proportional to the square root of the exposure divided by the BI. Fur-
thermore, the sensitivity on |mββ| is proportional to 1/

√
T0ν
1/2

. Therefore, a good
improvement in sensitivity is achievable only in correspondence of both a mass
increase and a background reduction.

2.5.1 State of the Art in Double Beta Decay Search

The presence of several parameters connected to the isotope and detector proper-
ties in Eqs. 2.38 allows a great field of play for 0νββ decay search. A list of the
most commonly investigated isotopes is reported in Tab. 2.3. The most important
criteria for the isotope choice are listed below.

– Natural abundance, possibility of enrichment at (relatively) limited cost, and
good availability on the market. On this perspective, 76Ge and 136Xe are
the favorite, given their established enrichment techniques, while 130Te has
already a high enough natural abundance (34%).

– A Qββ higher than the end-point of environmental radioactivity background
is desirable. In most cases, the typical radioactive contaminants do not emit
γ’s above the 2615 keV line of 208Tl, and the background spectrum drops by
at least one order of magnitude above this energy. In this sense, 48Ca, 82Se,
96Zr, 100Mo, 226Cd and 150Nd are preferable. A major disadvantage of 48Ca
is given by the very low abundance (∼ 0.2%), which makes its use very hard.

– Value of the product G0ν|M0ν|2. In the worst cases (76Ge, 48Ca) this is
∼ 5 · 10-14 yr-1, while for 100Mo and 150Nd if goes up to ∼ 4 · 10-13 yr-1.

– Possibility to obtain a detector out of the isotope undergoing ββ decay.
This is the case, e.g., of 76Ge enriched diodes, TeO2 bolometers, liquid- or
high-pressure-Xe time projection chambers, and Xe-loaded liquid scintilla-
tors. The reason why the use of coinciding detector and source is pursued is
because this maximizes the efficiency of ββ decay events detection.

– Cost and scalability of the technology to large source mass.
The choice of the isotope is strictly connected to that of the detector technology.

Also in this case several criteria are followed:
– Energy resolution. This can vary from a FWHM at Qββ of ∼ 0.15% for the

newest germanium detectors, to about 15% for xenon-loaded liquid scintilla-
tors.

– Intrinsic radio-purity of the detector material. Thanks to the big effort made
in the past decades, the intrinsic radioactive contamination of the detector
induces a much smaller background than the surrounding material. Hence,
a high detector radio-purity can be considered rather a necessary condition
than an additional feature.

– Possibility of self-shielding from external background. For example, this is
possible for germanium diodes thanks to the presence of a ∼ 0.7 mm thick
dead layer in a big fraction of the crystal surface: if an α is emitted at the
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detector surface, it will be absorbed in the dead layer without inducing a
signal. Similarly, the selection of a central active volume is possible with
time projection chambers and liquid scintillator experiments.

– Total efficiency. The optimal value is ∼ 75% obtainable with germanium
diodes.

– Scalability of the technology. From this perspective, a time projection cham-
ber or a liquid scintillator experiment are preferable to a modular experi-
ment (e.g. using germanium diodes or bolometers), however at the price of
a poorer energy resolution.

– Particle identification. The capability of distinguishing between electrons
and α’s or γ’s is a very powerful tool for background minimization. The
best performances are obtained with gaseous detectors, with the disadvan-
tage of a harder scalability due to the need of a greater volume. A partial
identification is possible also with other technologies, e.g. with germanium
detectors. It is anyway worth mentioning that, in case a 0νββ decay signal
evidence is claimed, a clear confirmation can only come from an experiment
capable of measuring the separate tracks of the two electrons.

All in all no ideal isotope and detector exist. The choice depends on which
weight is assigned to each of the mentioned criteria and on the economical re-
sources available. Thanks to the features mentioned above, of the most promising
isotopes is 76Ge.

2.6 double beta decay search in
76

ge

76Ge is being used for 0νββ decay search since half century for the several rea-
sons. Firstly, an established detector technology is available, yielding the best
energy resolution among all particle detectors, which can reach 0 .15% FWHM.
Secondly, germanium can be enriched at relatively low cost to ∼ 86% in 76Ge,
and germanium crystals have a very low intrinsic contamination [124]. Third, ger-
manium detectors provide a high total efficiency, with εAV · εγ ∼ 0 .8. Finally, for
some detector types the discrimination between signal-like events releasing energy
in only a small fraction of the detector volume is distinguishable from γ events
undergoing multiple Compton scattering, or surface events.

Exploiting the availability of detectors with ∼ 2 kg mass and ∼ 0 .2-0 .3% en-
ergy resolution, a first attempt was performed in 1967 by a research group of the
Milano University, leading to a 68% CL limit of 3 · 1020 yr on the 0νββ decay
half-life. A chronology of the limits on T0ν1/2 is reported Tab. 2.4, and shown in
Fig. 2.16. After the 1967 measurement, a strong boost in sensitivity was achieved
in 1970 by the operation of the experiment in an underground laboratory, under
70 meter of water equivalent (mwe) [125]. Another major improvement was the
introduction by the Russian collaboration ITEP/YePI of germanium crystals en-
riched to ∼ 85% in 76Ge [126]. Thanks to this, the Heidelberg-Moskow (HdM)
and the IGEX experiment operated for about a decade 5 and 3 enriched detectors,
respectively.

After setting a limit of T0ν1/2> 1 .9 · 1025 yr [127], in 2001 H. V. Klapdor-
Kleingrothaus and part of the HdM collaboration claimed the evidence for 0νββ
decay [128], with a measured half-life of

(
1 .5+1 .6

−0 .5

)
· 1025 yr, in tension with
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the previously published limit. A second confirmation of the claim was pub-
lished in 2004, with T 0ν1/2 =

(
1 .19+0 .37

−0 .23

)
· 1025 yr [129, 130], and in 2006 with

T 0ν1/2 =
(
2 .23+0 .44

−0 .31

)
· 1025 yr [131]. Strong criticism resulted from the 2004

claim [132], based on the fact that the fit result is strongly dependent on the fit
range and that the origin of one “peak” with the same size of the 0νββ decay peak
is not explained. Regarding the 2006 claim, it was pointed out that the quoted
uncertainty on the number of signal counts is smaller than that expected from
Poisson statistics, and that the pulse shape discrimination efficiency is dropped
from Eq. 2.38 [133]. If these effects are taken into account, a half-life similar to the
one published in 2004 is obtained, and the significance of the signal is reduced.

In 2013 a new limit of T0ν1/2 > 2.1 · 10
25 yr (90% CL) was published by the Gerda

experiment [102]. A further increase by one order of magnitude in sensitivity to
T0ν1/2 is expected by Gerda Phase II, which is currently under commissioning.

Table 2.4.: Chronology of limits on T0ν1/2 for 76Ge. The claims from part of the
HdM collaboration are denoted as HdM-KK.

Experiment Date T0ν1/2

Milano 1967 > 3.1 · 1020 yr (68% CL) [134]
Milano 1970 > 1.2 · 1021 yr (68% CL) [125]
Milano 1973 > 5 · 1021 yr (68% CL) [135]
PNL-USC 1983 > 1.7 · 1022 yr (90% CL) [136]
Caltech 1984 > 1.7 · 1022 yr (68% CL) [137]
GDK 1984 > 3.2 · 1022 yr (68% CL) [138]
Milano 1984 > 5 · 1022 yr (68% CL) [139]
Milano 1984 > 1.2 · 1023 yr (68% CL) [140]
PNL-USC 1985 > 7.0 · 1022 yr (68% CL) [141]
PNL-USC 1985 > 1.16 · 1023 yr (68% CL) [142]
Milano 1986 > 1.65 · 1023 yr (68% CL) [143]
Gotthard 1989 > 2.7 · 1023 yr (68% CL) [144]
ITEP/YePI 1990 > 1.3 · 1024 yr (68% CL) [126]
Gotthard 1992 > 6.0 · 1023 yr (68% CL) [145]
HdM 1992 > 1.4 · 1024 yr (90% CL) [146]
HdM 1995 > 5.6 · 1024 yr (90% CL) [147]
IGEX 1996 > 4.2 · 1024 yr (90% CL) [148]
HdM 1997 > 7.4 · 1024 yr (90% CL) [149]
IGEX 1999 > 8 · 1024 yr (90% CL) [150]
IGEX 2000 > 1.57 · 1025 yr (90% CL) [151]
HdM 2001 > 1.9 · 1025 yr (90% CL) [127]
HdM-KK 2001

(
1.5+1.6

−0.5

)
· 1025 yr [128]

IGEX 2003 > 1.6 · 1025 yr (90% CL) [152]
HdM-KK 2004

(
1.19+0.37

−0.23

)
· 1025 yr [129, 130]

HdM-B 2005 > 1.55 · 1025 yr (90% CL) [153]
HdM-KK 2006

(
2.23+0.44

−0.31

)
· 1025 yr [131]

Gerda 2013 > 2.1 · 1025 yr (90% CL) [102]
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Figure 2.16.: Chronology of the strongest limits on 0νββ half-life for 76Ge. Values
taken from Tab. 2.4. The limits up to 1992 correspond to 68% CL, the more recent
ones to 90% CL. The three HdM-KK claims are shown with blue error bars.

2.6.1 2νββ Decay Search in 76Ge

Along with 0νββ decay, the detection of 2νββ decay and the measurement of its
half-life have been pursued from the beginning of ββ search. The major difficulty
in the detection of 2νββ decay is the signal to background ratio: the continuum
shape of 2νββ decay spectrum requires the background minimization in the whole
range from 0 keV to Qββ.

The chronology of T2ν1/2 measurements is reported in Tab. 2.5 and depicted in
Fig. 2.5. After the publication of some limits [143, 144], two measurements of
T2ν1/2 were performed in 1990 independently by the ITEP/YePI and the PNL-USC
collaborations, with T2ν1/2∼ 10

21 yr [126, 154]. These were then followed by about
a dozen publications, until the most recent one reported by Gerda and based
on the Phase I data, with T2ν1/2= (1.926 ± 0.095) · 1021 yr [155]. This value is a
factor two higher than the first ones [143, 144]. The reason for this difference can
be understood looking at Fig. 2.5: the value of T2ν1/2 steadily increases with the
publication year towards 2 · 1021 yr. This trend is due to the improvement of the
signal to background ratio, which reached in Gerda the unpreceeded value of 4 : 1
in the 600-1800 keV range [155].
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Table 2.5.: Chronology of T2ν1/2 limits and measurements for 76Ge.

Experiment Date T2ν1/2

Milano 1986 > 2.2 · 1019 yr (68% CL) [143]
Gotthard 1989 > 1.2 · 1020 yr (68% CL) [144]
ITEP/YePi 1990 (9± 1) · 1020 yr [126]
PNL-USC 1990

(
1.1+0.6

−0.3

)
· 1021 yr (2σ) [154]

PNL-USC 1991
(
9.2+0.7

−0.4

)
· 1020 yr (2σ) [156]

PNL-USC 1994
(
1.2+0.2

−0.1

)
· 1021 yr [157]

HdM 1994
(
1.42± 0.03± 0.13

)
· 1021 yr [158]

IGEX 1996 (1.1± 0.2) · 1021 yr [148]
HdM 1997

(
1.77± 0.01+0.13

−0.11

)
· 1021 yr [149]

IGEX 1999
(
1.45± 0.30

)
· 1021 yr [159]

HdM 2001
(
1.55+−0.01+0.19

−0.15

)
· 1021 yr [127]

HdM-KK 2003
(
1.74± 0.01+0.18

−0.16

)
·1021 yr [160]

HdM-B 2005
(
1.78± 0.01+0.07

−0.09

)
· 1021 yr [153]

Gerda 2013
(
1.84+0.14

−0.10

)
· 1021 yr [161]

Gerda 2015 (1.926± 0.095) · 1021 yr [155]
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Figure 2.17.: Chronology of T2ν1/2 limits and measurements for 76Ge. Values taken
from Tab. 2.5.
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G E R M A N I U M D E T E C T O R S

Germanium detectors are among the most used devices in γ spectrometry. They
are characterized by a very good energy resolution of up to O(0.1%), a response
proportional to the absorbed energy and a good full-energy peak efficiency.

In this chapter the working principles and main properties of germanium de-
tectors are summarized. In Sec. 3.1 the interaction of particles in the [0.1; 10] MeV
range is reviewed. Secs. 3.2 and 3.3 describe the main physical characteristics
of semiconductors and of germanium detectors, respectively. Finally, the signal
readout and energy resolution properties of germanium detectors are presented
in Secs. 3.4 and 3.5, respectively.

3.1 interaction of particles with matter

A radioactive decay is a spontaneous emission of particles by an isotope, which
reaches a more stable nuclear configuration. This reaction is exothermic: the par-
ent nucleus always has a greater mass than the daughter by some amount ∆m,
and an energy equal to E = ∆m · c2 is shared among the daughter nucleus and
the emitted particles. In most cases, radioactive decays are of type α and β. After
the particle emission, the daughter nucleus can be in an excited state and further
decay or de-excite, emitting γ rays to reach its ground state. The energy of α, β
and γ particles emitted in radioactive decay processes is in the range of few keV
to few MeV. The most frequent interactions of the three types of particles in this
energy range are listed below.

3.1.1 α Particles

Heavy particles – with masses of & 1 GeV – with up to a few MeV kinetic energy
interact mainly electromagnetically and release their kinetic energy into matter
via inelastic collision with atomic electrons. The rate of energy released by a
heavy particle with velocity v = βc per unit path length of traversed material
with atomic number Z, atomic mass A and density ρ is given by the Bethe-Bloch
formula [162, 163]:

−

(
dE

dx

)
col

=

(
z2e2

4πε0

)2
· 4πZρNA
Amev2

[
ln
(
2mev

2

I

)
− ln

(
1−β2

)
−β2

]
, (3.1)

where ze is the electric charge of the incoming particle (z = 2 for α particles), ε0
is the vacuum permittivity, NA is the Avogadro number and I is the mean energy
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required to ionize an atom in the considered material. This formula is based on the
assumption that the mass of the incoming particle is much larger than the electron
mass. Thus, the energy transferred in each single collision by the heavy particle
to the electron is much smaller than the kinetic energy of the particle itself, and
the heavy particle suffers negligible deflection. In particular, the rate of energy
loss is proportional to the density of electrons in the material, ZρNA/A. Hence,
materials with higher density and atomic number have a higher stopping power.
Moreover, a particle with higher electric charge will be stopped in a shorter range
than a particle with the same mass but lower charge.

An α particle with the energy of a few MeV is characterized by a dE/dx of
O(103) MeV/cm, with a maximum energy loss around 1 MeV. Correspondingly,
the range of α’s rises almost linearly from few keV to several MeV. In the case of
germanium, the range of an α with a few MeV kinetic energy is of O(10) µm.

3.1.2 Electrons and Positrons

In the energy range considered here, electrons and positrons lose energy at a
lower rate than heavy particles. The approximation made for the case of heavy
particles are no more valid. Namely, the energy loss in this case is not necessarily
much smaller than the kinetic energy of the incoming electron (positron), and the
deflection angle can be large, as well. Moreover, in the case of incoming electrons,
the indistinguishability between the scattering particles has to be accounted for.
The energy loss by collision per unit path length is in this case more complex
than for heavy particles and is not reported here. When deflected, electrons and
positrons lose energy also via emission of Bremsstrahlung. Moreover, when their
velocity is higher than the speed of light in the same medium, they lose energy via
Cerenkov radiation. For both electrons and positrons the energy loss by collision
is dominant below ∼ 10 MeV, while the radiation dominates for higher energies.
The total energy loss for electrons of O(1) MeV kinetic energy is about 10MeV/cm,
and their range in germanium is of O(1) mm.

In the case of an incoming positron, most of the kinetic energy is released to the
medium via the processes mentioned here. When the positron is almost at rest
(Ee+ . 10 eV), an electron-positron annihilation takes place, with the correspond-
ing emission of two γ rays of 511 keV.

3.1.3 γ Radiation

Charged particles like α’s and electrons release energy via ionization or atomic ex-
citation of the traversed medium. On the contrary, γ rays are electrically neutral,
hence they must transfer their energy to matter through different interactions. In
general, γ rays interact with the atomic electrons of the considered material, which
then lose their energy as described above. Three processes dominate the interac-
tion of γ rays with matter in the range from few keV to several MeV. These are
photoelectric absorption, Compton scattering, and pair production. In all cases,
the cross section depends on the energy of the γ and on the atomic number of the
considered material.
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Photoelectric absorption

In photoelectric absorption, a γ transfers all its energy to a bound electron in an
atom, which is ejected from its shell. The kinetic energy of the emitted electron is:

Ee = Eγ − E0 , (3.2)

where Eγ is the energy of the γ, and E0 the binding energy of the electron. The
atom is left in an excited state, with a vacancy in the concerned shell. The de-
excitation can take place either through the transition of an other electron from
a higher-energy shell to the shell with the vacancy and the corresponding emis-
sion of an X-ray, or via a recombination of the atomic electrons with the emission
of Auger electrons. The cross section of Photoelectric absorption decreases expo-
nentially with energy and is dominant below ∼ 200 keV, as shown in green in
Fig. 3.1. The steps around few keV and 10 keV are related to the shells from which
the electron is ejected. Most likely, the photoelectric absorption affects electrons
from the K shell. For germanium, the binding energy of the K shell is 11.1 keV.
Alternatively, the L or M electrons can be ejected, with lower probability.

The X-rays and Auger electrons produced in the atomic de-excitation have an
energy lower than that of the original γ. While the electrons release their energy
via collision, the X-rays undergo further photoelectric absorption, until all energy
is released to the atomic electrons of the material. If the process takes place in
a detector and if the entire kinetic energy of the electrons is absorbed in it, the
energy spectrum will feature a full energy peak (FEP) at an energy Eγ.

3.1.4 Compton Scattering

Compton scattering is a process in which a γ transfers a fraction of its energy to
a free electron and is deviated by an angle θ, as depicted in Fig. 3.2. The electron
recoil energy is:

Ee = Eγ − E
′
γ = Eγ

1− 1

1+ Eγ

(
1−cosθ
mec2

)
 , (3.3)
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Figure 3.2.: Compton scattering.

where Eγ is the energy of the incoming γ and E ′γ is that of the scattered γ. The
electron energy is a continuum from zero in case of no deflection of the γ (θ = 0)
to a maximum in case of total deflection (θ = π):

max (Ee) = Eγ

1− 1

1+ 2
Eγ
mec2

 = Eγ
2Eγ

mc2 + Eγ
. (3.4)

In the energy spectra recorded by γ detectors with good enough energy resolution,
a shoulder is visible at energy max (Ee) in correspondence of a high intensity γ
peak at energy Eγ. This feature is called Compton edge.

If the Compton scattering takes place outside the detector volume, the deflected
γ can enter the detector and release all or part of its energy therein. The contri-
bution of E ′γ to the measured energy spectrum is a continuum from a minimum

min (E ′γ) = Eγ − max (Ee) = Eγ
mec

2

mec2 + Eγ
(3.5)

to a maximum equal to the original γ energy, Eγ. In particular, the step at min (E ′γ)

is called the back-scatter peak.
The Compton scattering represents the dominant fraction of γ ray interactions

in the range from ∼ 100 keV to ∼ 10 MeV, as depicted in Fig. 3.1.

Pair Production

The third possible interaction of γ radiation with matter is pair production. This
process takes place in the nuclear Coulomb field and results in the conversion of
the γ into e−e+. Pair production can take place only if the energy of the incoming
γ is at least as large as the rest mass of the pair, i.e. 1022 keV. The eventual
excess energy is equally distributed among the two emitted particles. For the
conservation of momentum, these are emitted in opposite direction in the center-
of-mass frame. The cross section for pair production is dominant at energies above
∼ 10 MeV (see Fig. 3.1).

If a pair production takes place outside the detector, the kinetic energy of the
pair is released in the medium, as described above. Once the positron is almost
at rest, it undergoes an e−e+ annihilation with an atomic electron. One of the
two emitted γ’s can enter and be fully absorbed in the detector volume. This is
the origin of the peak at 511 keV, which is typically present in γ spectroscopy
measurements. The event topology is more complicated if the pair production
takes place inside the detector volume. In all cases, an energy almost equal to
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Eγ − 1022 keV is absorbed in the detector. Once the two 511 keV γ’s are produced,
they can either be absorbed by the detector, or escape from it. If both γ’s are
absorbed, the total initial energy Eγ is detected, and the event will belong to the
FEP in the measured energy spectrum. If one is absorbed and the other escapes,
an energy equal to Eγ − 511 keV is detected. This is the origin of the so called
single escape peak (SEP). If both γ’s escape, only Eγ − 1022 keV are transferred to
the detector. These events will belong to the double escape peak (DEP). Clearly,
other possibilities exist, in which only a fraction of the energy of the 511 keV γ’s
is released in the detector. In such cases, an energy in the [Eγ − 1022;Eγ − 511] or
in the [Eγ − 511;Eγ] range is detected. These types of events are responsible for
high-energy steps in correspondence of the DEP and SEP.

A further remark is necessary with regard to the annihilation peak and SEP.
Because of the finite momentum of the e−e+ pair, the two γ’s are subject to an
opposite Doppler shifting by some among ±∆E. If only one is detected (anni-
hilation peak, SEP), the corresponding peak is broader than a FEP of the same
energy. On the contrary, if both γ’e escape, the total amount of missing energy is
(511+∆E) + (511−∆E) = 1022 keV. For this reason, the DEP is not affected by the
Doppler broadening.

The contributions of photoelectric absorption, Compton scattering and pair pro-
duction to the total mass attenuation coefficient µ of germanium are shown in
Fig. 3.1. mu is defined as:

µ =
NA
A

(σpe + σCompton + σpp) , (3.6)

where σpe is the cross section of the photoelectric effect, σCompton is that of
Compton scattering, and σpp that of pair production.

3.2 semiconductor detectors

Semiconductor materials have been used for many decades as particle detectors.
The detection technique consists of collecting the charge released by an ionizing
particle entering the detector volume. The signal properties of a semiconductor
detector strongly depend on the characteristics of the semiconductor itself. In a
single atom, the electrons are only allowed to be in some defined energy levels. In
a solid, the energy levels are combined to bands, which can host a fixed number
of electrons. The non-empty band with highest energy is called the valence band,
while the first empty band is the conduction band. The energy difference between
the conduction and the valence band is called band gap, Eg. A schematic of the
band structure in solids is shown in Fig. 3.3 An electron can move inside the
material only passing from the valence to the conduction band.

The solids can be divided in three types, according to the amplitude of the band
gap. For insulators the valence band is full and Eg ∼ 10 eV. This value is hardly
reached by an electron via thermal excitation, and the application of a however
high external electric field does not induce the electrons to jump to the conduction
band.

In conductors, the valence band is not full and the conduction band is superim-
posed with it. Electrons can move from the valence to the conduction band via



36 germanium detectors

Eg ∼ 10 eV

Eg < 0
Eg ∼ 1 eV

Insulator Conductor Semiconductor

C
o
n
d
u
c
t
i
o
n

Va
le
n
c
e
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thermal excitation, and the application of an external field induces an electrical
current.

Semiconductors feature a full valence band, as for the insulators, but their band
gap is of O(1) eV. In this case, thermal excitation is enough to move electrons from
the valence to the conduction band. The probability for an electron to jump from
the valence to the conduction band is:

P(T) ∝ T3/2 · exp
(
−Eg
2kT

)
, (3.7)

where k is the Boltzmann constant and T the temperature. Hence, the current
induced by electrons moving to the conduction band due to thermal excitation
increases with temperature. This quantity is called leakage current. When a semi-
conductor is used as particle detector, the leakage current induces a noise in the
signal, which is reduced by operating the detector at low temperature.

When an electron moves to the conduction band, a vacancy is created in the
valence band, which is called hole (h). A hole can be filled by another valence elec-
tron, creating a new hole. If an electric field is applied, the electrons move towards
the anode, and the holes towards the cathode. On the other hand, if no electric
field is applied, at some point the electron will fall back from the conduction to
the valence band, in a process called charge recombination. If a γ ray or a charged
particle enters the detector a number n of electron-hole pairs (e-h) is created. This
is proportional to the energy absorbed in the medium, Eabs:

n =
Eabs
η

, (3.8)

where η is the average energy required for the creation of an e-h pair. If the
electrons and/or holes are collected, the deposited energy can be measured. Thus,
a semiconductor detector is a semiconductor material to which an electric field is
applied for the collection of the charge induced by incoming ionizing radiation.
Eq. 3.8 states that the number of e-h pairs is inversely proportional to η. One can
expect that, for a fixed deposited energy, a higher energy resolution is achieved
for a higher number of created e-h pairs. Therefore, a small value of η is desirable.

The optimal temperature for a semiconductor detector can be estimated on the
base of the temperature dependence of η and Eg. So far, no theoretical model
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Table 3.1.: Drift velocity for germanium and silicon. Values taken from [167]

Mobility [cm4 V-1 s-1]
Material Electrons Holes

Si 1350 480

Ge 3.6 · 104 4.1 · 104

is available, but only parametrizations based on experimental values. A possible
description of η(T) for germanium is [165]:

η(T) = 2.2 · Eg(T) + 1.99 · E3/2g (T) · exp
(
4.75

Eg(T)

T

)
, (3.9)

while the band gap can be parametrized as [166]:

Eg(T) = Eg(0) −
αT2

T +β
= 0.7142−

4.561 · 10-4T2

T + 210
, (3.10)

where the values of Eg(0), α and β are relative to germanium. If the experimental
values are inserted in Eqs. 3.10 and 3.9, it results that η is decreasing with tem-
perature. From this perspective, it would be desirable to operate the detector at
high temperature. On the other hand, a high temperature would induce a high
leakage current. A trade-off is therefore necessary in order to minimize the intrin-
sic electronic noise of the detector, and still achieve a good energy resolution. In
the case of germanium, the solution is to operate the detector at liquid nitrogen
(LN) temperature: at 77 K the band gap is of 0.67 eV and η is 2.96 eV [167]. As
a comparison, silicon detectors are typically operated at room temperature, with
Eg = 1.106 eV and η = 3.62 eV [167].

The performance and applicability of semiconductor detectors is also related to
the drift velocity for electrons and holes. This depends on the applied voltage.
The values for germanium and silicon are reported in Tab. 3.1. The drift mobility
of both electron and holes for germanium is an order of magnitude higher than
for silicon. Thanks to this, bigger detectors can be built with germanium. Ad-
ditionally, the higher atomic number yields a higher efficiency in the absorption
of γ rays of O(1) MeV energy. For these two reasons germanium detectors are
typically used for γ spectroscopy, while silicon detectors are employed for X-ray
measurements.

So far, the assumption was made that the employed material is a pure semi-
conductor. In reality, impurities are always present, which can strongly affect the
band levels and the band gap. As a consequence, the conductivity is modified.
Germanium and silicon are tetra-valent. Each atom in the crystal lattice is sur-
rounded by other four atoms. If an atom is present with valence five, the crystal
will have an electron in excess, and the atom is called donor. Crystals with this
type of impurity are called n-type, due to the presence of “negative” donor im-
purities. Similarly, if an atom with valence three is present, a hole is generated,
and the atom is called acceptor. In this case the crystal is of p-type because of
the presence of positive acceptor impurities. In general, both types of impurities
are present in the crystal lattice. If the same amount of donors and acceptors is
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Figure 3.4.: Depletion of a semiconductor detector.

present, a pure semiconductor is obtained. The compensation of the excess im-
purities can be achieved inserting the same amount of opposite impurities. This
process is denoted as doping. In the case of a detector with planar geometry as
the one depicted in Fig. 3.4, the two types of impurities can be inserted on the two
detector’s surfaces. In this condition the detector has for half of p-type, and for
the other half of n-type. If an electric voltage is applied, which attracts the donors
and impurities to the opposite surfaces, the central part of the detector volume is
depleted from the presence of impurities and behave as a pure semiconductor. In
this configuration the crystal is used as a diode with a reverse bias applied. The de-
pletion volume represents the active volume of the detector. In order to maximize
the efficiency, the largest possible depletion volume is desirable. For germanium,
the n-type (or n+) junction is normally obtained via lithium drift for a thickness
of about 0.5–2 mm, while the p-type junction is done via boron implantation for
a thickness of few dozens nm. When a bias voltage is applied, the doped regions
maintain a charge excess. If a particle interacts therein, the charge is recombined
and cannot be collected. For this reason, the n- and p-type junctions are called
dead layers. The depth d of the depleted volume depends on the net impurity
concentration ρimp and on the applied voltage V :

d =

(
2εRε0V

eρimp

)2
, (3.11)

where εR = 16 is the dielectric constant of germanium and ε0 is the vacuum per-
mittivity. The voltage required to achieve a full depletion of the crystal is called
depletion voltage. The applicable voltage is limited by the finite break-through
voltage of the diode and by the performances of the cables and readout electron-
ics. Moreover, the leakage current increases with the applied voltage, with strong
consequences on the electronic noise. For these two reasons it is necessary to max-
imize the purity of the bulk material. In the case of germanium, a 12 N purity
can be achieved [124]. Detectors of this type are called high purity germanium
(HPGe).

A semiconductor detector with bias voltage applied (see Fig. 3.4) works as a
capacitor. The detector capacitance CD strongly affects the energy resolution, as
described in Sec. 3.4. In particular, a smaller detector capacitance yields a higher
energy resolution. In case of a planar geometry, as for silicon detectors, the capac-
itance is:

CD =
εRA

4πd
, (3.12)

where A is the detector area and d are the depletion depth. Assuming that the
detector is fully depleted, d can be safely approximated as the detector thickness.
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Therefore, a planar detector features a higher energy resolution for a smaller area
to thickness ratio. For a semi-coaxial detector with cylindrical shape and a central
bore hole the capacitance is:

CD =
εh

2 ln
(
r2
r1

) , (3.13)

where h is the detector height, r2 the detector radius, and r1 the bore hole radius.
In this case the capacitance is minimized when the ratio r2/r1 is maximum. Thus,
a higher energy resolution is achieved for a smaller bore hole radius. The actual
shape of semiconductor detectors is typically a trade-off between the ideal shapes
and the requirements connected to the manufacturing process, to the detector
operation and to the signal readout.

3.3 germanium detectors

Germanium detectors are typically used for γ spectrometry. The relatively high
Z and the high achievable drift velocity allows the use of large size detectors
featuring a high efficiency for γ detection. One of the most extensively employed
types of germanium detectors is the semi-coaxial HPGe detectors. The geometry
of a typical semi-coaxial detector is outlined in Fig. 3.5: it is a cylinder with a
central bore hole with almost the same length as that of the detector itself. A Li-
diffused ∼ 0.5–2 mm thick dead layer, constituting the n+ contact, is present in all
the detector surface, except than on the bore hole and its vicinity. In this region is
present the p+ contact with O(10) nm thickness, obtained via boron implantation.
The high voltage (HV) is applied to the n+ contact, while the p+ contact is used
for the signal readout. The n+ and p+ contacts are separated by a groove, which
is typically passivated. The dimensions of a semi-coaxial detector can go from
∼ 4 cm to ∼ 10 cm in both diameter and height, while the bore hole diameter is
. 1 cm. Under the approximation of a truly coaxial geometry, and assuming a
diameter and height of 8 cm and a bore hole diameter of 1 cm, the capacitance of
a semi-coaxial detector is ∼ 35 pF.
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More recently, a new type of germanium detectors has been developed. It is
characterized by a cylindrical shape with a p+ contact limited to a O(1) cm2 spot
on one of the two bases, while the n+ contact is extended to the rest of the surface.
These point-contact detectors are called broad energy germanium (BEGe). The
typical geometry of a BEGe detector is depicted in Fig. 3.6. The small size of
the p+ contact yields a small detector capacitance and, therefore, a better energy
resolution. Moreover, the geometrical configuration of the n+ and p+ contacts
induces a slowly-varying electric field over a big fraction of the detector volume
(see Fig. 5.2 of [168]). This results in a reduced dependence of the peak shape on
the position of the energy deposition, and in a longer charge collection time of
about 1 µs. This property can be exploited in the discrimination between different
event topologies. More details on PSD are given in Ch. 7.

3.3.1 Signal Formation in Germanium Detectors

When a cloud of e-h pairs is created by an incoming particle, the electrons and
holes are attracted to the opposite electrodes due to the presence of the electric
field. The movement of the electrons and holes in the detector induce a mir-
ror charge at the detector electrodes. The time development Q(t) of this charge
and that of the corresponding current I(t) are given by the Shockley-Ramo theo-
rem [169, 170, 171]:

Q(t) = −Q · [Φ (~rh(t)) −Φ (~re(t))]

I(t) = Q ·
[
~E (~rh(t)) ·~vh(t) − ~E (~re(t)) ·~ve(t)

]
, (3.14)

where Q is the total charge generated by the incoming particle, ~rh(e)(t) and
~vh(e)(t) are the position and velocity of the hole (electron) cluster at time t, re-
spectively, while Φ (~r) and ~E (~r) are the electric potential and field at position ~r,
respectively.

The weighting potential can be calculated solving the Poisson equation:

∆Φ = 0 (3.15)

with the boundary conditions Φ(~r) = 1 for the considered electrode and Φ(~r) = 0

for the other electrode. The solution of Eqs. 3.15 and 3.14 for an arbitrary detector
geometry is possible only with numerical methods, and is not covered here. A
calculation of the theoretical signal pulses for BEGe detectors can be found in [168].
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Figure 3.7.: Typical readout scheme of a germanium detector with a charge sen-
sitive preamplifier with open loop gain A. The detector with capacitance CD is
operated with inverse bias voltage HV . The charge Qin is collected on the capac-
itor Cf of ∼ 0.3 pF which then discharges because of the presence of the feedback
resistor Rf = 500 MΩ.

3.4 signal readout with germanium detectors

The typical readout of a germanium detector, operated as a diode with inverse bias
applied, consists of a charge sensitive preamplifier, whose output waveform is ei-
ther shaped and then processed by an analog to digital converter or, as in Gerda,
directly digitized by a flash analog to digital converter (FADC). Fig. 3.7 represents
the detector and charge sensitive preamplifier system, consisting of a junction gate
field-effect transistor (JFET) coupled to a feedback circuit. The capacitor Cf inte-
grates the charge from the detector, with a step change in voltage induced at the
preamplifier output. In order not to saturate the dynamic range of the digitizer,
a feedback resistor Rf is connected in parallel to the capacitor, allowing to bring
the voltage back to its baseline value. The shape of the preamplifier output pulse
will then be characterized by a fast rise, with rise-time of about 0.5-1.5 µs, corre-
sponding to the charge collection process, followed by an exponential decay with
time constant τ = RfCf. The values of Rf and Cf for the Gerda preamplifiers are
500 MΩ and ∼ 0.3 pF, respectively, for a τ of about 150 µs. An accurate description
of the Gerda readout scheme is given in [172].

The energy reconstruction through analog or digital shaping (see Ch. ) is sen-
sitive to the variability of the baseline, induced by the electronic noise. For this
reason, one of the most important tasks in the design of a preamplifier is the min-
imization of its electronic noise, in particular the noise generated in the coupling
between the detector and the preamplifier itself.

In order to understand the possible sources and characteristics of the electronic
noise, the system can be modeled as in Fig. 3.8. The detector is considered as a
source of a delta-like charge pulse. The fact that the pulse has a time duration
can be safely neglected in the following. The charge Q is delivered to the detector
capacitance CD and to the capacitance of the detector-preamplifier coupling, or
preamplifier input capacitance, Ci. The output signal read by the digitizer is the
output of a noiseless preamplifier with open loop gain A connected in series to a
voltage generator with spectral density s(f) (green in Fig. 3.8) and in parallel to
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Figure 3.8.: Signal and main noise sources in the readout system of a germanium
detector. The trace recorded by the digitizer can be modeled as the output of a
noiseless preamplifier, connected to a noiseless detector with capacitance CD, a
series voltage generator and a parallel current generator with spectral densities
s(f) and p(f), respectively. Q · δ(t) is the original current signal and Ci is the
preamplifier input capacitance.

a voltage generator with spectral density p(f) (red in Fig. 3.8). The amplitude of
the electronic noise can be expressed as the standard deviation in the charge mea-
surement, i.e the standard deviation of the baseline fluctuation after the shaping
process. This quantity is referred as equivalent noise charge (ENC). The ENC rep-
resents the number of electrons that would need to be collected in order to obtain
a signal with an amplitude equal to the electronic noise root mean square.

The series noise can be considered to be exclusively induced by the JFET. It is
characterized by a spectral power density s(f) = s1(f) + s2(f)/f, where the white
noise s1(f) is given by the thermal noise and the 1/f term by the carrier number
and mobility fluctuations. The ENC of the series noise is of the form:

ENC2s = C
2
T

(
α
2kT

gmτs
+βAf

)
, (3.16)

where CT is the total preamplifier input capacitance:

CT = CD +Ci +Cf . (3.17)

The first term of Eq. 3.16 is related to the white noise s1: k is the Boltzmann con-
stant, T the JFET operational temperature (87.3 K for LAr), gm the JFET transcon-
ductance (∼ 5 mA/V in Gerda) and τs is the shaping time of the considered
shaping filter. The second term expresses the ENC contribution of s2, where Af
is a parameter depending on the specific JFET considered. The constants α and
β are of order 1 and depend on the signal shaping filter (c.f. Ref. [173]). The
white series noise can be minimized choosing a JFET with high transconductance,
and operating it at low temperature. Both the white and the 1/f series noise are
minimized choosing the smallest possible capacitances. Incidentally, Eq. 3.16 also
explains why the BEGe detectors have a much better energy resolution than the
semi-coaxial detectors. Namely, typical values of CD are 30 pF for these, and 1 pF
for BEGes. For a shaping time of 10 µs and setting α = 1, the white noise contri-
bution of the series ENC2 is of about 170 (2700) e2 for BEGE (coaxial) detectors.
The estimation of the 1/f noise contribution to the ENC2 based on the electronic
components and the used shaping filter is not possible. In the optimal case of
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Figure 3.9.: ENC as function of the shaping time τs of a typical shaping filter.

negligible 1/f noise, the second term of Eq. 3.16 contributes with O(10) e2, while
it might be of O(104) e2 if strong low-frequency noise or disturbance are present.

Analogously, the parallel noise can be described by a spectral density p(f) =

p1(f) + p2(f), where p1(f) is associated with the detector current and the detec-
tor and preamplifier bias circuit, while p2(f) is related to the preamplifier. The
corresponding ENC is:

ENC2p = γ

(
e · IL +

2kT

Rf

)
τs , (3.18)

where IL is the detector leakage current and Rf is the feedback resistance. Neglect-
ing IG, whose value is typically below 1 pA, and using IL = 100 pA, the parallel
noise ENC2 is ∼ 8000 e2. More detailed descriptions of the noise origin and its
treatment in germanium detectors can be found in Ref. [173, 174].

The combination of the series and parallel noise components will result in a
ENC having a minimum in correspondence to the optimal value of the shaping
constant τ2, as shown in Fig. 3.9. If a too short shaping time is chosen, the energy
resolution will be worse due to the non optimal filtering of the series noise. If, on
the other side, a too big value of τs is used, the parallel noise becomes dominant.
For any shaping filter it is therefore mandatory to chose the value of τs which
minimizes the electronic noise.

In the case of Gerda, an additional ENC component is induced by the micro-
phonic disturbance related to mechanical vibrations in the long wiring (30-60 cm)
connecting the detectors to the preamplifiers. The microphonic noise is a low-
frequency component, independent of the detector and front-end electronics but
sensitive to the environmental condition, and thus liable to time evolution. This
has to be accounted for in the development of an appropriate shaping filter.

3.5 energy resolution

The energy resolution of a germanium detector depends on the electronic noise, on
the charge production in the crystal and on the charge collection and integration
properties of the diode and the shaping filter. We can define the energy resolution
∆E as the FWHM of a given γ line in the energy spectrum.
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Independently from the energy of the line, a constant contribution wENC to its
width is given by the ENC:

wENC = 2.355 · η
e
ENC . (3.19)

The term wENC represents the width, in keV, of the noise pedestal in the energy
spectrum. Recalling the examples given in section 3.4, the series noise contributes
> 0.1(0.4) keV to wENC for a BEGe (coaxial) detector, while the parallel noise
contributes ∼ 0.6 keV. In a realistic situation with very low electronic noise, a zero-
energy FWHM of ∼ 0.7 keV is expected.

A second contribution to the FWHM is given by the charge production process
in the crystal. The number of electron-hole pairs created by a particle interaction
in the crystal has an average value N = E/η. Assuming that the charge production
follows the Poisson statistics, then σN =

√
E/η. The uncertainty on the measured

energy is therefore σE = η
√
N =

√
ηN. The corresponding contribution to the

FWHM is then:
wp = 2.355

√
η · E . (3.20)

For the typical case of the 60Co line at 1332.5 keV, this would correspond to 4.7 keV.
In reality, an energy resolution of about 1.7 keV can easily be obtained with a
BEGe at this energy. The reason for this overestimation lies on the assumption of
the Poisson nature of the process. As described in [175], the correct formula for
wp contains a multiplicative term F, denoted as “Fano factor”:

wp = 2.355
√
ηF · E . (3.21)

For germanium, several measurements of F have been performed along the years [176,
177, 178, 179]. Although no clear consensus has been achieved yet, most publica-
tions quote for F a value ∼ 0.11.

The last contribution to the width of spectral lines is given by the charge collec-
tion of the detector and electronic system, and by the charge integration properties
of the shaping filter. The presence of crystal imperfections or the application of a
too low HV can induce to charge recombination in the crystal lattice, inducing an
incomplete charge collection. Similarly, the use of a preamplifier with a too short
time constant RfCf or of a shaping filter with too short shaping time τs can lead
to a sub-optimal integration of the deposited charge. Given the complexity of the
physics involved, the charge collection and integration term is normally expressed
by the empirical formula:

wc = 2.355 c · E . (3.22)

In all cases, the effect is a systematic energy underestimation by a variable amount,
which induces the presence of low-energy tails in the spectral lines.

The three terms WENC, wp and wc have independent origins, hence they can
be summed in quadrature to give the overall FWHM:

FWHM(E) = 2.355

√
η2

e2
ENC2 + ηF · E+ c2 · E2 , (3.23)

which shows how the electronic noise term is dominant at low energy and the
charge collection term at high energy.
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T H E G E R D A E X P E R I M E N T

The GERmanium Detector Array (Gerda) is an experiment for the search of 0νββ
decay in 76Ge. It is located at the Laboratori Nazionali del Gran Sasso (LNGS)
of INFN, Italy. The experiment is based on the use of germanium crystals en- C’è mai stata al

Gran Sasso? È bello,
è un bel posto, se sei
un lombrico per
viverci è bello il
Gran Sasso, stai lı̀
quattro mesi...
M. Crozza alias
A. Zichichi

riched to ∼ 86% in 76Ge and acting simultaneously as source and detector of the
process. The detectors are directly immersed in liquid argon (LAr), acting as cool-
ing medium and shielding against external background radiation. Additionally,
the LAr scintillation light can be exploited as an anti-coincidence veto for events
releasing energy both in germanium and in LAr itself.

The physics program of Gerda is divided in two stages, as summarized in
Tab. 4.1. The first data collection, denoted as Phase I, was performed between
November 2011 and June 2013 with ∼ 20 kg of enriched semi-coaxial detectors. It
was characterized by a background index (BI) at Qββ of 10-2 counts/(keV·kg·yr),
and lead to a 90% confidence level (C.L) lower limit of 2.1 · 1025 yr [102] on the
half-life of the reaction, T0ν1/2. The implementation of an active anti-coincidence
veto for the readout of the LAr scintillation light and the use of additional 20 kg of
enriched Broad Energy Germanium detectors (BEGe) with enhanced pulse shape
discrimination capabilities are the main improvements for Gerda Phase II, which
is currently in its commissioning stage. In Phase II, a BI of 10-3 counts/(keV·kg·yr)
is expected, which will lead to a 1.4 · 1026 yr sensitivity on T0ν1/2 with three years
of data collection.

Table 4.1.: Mass, BI, live time and sensitivity on T0ν1/2 for Gerda Phase I and
Phase II. The reported BI and T0ν1/2 sensitivity for Phase II are based on MC sim-
ulations of the radioactive contamination of all involved materials and on toy-MC
spectra at Qββ, respectively.

Mass (Expected) BI Live time (Expected) T0ν1/2
[kg] [counts/(keV·kg·yr)] [yr] sensitivity [yr]

Phase I 15 10-2 [102] 1.5 2.4 · 1025 [102]
Phase II 35 10-3 3 1.4 · 1026

This chapter is structured as follows. In Sec. 4.1 the experimental setup is out-
lined, while Sec. 4.2 describes the Gerda data structure. Finally, a review of
Phase I data collection and analyses is given in Sec. 4.3.

45
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Figure 4.1.: Schematic
view of the Gerda

structure.

4.1 experimental setup

A major task in the design and construction of an experiment for 0νββ decay
search is the minimization of the BI at Qββ. A first background reduction is ob-
tained locating the experiment underground. In the case of LNGS, the residual
cosmic muon flux is ∼ 1 m-1 hr-1 [180]. This, together with the environmen-
tal γ and neutron backgrounds, is further shielded by a tank filled with 590 m3

high-purity water instrumented with 66 photo-multiplier tubes (PMT) to read the
Cerenkov light induced by muons (Fig. 4.1). A stainless steel cryostat with a 6 cm
thick oxygen free radio-pure copper layer is installed in the center of the water
tank and filled with 64 m2 of LAr. A heat exchanger is installed in the top part
of cryostat and reduces the LAr loss. The germanium detectors are deployed ap-
proximately in the center of the LAr volume. They are surrounded by a copper
cylinder (shroud) of 75 cm diameter and 30 µm thickness, which prevents radon
atoms from going in the vicinity of the detectors. A complementary muon veto
system is present on the top of the experimental structure and serves to cover the
cryostat area, where the water depth crossed by an incoming muon is limited to
∼ 1.5 m.
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Figure 4.2.: Possible event topologies in
Gerda: coincidence event (A), multi site
event (B), surface event (C), single site event
(D), event releasing energy both in germa-
nium and LAr (E).

A further background reduction is possible with the use of an anti-coincidence
cut between germanium detectors, between germanium and Lar, and with PSD.
Fig. 4.2 depicts the different event topologies which can take place in Gerda.
These can be:

A a γ undergoing a Compton scattering in one detector, and being fully ab-
sorbed in a different detector. Two signal traces with non-zero energy are
recorded, and the event can be rejected by an anti-coincidence cut;

B a γ undergoing a Compton scattering and fully absorption in two different
locations of the same detector. The event can be rejected with PSD methods
(see Ch. 7);

C an α or β particle emitted from the detector surface. Also in this case, the
events can be rejected with PSD, at least for BEGe detectors (see Ch. 7).

D a γ, α, β or ββ releasing energy only in one restricted fraction of the detector
bulk volume. The event is identified as signal-like by the PSD;

E a γ undergoing a Compton scattering in germanium and a full absorption
in LAr, or vice versa. The energy release in LAr induces scintillation light,
which can be detected by proper light sensor. Hence, the event can be re-
jected by a LAr anti-coincidence veto system.

The possibility of using the LAr scintillation light as a veto explains the choice of
LAr instead than the more typical LN. The implementation of a veto system was
planned since the beginning for the second phase of Gerda, and is currently in its
final stage of commissioning.

A class 7 clean room is located on top of the water tank. Its purpose is to provide
a clean environment for the detector handling, which is performed in a nitrogen
flushed glove box. The deployment of the detectors in LAr is done through a lock
system connected to the LAr cryostat and passing through the glove box. The
detectors are connected to a cable chain fully contained in the lock system. The
installation of the detectors is performed by removing a ∼ 1 m long part of the
vertical pipe crossing the glove box. Above the glove box, the lock system features
a T-shape, containing the motor for the movement of the detectors and the high-
voltage (HV) and signal readout cabling. In Phase I, two independent lock systems
were used for the deployment of three and one detector strings, respectively. In
Phase II only one lock with 50 cm diameter is employed, which allows the simul-
taneous operation of 7 detector strings: 6 strings are arranged on an hexagonal
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scheme, while the 7th string is located at their center. A full description of the
experimental setup is given in [172].

Three calibration systems, developed at the University of Zurich [181, 182, 183],
are connected to the lock system and allow to lower three radioactive sources to
the vicinity of the detectors. In Phase I, the source insertion systems (SISs) were
located between the clean room ground and the bottom of the glove box. For
Phase II, they are located on the top of the lock system. The SISs can be operated
individually: this allows to optimize the detector coverage, and facilitates the re-
pairing in case of failures. During physics runs, the sources are kept at the highest
possible position to maximize their distance from the germanium detectors. A
further shielding is obtained mounting each of the sources on a tantalum absorber
of 60 mm height and 32 mm diameter.

4.1.1 Gerda Detectors

The germanium detectors used in Gerda are of two types. In Phase I, 8 semi-
coaxial enriched germanium detectors with a total mass of 17.7 kg were employed.
They were previously used in the HdM [149] and IGEX [148] experiments, and
refurbished before the deployment in Gerda. Additionally, 6 detectors with nat-
ural isotopic abundance were available from the Genius Test Facility (GTF) [184].
All of them are p-type High Purity Germanium detectors (HPGe) from Canberra
Semiconductors NV, Olen [185]. They have a diameter between 6 and 9 cm, and a
height between 7 and 11 cm, with a 5–7 cm deep bore hole on one face.

For Phase II, additional 20 kg of enriched germanium are available in form
of 30 BEGe detectors. The reasons why BEGe detectors have been selected are
their superior energy resolution and PSD performance. The full documentation
on the production and characterization of BEGe detectors for Phase II is available
in [186, 187].

Most analyses presented in this work are relative to Phase I data, while only
some calibration runs from the Phase II commissioning are involved. Hence, a
list of all detectors employed throughout Phase I is given in Tab. 4.2. They are 5
enriched semi-coaxial detectors from HdM (ANG1, . . . , ANG5), 3 enriched semi-
coaxial from IGEX (RG1, RG2, RG3, 3 semi-coaxial with natural abundance from
GTF (GTF112, GTF32 and GTF45), and 5 enriched BEGe detectors (with names
starting with “GD”). For all detectors, the physical dimension, the mass, the oper-
ational voltage and the 76Ge abundance are given.

An important part of the experimental setup is represented by the detector hold-
ers and the readout electronics. In order to achieve a competing background at
Qββ, the amount of possible radioactive contamination in vicinity of the detectors
has to be minimized. This goal is obtained by reducing the amount of involved
material as much as possible, and by using materials with high radio-purity.

The Phase I detector holders are shown in Fig. 4.3, left and middle. They con-
sist of a copper structure with a threefold star on the top and bottom bases, and
three lateral pillars. The crystals are separated from the copper holder by PTFE
spacers. The HV contact is done by pressing a copper strip on the top of the de-
tector (Fig. 4.3, middle), while the signal contact consists of a conical copper piece
pressed against the p+ surface on the bottom detector base. This system allowed
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Table 4.2.: Detectors used in Gerda Phase I. The dimensions, masses and enrich-
ment values for the semi-coaxial detectors are taken from [172]. Natural abun-
dance for the GTF detector is taken from [188]. All values of BEGe detectors are
from [186].

Detector Diameter Length Mass Operational 76Ge abundance
Name Origin [mm] [mm] [g] Voltage [V] [%]

ANG1 HdM 58.5 68 958 3200 85.9± 1.3
ANG2 HdM 80 107 2833 3500 86.6± 2.5
ANG3 HdM 78 93 2391 3200 88.3± 2.6
ANG4 HdM 75 100 2372 3200 86.3± 1.3
ANG5 HdM 78.5 105 2746 1800 85.6± 1.3

RG1 IGEX 77.5 84 2110 4600 85.51± 0.10
RG2 IGEX 77.5 84 2166 4500 85.51± 0.10
RG3 IGEX 79 81 2087 3300 85.51± 0.10

GTF112 GTF 85 100 2965 3000 7.80± 0.10
GTF32 GTF 89 71 2321 3500 7.80± 0.10
GTF45 GTF 87 75 2312 4000 7.80± 0.10

GD32B Gerda 71.8 32.2 717 4000 87.7± 1.3
GD32C Gerda 72 33.2 743 4000 87.7± 1.3
GD32D Gerda 72.2 32 723 4000 87.7± 1.3
GD35B Gerda 76.6 32 812 4000 87.7± 1.3
GD35C Gerda 74.8 26.4 635 3500 87.7± 1.3

Figure 4.3.: Left: Phase I coaxial detector string. Middle: Phase I BEGe detector
string. Right: Phase II BEGe detector string.
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to deploy up to 14 detectors: three strings with three semi-coaxial detectors each
were operated during all Phase I, while one string was exploited for deploying
two GTF detectors in the first half of the data collection, and 5 BEGe detectors
from July 2012 on.

In Phase II, about 40 detectors are going to be deployed in 7 strings. The design
of the detector holder has been changed, in order to allow the installation of up
to 8 BEGe detectors on one string. Special care has been taken in the further
reduction of the used material quantity. In particular, given that crystalline silicon
is typically more radio-pure than copper, the copper stars have been substituted
by silicon plates. Fig. 4.3, right, shows 8 BEGE detectors mounted on the new
holder prior to the deployment in LAr during a Phase II commissioning run. The
detectors are mounted back-to-back in couples, on the top and bottom of which
the crystalline silicon plates are present. The whole structure is held by three
copper pillars. Moreover, the copper signal contacts are replaced by wire bonds.
In this way, the total amount of copper and PTFE is reduced by one third.

4.1.2 Readout Electronics

The germanium detectors in Gerda are readout with custom made charge sen-
sitive preamplifiers directly operated in LAr. The schematic of the preamplifier,
called CC2 [189], is shown in Fig. 4.4. It consists of an input JFET of type BN862
from NXP Semiconductors, and a second stage is an AD8651 from Analog De-
vices. This is in parallel with a feedback circuit, which allows to bring back the
input voltage to its baseline value. A test pulse is sent periodically to the input
JFET of the CC2, allowing to monitor the stability of the whole electronics chain.
The preamplifiers are integrated on a Cuflon PCB, containing the circuits of three
channels. The circuitry is encased in a copper box which provides electromagnetic
shielding.

The cabling between the detector and the CC2 consists of non-coaxial PTFE
insulated copper strips with a cross section of 0.8 mm2. Coaxial cables of type
SM50 from Habia are used for power supply and for the preamplifier output
signal. This is readout by a flash analog-to-digital converter (FADC). The FADC,
the HV modules and the pulser are in an electronics cabinet located just outside
of the clean room. The total cables length between the CC2 and the electronic
modules is about 20 m.

4.1.3 LAr Veto

A major upgrade for Gerda Phase II is the implementation of a system for the
detection of the scintillation light in LAr. Two arrays of 9 and 8 PMTs are installed
above and below the germanium detector strings, respectively, while a cylindrical
structure of optical fiber coupled to silicon photo-multipliers (SiPM) surrounds the
germanium detectors and substitutes the central part of the radon shroud. This
is in Phase II no more necessary, thanks to the presence of light sensors. The
PMTs are the 3” R11065-10/20MOD from Hamamatsu. They were chosen due to
their low radioactivity (< 2mBq/PMT) and low power consumption (1.6 µA at
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Figure 4.4.: CC2 schematic. Picture taken from [172].

Figure 4.5.: Left: Phase II LAr veto system from the top of the cryostat. Middle:
bottom view of the optical fiber system. Right: top PMT array.

1.5 kV) [190]. The PMTs are installed on the top and bottom of a cylinder of 49 cm
diameter and 220 cm height. The lateral surface of the cylinder consists of a copper
foil internally lined with a reflector foil (Tetratex coated with TPB as wavelength
shifter [183]) for the upper and lower 60 cm, and of optical fiber for the central
100 cm part. The fibers are TPB-coated and have a cross section of 1× 1 mm2.
They are coupled to SiPMs from Ketek, which are arranged in groups of 9. While
the PMTs have a high efficiency in detecting the light inside the cylinder, the fiber
structure is also capable of detecting events taking place outside it. The LAr veto
system is shown in Fig. 4.5.

4.2 gerda data structure

The data collected in Gerda are organized in subsequent levels. The event re-
construction is based on the Majorana Gerda Data Object (MGDO) [191] and the
GErda LAyouT for Input/Output (GELATIO) [192]. MGDO is a set of libraries con-
taining the basic algorithms to be applied to the signal traces, and is maintained
jointly by the Majorana and the Gerda collaborations. GELATIO is a C++ software
package based on the MGDO libraries which provides general and flexible tools
for the handling and analysis of Gerda data. Both MGDO and GELATIO depend
on CLHEP [193] and FFTW3 [194] libraries for scientific computing. Moreover,
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Table 4.3.: Data structure used in Gerda.

Data type Format Content

Tier0 Binary Signal traces, digitizer infos
Tier1 ROOT Signal traces, digitizer infos
Tier2 ROOT Uncalibrated energy and A/E,

trigger, rise-time, ...
Tier3 ROOT Calibrated energy and A/E,

quality cuts tags
Tier4 ROOT Event tags for 0νββ analysis

they depend on ROOT [195] and TAM [196] for the data storage, data analysis
and graphical rendering. GELATIO has a modular structure: each module is in
charge of extracting information regarding one particular feature of the signal
pulse, e.g. energy, baseline, rise time, amplitude of the current signal. The list of
modules can be chosen by the user according to the specific need. An additional
package for advanced data analysis, denoted as Gerda-ada, is currently under de-
velopment. Its completion is expected for the beginning of Phase II. More details
on Gerda-ada are given in App. C.

The standard data reconstruction procedure used in Phase I is the following:
– the whole event information (event waveform, type, time, muon veto flag,

. . . ) is saved to disk in binary format (tier0);
– the tier0 are transformed to ROOT files (tier1) using MGDO;
– a GELATIO macro is used to extract all the needed physical quantities, e.g.

energy, baseline, trigger time, rise time, . . . . All the computed quantities are
stored in tier2 files;

– the calibration curves and the flags for the quality cuts computed. These
flags regard the coincidences, muon vetoed events, pile-up events, discharges,
pulser events, etc. The calibrated energy and the quality cut flags are saved
in the tier3 files;

– The PSD is applied, and all event flags for 0νββ analysis are written to tier4
files.

The data reconstruction for Phase II is similar to that of Phase I, with the only
difference that the PSD cut tags and the LAr veto tags are included already at the
tier3 level.

A summary of the different data levels used in the Gerda Phase I is reported in
Tab. 4.3.

4.3 gerda phase i

The Phase I data were collected from 9 Nov. 2011 to 21 May 2013. Some additional
data were collected in summer 2013. The data taking was divided in runs of
variable duration. A new run was started after the configuration of the detector
array was changed, in case the settings of some channel was modified, or in case of
gain instabilities induced by external factors. The run numbering started during
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the Phase I commissioning in 2010. The Phase I data sets comprises the runs 25–43.
The channel mapping for all Phase I runs is reported in Tab. 4.4.

Table 4.4.: Detector configuration for all runs of Gerda Phase I. The detectors in
gray were installed and operated for all or a fraction of their deployment time, but
their data were not used for any analysis due to very poor energy resolution in-
duced by an incomplete depletion or to strong and unexplained gain instabilities.

DAQ Run number and data taking period

channel 24–32 33–34 35–46 47–49
mapping 09.11.11–22.05.12 02.06.12–02.07.12 08.07.12–21.05.13 31.05.13–30.09.13

0 ANG1 ANG1 ANG1 ANG1
1 ANG2 ANG2 ANG2 ANG2
2 ANG3 ANG3 ANG3 ANG3
3 ANG4 ANG4 ANG4 ANG4
4 ANG5 ANG5 ANG5 ANG5
5 RG1 RG1 RG1 RG1
6 RG2 RG2 RG2 RG2
7 RG3 RG3 RG3 RG3
8 GTF112 GTF112 GTF112 GTF112
9 GTF45 GD32B
10 GTF32 GD32C
11 GD32D
12 GD32B
13 GD35C

In the first part of Phase I (runs 25–32), the 8 enriched semi-coaxial detectors
were deployed together with 3 semi-coaxial detectors with natural abundance. The
ANG’s and RG’s detector were installed in the 3-string arm along with GTF112
and coupled in direct current (DC), while GTF45 and GTF32 were mounted on the
1-string arm and coupled in alternating current (AC). Already from the beginning
of the data taking, RG3 was characterized by a high leakage current. Its bias
voltage was progressively reduced until is was brought down to 0 V in March
2012. Similarly, the voltage of ANG1 was reduced starting from March 2012 and
set to 0 V in May 2012. The data collected with these two detectors were not
used for any of the physics analyses, but they were anyway exploited for the anti-
coincidence cut for the periods in which they had non-zero voltage.

In May 2012 the 1-string arm detectors were extracted to prepare the installation
of 5 BEGe detectors. One month of data (runs 33–34) was collected with the 3-
string arm only. Most of the channels were affected by strong instabilities during
run 33, which was therefore not used for any analysis.

From July 2012 to May 2013 the 5 BEGe detectors were operated in the 1-string
arm, in addition to the 8 semi-coaxial in the 3-string arm. Between November
2012 and March 2013 the HV of RG2 was lowered from 4000 V down to 2000 V
due to high leakage current. The data collected with RG2 up to run 43 are used
for physics analyses, while those collected afterwards are only used for the anti-
coincidence cut. Moreover, the data collected with GD35C are only employed for
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Figure 4.6.: Duty factor and exposure for Gerda Phase I.

the anti-coincidence cut due to the strong instabilities characterizing this detector
over all its operation period.

After the end of Phase I, the data collection continued with the 3-string arm
only until September 2013. In July 2013 the water tank was emptied to allow some
maintenance operations, hence the muon veto cut could not be applied. In the
same period several calibration data sets with a 56Co source were acquired (see
Sec. 5.9). The second part of this period was dedicated to a long background
measurement with no interruptions. Its goal was to study the dependence of the
gain and BI on the standard operations performed during the data taking, e.g.
calibrations, and on the temperature stability in the clean room.

The data set for the 0νββ decay analysis consists of the runs 25–34 and 35–46.
The measurement live time fraction ft for this period is 88.1%. The live time is
computed as the product between the number of pulser events and the time delay
between them, while the live time fraction is the ratio between the live time and
the total Phase I duration. The live time fraction during all Phase I is shown in
blue in Fig: 4.6: during data taking, it is at a constant value of 1, with several short
interruptions corresponding to the calibration runs. A longer interruption due to
the operations for the substitution of GTF45 and GTF32 with the BEGe detectors is
visible around June 2012. Some shorter interruptions mostly due to maintenance
operations in the clean room are also present. In the same figure, the red curve
shows the total exposure collected with the enriched detectors as function of time.
A total of 17.9 kg·yr and 2.4 kg·yr were collected with the semi-coaxial and BEGe
detectors, respectively.

During all data taken from 11 January 2012 the number, energy and waveforms
of events in a 40 keV region around Qββ were automatically removed from the
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data flow. This blinding procedure was chosen to avoid any bias in the data se-
lection and analysis. In particular, the availability of a reliable background model
was considered a mandatory requirement to be fulfilled before the unblinding.
Namely, only if the energy spectra were modeled with proper Monte Carlo (MC)
simulations a prediction could be made on the background distribution and ampli-
tude around Qββ. The data collected up to 3 March 2013 (see Fig. 4.6) were used
for the development of the background model, while the 0νββ analysis was per-
formed on the data collected up to 21May 2013. The unblinding was performed in
June 2013, once the background model was completed and all steps for the 0νββ
decay analysis were defined and frozen.

In order to maximize the sensitivity to a possible 0νββ decay signal, it is ad-
vantageous to divide the data into separate subsets according to the energy res-
olution and BI. This is the case for the data collected with the semi-coaxial and
BEGe detectors, which are therefore divided. Moreover, the data from the semi-
coaxial are further separated in two data sets according to the BI. Fig. 4.7 shows
the BI in counts/(keV·kg·yr) before PSD as function of time for all the semi-
coaxial detector. The [1500; 3000] keV energy range is used for the calculation,
and the points correspond to 15 days time intervals. The average value over all
Phase I is ∼ 0.14 cts/(kg·day). Variations within ±1σ are present, as it is to expect
from background fluctuations. The data around July 2012 are characterized by a
BI ∼ 0.22 counts/(keV·kg·yr), which is ∼ 50% higher than the average. This higher
value is related to the operations for the removal of GTF45 and GTF32 and the
subsequent insertion of the BEGe detectors. The data taken after this period are
characterized by a BI close to the average. On the basis of this, the data from the
semi-coaxial detectors are divided in two data sets: a “silver” data set comprising
the data with higher BI and corresponding to runs 34–35, and a “golden” data
set which includes all the remaining runs. The exposure of the three data sets are
reported in Tab. 4.5.
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Table 4.5.: Data sets parameters for the Phase I 0νββ decay analysis. The total
efficiency is defined as εtot = fenr · fAV · εγ · εSSEpsd . Values taken from [102].

Data m ·∆t Counts in BI Counts
set [kg·yr] εtot [1930; 2190] keV [counts/(keV·kg·yr)] in ROI

No PSD
Golden 17.9 0.688± 0.031 76 18± 2 5

Silver 1.3 0.688± 0.031 19 63+16−14 1

BEGe 2.4 0.720± 0.018 23 42+10−8 1

With PSD
Golden 17.9 0.619+0.044

−0.070 45 11± 2 2

Silver 1.3 0.619+0.044
−0.070 9 30+1−9 1

BEGe 2.4 0.663± 0.022 3 5+4−3 0

4.3.1 The Background in Gerda Phase I

The physics spectra for the semi-coaxial and BEGe detectors relative to the period
used for the development of the background model are shown in Fig. 4.8. The
total number of counts is about a factor 10 higher for the semi-coaxial than for the
BEGe detectors, which respects the factor 10 ratio in the exposure. The spectra
are characterized by a continuum starting from the threshold at ∼ 100 keV up to
∼ 500 keV. This is induced by the β decay of 39Ar, with a Q-value of 565 keV [197].
The continuum spectrum of 2νββ decay is dominant in the [500; 1800] keV range.
Two γ lines induced by 40K and 42K are visible at 1461 and 1525 keV, respectively.
For the semi-coaxial detectors, additional lines induced by the 228Th and 234U de-
cay chains are present. As an example, two 214Bi peaks at 1765 and 2204 keV and
the 208Tl peak at 2615 keV are labeled. The green area in the spectra correspondsOra viene fuori un

isotopo del bismuto!
– mi precipitavo a

dire [. . . ] –
Scommettiamo!
Macché: era un

atomo di polonio,
sano sano.
I. Calvino,

Le Cosmicomiche

to the 40 keV blinded region around Qββ.
Above 3000 keV the spectrum is dominated by α events, induced by some con-

tamination of the detector p+ contacts. In principle, only α emitted in the detector
volume or on the p+ contact can be detected. If the contamination were inter-
nal, a forest of sharp peaks would be expected in correspondence to the possible
energies of the emitted α’s. In Phase I data, the α peaks present a pronounced low-
energy tail, which can be interpreted with a incomplete collection of the deposited
charge in case of an α emission in the p+ dead layer. For the BEGe spectrum
and after normalizing for the exposure, the α contamination is about one order
of magnitude lower than that of semi-coaxial [198]. This is explainable with the
smaller dimensions of the p+ contact in BEGe detectors and, possibly, with a lower
surface contamination. The main α peak around 5300 keV is given by 210Po. ThisCosa diceva Madame

Curie? Se il polonio
è a 210, ci ritirano la

patente?
M. Crozza alias

A. Zichichi

is verified by a fit of the time distribution for the events in the [3500; 5300] keV
range, yielding an half-life in agreement with that of 210Po [198, 199]. Additional
α particles emitted by other members of the 234U decay chain are visible.

Two background models have been developed [198, 199, 200] for the Golden
and BEGe data sets, as well as for the spectrum taken with the GTF detectors. The
same was not possible with the Silver data set due to the limited number of counts



4.3 gerda phase i 57

Energy [keV]
1000 2000 3000 4000 5000 6000 7000

C
ou

nt
s
/
(5

ke
V
)

1

10

102

103

104

10-2

10-1
1

10

102

C
ts
/
(k

eV
·k

g·
yr
)

2νββ

2
1
4

Bi
1
7
6
5

ke
V

2
1
4

Bi
2
2
0
4

ke
V

2
0
8

T
l2
6
1
5

ke
V

226Ra

210Po

222Rn 218Po

Enriched coaxial, 17.60 kg·yr

Energy [keV]
1000 2000 3000 4000 5000 6000 7000

C
ou

nt
s
/
(5

ke
V
)

1

10

102

103

10-1

1

10

102

C
ts
/
(k

eV
·k

g·
yr
)

2νββ

4
0

K
1
4
6
1

ke
V

4
2

K
1
5
2
5

ke
V

Qββ ± 20 keV

Enriched BEGe, 1.80 kg·yr

Figure 4.8.: Phase I background spectrum before the application of PSD for the
semi-coaxial (top) and BEGe detectors (bottom).

present in the spectrum. The models explain all the features of the Phase I spectra
in the [570; 7500] keV range.

In the first “minimum” model, the MC simulations of all visible contributions
are included. In the second “maximum” model the same contributions are present,
but multiple possible locations for some background contamination are consid-
ered. Given the limited statistics, the maximum model does not allow to disen-
tangle between different possible origins of these contamination, and the p-value
of the two models are comparable. The background models are then used to
extract the BI at Qββ. The two predictions are in good agreement within the un-
certainties. Furthermore, an agreement is found also with the BI computed from
the average number of counts in the [1930; 2190] keV region, with the exclusion
of the blinded region and of a 10 keV region around the 208Tl SEP at 2104 and
the 214Bi line at 2119 keV. This quantity is reported in Tab. 4.5 for all data sets
before and after the application of PSD. Tab. 4.5 also reports the total efficiency,
computed as (see Eq. 2.38): εtot = fenr · fAV · εγ · εSSEpsd , the number of counts in
the [1930; 2190] keV region (with the exclusion of the mentioned sub-regions), and
the number of counts in a 10 keV wide ROI around Qββ.

4.3.2 Analysis of 0νββ Decay

The analysis of 0νββ decay is performed with an unbinned fit in the [1930; 2190] keV
region, with the exclusion of the [2099; 2109] and [2114; 2124] keV regions. The
spectra of the Golden, Silver and BEGe data sets after the application of PSD are
fitted separately with a Gaussian distribution over a flat background. These are
parametrized as in Eq. 2.38. The fit has four parameters: T0ν1/2, which is common
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for all data sets, and one BI for each data set. All the other parameters are fixed to
the value obtained from independent measurements. The systematic effect coming
from the uncertainty on the additional parameters (e.g. enrichment, active volume
fraction, FWHM, . . . ) are computed by re-running the fit n times after having
varied the parameter values within according to the available distributions.

Both a profile-likelihood and a Bayesian maximum-likelihood analyses are per-
formed. In the first case, the limit on the 0νββ decay half-life is [102]:

T0ν1/2 > 2.1 · 10
25 yr (90% C.L.), (4.1)

while in the second case [102]:

T0ν1/2 > 1.9 · 10
25 yr (90% C.I.), (4.2)

where C.I. stays for credibility interval.
The median sensitivity for a 90% C.L. (or C.I.) limit is computed generating

n Toy-MC spectra according to a flat distribution with the proper BI and fitting
this with the same distribution used for the signal search. In the case of profile-
likelihood, the median sensitivity is:

T0ν1/2 > 2.4 · 10
25 yr , (4.3)

while the Bayesian approach yields:

T0ν1/2 > 2.0 · 10
25 yr . (4.4)

The slight difference on both the experimental limit and median sensitivity be-
tween the two analysis methods comes from the deep Poisson regime of the con-
sidered data. Namely, even in case a spectrum with 0 events is measured, the
Bayesian 90% C.I. limit on the number of signal counts ns is ∼ 2.3, while this is not
the case for the profile likelihood. In truth, a direct comparison of the two results
is not possible because of their different statistical meanings.

If the Gerda Phase I limit is combined with the 2001 HdM [127] and 2002

IGEX [201] results, yielding a best fit for ns = 0 and a 90% C.L. half-life limit of:

T0ν1/2 > 3.0 · 10
25 yr . (4.5)

The Gerda limit is compared with the 2004 HdM claim [97]. The model H1
is assumed, with a 0νββ decay half-life as reported in [97], and the probability
of obtaining a best fit of 0 events (H0) with the profile likelihood analysis for the
Gerda Phase I data is P(ns = 0|H1) = 0.01. Moreover, the ratio of the two models
probabilities (Bayes ratio) is P(H1)/P(H0) = 0.024. If the combined limit is taken
(Eq. 4.5), the Bayes ratio is further reduced to 2 · 10-4. Based on this results, the
2004 claim of evidence for a 0νββ decay signal is strongly disfavored with a NME-
and model-independent measurement.

4.3.3 Analysis of 2νββ Decay

In addition to the 0νββ decay search, the Phase I data are used for other analyses,
including the measurement of 2νββ decay half-life. A detailed description of the
analysis summarized here is available in [101].
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The 2νββ decay analysis is performed on the Golden data set only in order
to minimize the systematic uncertainty on T2ν1/2. The considered exposure is
17.9 kg·yr. Only unambiguously identified background components are inserted
in the model, and the possible different location of the radioactive contaminants
is considered as a systematic. As for the background model, the fit is performed
in the [570; 7500] keV range. The measured 2νββ decay half-life is:

T2ν1/2 =
(
1.926+0.025

−0.022(stat)+0.091
−0.091(syst)

)
· 1021 yr, (4.6)

where the first error is the statistical uncertainty of the fit, and the systematic error
comprises the effects of the detector parameters, of the fit model, of the geometry
and particle tracking limited precision in the MC simulations, and of the data
acquisition and selection. Summing the two uncertainties in quadrature:

T2ν1/2 = (1.926± 0.094) · 1021 yr. (4.7)

The very small uncertainty of ∼ 5% is achieved thanks to the unpreceeded signal-
to-background ratio of 3 : 1 in the [570; 2039] keV range. The previous T2ν1/2 de-
termination reported by Gerda [161] was based on the first 5.04 kg·yr of Phase I
data, yielding to a measured value of:

T2ν1/2 =
(
1.84+0.14

−0.10

)
· 1021 yr, (4.8)

which is in very good agreement with the latest result.
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C A L I B R AT I O N O F T H E E N E R G Y S C A L E

This chapter describes the analysis of the Gerda calibration data. After a sum-
mary of the properties of the employed calibration sources (Sec. 5.1), the main
characteristics of the calibration software are reported in Sec. 5.2. The event selec-
tion for the analysis of the calibration data is reviewed in Sec. 5.3, while Secs. 5.4
and 5.5 describe the search and fit of the gamma lines, respectively. The procedure
for the extraction of the calibration and resolution curves is reported in Sec. 5.6,
and the calculation of the systematic uncertainties of the energy scale is described
in Sec. 5.7. The determination of the energy resolution at Qββ for calibration and
physics data is reported in Sec. 5.8. Finally, the analysis of the data collected in
Gerda with a 56Co source and the study of systematic uncertainties on the energy
scale based on these data are reviewed in Sec.5.9.

5.1 228
th calibration sources

The choice of a calibration source is based on several requirements. Firstly, a
substantial number of gamma lines has to be available for the calibration of the
energy scale up to Qββ . Secondly, the half-life has to be at least of the same
order of the experiment’s lifetime, i.e. a few years. Finally, the PSD methods for
germanium detectors are usually tuned with double escape events, which have
very similar signal properties to the expected 0νββ decay events (see Ch. 7). For
this reason, a double escape peak (DEP) with sufficient statistics has to be available.
The candidate which optimally fulfills these requirements is 228Th, with a 1 .9 yr
half-life, a dozen of high statistics lines between 500 keV and 2 .6 MeV, and a DEP
at 1592 .5 keV [182].

The decay scheme of 228Th is shown in Fig. 5.1. After the decay 228Th→ 224Ra,
other 6 decays take place, until the the stable 208Pb nucleus is reached. The half-
life of all the daughter isotopes if much shorter than that of 228Th. The longest
half-life is that of 224Ra, with 3 .6 days. Thanks to this, the decay chain is always
in equilibrium. A possible break of the equilibrium is possible only in the first few
weeks after the source production. Namely, 226Ra might escape the source vol-
ume during the production procedure due to its high chemical reactivity. While
the first five decays of the chain take place only on one channel, 212Bi decays to
208Tl in ∼ 36% of the cases, and to 212Po for the remaining 64%. In all cases,
5 α particles are emitted in the chain. The energies of all α’s with > 1% intensity
which can be emitted in the chain are reported in Tab. 5.1. Since the Gerda sources
are encapsulated in stainless steel, the α’s are absorbed in the source substrate it-

61
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208Pb (stable)

208Tl (3 .053 min)212Po (0 .299 µs)

212Bi (60 .55 min)

212Pb (10 .64 h)

216Po (0 .145 s)

220Rn (55 .6 s)

224Ra (3 .6319 d)

228Th (1 .9116 yr)
α

α

α

α

β-

β- (64 .06%) α (35 .94%)

α β- Figure 5.1.: 228Th decay chain. The
half-lives of all isotopes are reported
in parenthesis. Values from [197].

self. This might yield (α , n) reactions, which can induce neutron activation of the
germanium detectors or the material in their vicinity. The production of custom
228Th sources with reduced neutron activity is described in Ch. 8.

The α or β decays of the 228Th chain produce excited nuclei, which reach their
ground state emitting one or more γ rays. In order to reduce the disk space
usage, the energy threshold for the majority of Phase I calibration runs was set to
∼ 400 keV. Since Qββ for 76Ge is at 2039 keV and the major contribution to the
Gerda physics spectrum below 500 keV is the 39Ar β continuum (see Sec. 4.3.1),
there is no need to have a very precise calibration at low energy. In spite of this,
the uncertainty of the energy scale below 500 keV is at 0.2 keV level, as described
in Sec. 5.7. The list of all γ’s of the 228Th chain with > 500 keV and with a
high enough intensity is reported in Tab. 5.2. The minimum intensity for a γ
to be suitable for the energy calibration depends on the collected statistic, on the
intensity of the Compton continuum in vicinity of the corresponding spectral peak,
and on the energy resolution, hence it cannot be defined a priori. The γ’s listed
in Tab. 5.2 are those which were exploited for energy calibration of Gerda Phase I
data in at least 20% of the considered data sets. Most of these γ’s are emitted after
the decays of 212Bi and 208Tl. Additionally to these, a 661.7 keV gamma is listed
in Tab. 5.2 due to a γ 137Cs contamination of one of the Phase I sources.

A typical calibration spectrum is shown in Fig. 5.2, with the main lines labeled.Che cos’è il bismuto?
Se devi fare tacere

qualcuno, usi il
bismuto.

M. Crozza alias
A. Zichichi

In particular, a full energy peak (FEP) induced by a 212Bi γ is visible at 1620.5 keV.
Its intensity is comparable with that of the DEP from 208Tl at 1592.5 keV. The
events from these two peaks are exploited for tuning the PSD algorithms.
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Isotope Energy [keV] Intensity [%]
228Th 5340.36(15) 27.2(10)
228Th 5423.15(22) 72.2(11)
224Ra 5448.6(12) 5.06(5)
224Ra 5685.37(15) 94.92(5)
220Rn 6288.08(10) 99.886(17)
216Po 6778.3(5) 99.9981(3)
212Bi 6050.78(3) 25.13(7)
212Bi 6089.88(3) 9.75(5)
212Po 8784.12(12) 100

Table 5.1.: Alpha particles with > 1%
intensity. Values from [197].

Isotope Energy [keV] Intensity [%]
212Bi 727.330(9) 6.67(9)
212Bi 785.37(8) 1.102(13)
212Bi 893.408(5) 0.378(19)
212Bi 1078.62(2) 0.564(19)
212Bi 1512.7(3) 0.29(4)
212Bi 1620.50(10) 1.47(3)
208Tl 510.77(10) 22.60(20)
208Tl 583.187(2) 85.0(3)
208Tl 763.13(8) 1.79(3)
208Tl 860.557(4) 12.50(10)
208Tl 2614.511(10) 99.754(4)
208Tl 2103.511(10) SEP
208Tl 1592.511(10) DEP
137Cs 661.657(3) 85.10(20)

511 Annihilation

Table 5.2.: Gamma lines > 500 keV
relevant for the energy calibration of
Gerda. Values from [197].
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Figure 5.2.: 228Th spectrum for ANG3.
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5.2 the gerda calibration software

Energy calibration is a crucial part for the analysis chain because the results ex-
tracted from the physics data are strongly dependent on it. As in any spectroscopy
experiment, the calibration has the aim of assigning a physical value to the recon-
structed energy of an event taking place in the detector. This is done collecting
data with a radioactive source, identifying the peaks in the measured spectrum
and extracting their position. Once enough peaks are identified and their position
obtained, a calibration curve can be calculated. Two typical problems are present
in this process. Firstly, the extraction of the peak positions is done via a fit (χ2 min-
imization of log-likelihood maximization). Several limitations are introduced by
the used algorithm: the selected fit region, the binning used for the histogram and,
last but not least, the function used for the fit. Secondly, the calibration curve is
calculated via a χ2 minimization. As for the peak fitting, the result depends on
the choice of the function.

Other limitations arise from the nature of the Gerda Phase I data and the prop-
erties of the experimental setup:

– a calibration run was taken every 7− 10 days since the beginning of Phase I
in November 2011. A total of 72 (45) data sets were taken with the semi-
coaxial (BEGe) detectors. Given the large number of data sets involved, an
automatic procedure is required for the analysis;

– several detector configurations were present during Phase I data, including
the switching off of two detectors and the exchange of the crystals of the
one-string arm. The software should therefore take these modifications into
account;

– the energy resolution is different for each detector. The binning of the spec-
tra has to be chosen accordingly: the bins should be small enough to fully
exploit the available information, and at the same time large enough not to
limit the fit algorithm performance;

– the peak shape is different for each detector, depending on the detector
performance and the position of the calibration source. Moreover, the al-
gorithm used to extract the energy from the waveforms might be more or
less sensitive to the charge collection inefficiency, leading to the presence of
low-energy tails. If the parameters of the energy reconstruction algorithm
are different between data sets, the peak shape could be different also for
the same detector. An automatic tuning of the fitting function is therefore
needed.

The calibration data contain a lot of additional information which is useful for
a successful analysis of the Gerda data. As an example, the resolution curves, i.e.
the FWHM as a function of energy is needed for the convolution of the Monte
Carlo (MC) spectra. Moreover, several other quantities, as the peak positions in
the raw spectra, their resolution as well as the parameters of the calibration curves
can be used to monitor the stability of the setup over time.

A calibration program has been developed in the framework of this PhD thesis
with the aim of reducing as much as possible the uncertainty on the measured
variables and of making the data processing as automatic as possible. The most
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important features of the program, which are discussed in detail in the following
sections are the following:

– the quality cuts are tuned in order to have spectra containing only clean and
well-reprocessed physical events;

– the fit procedure is automatized, reducing to a very high degree the bias
given by the user, e.g. the choice of the binning or of the fit range, and the
initial parameters of the fitting function. Moreover an automatic check of
the fit performance is included in the code, and not properly fitted peaks are
skipped.

All the plots present here refer to the ANG2 detector and the calibration taken
on February 15, 2013. In case a figure refers to a different detector or run, this is
reported in the caption.

The calibration program for Gerda Phase I is divided in three subroutines.
Firstly, a list of quality cuts is applied to the tier2 data with the aim of select-
ing only physical, clean and well reconstructed events. Secondly, a peak search
is performed, and the recognized peaks are identified comparing their position in
the uncalibrated spectrum with the literature values of Tab. 5.2. Finally, the iden-
tified peaks are fitted with a proper function, and the calibration and resolution
curves are extracted.

5.3 quality cuts for the analysis of calibration spectra

This section describes the procedure used to recognize the events which are either
non-physical, or not properly reconstructed, or which might worsen the quality
of the calibration spectrum. In general, the goal of the quality cuts is to reject the
events which might induce artifacts in the energy spectrum, e.g. non-Gaussian
tails in the peaks. This is done to facilitate the fit of the peaks, and to perform this
on a spectrum which is as similar as possible to a physics spectrum, from which
coincidence, pile-up and non-physical events are removed. The events selection
consists of seven steps. Each cut is applied only to those events which survived
the previous ones.

A typical calibration spectrum before the application of quality cuts is shown in
Fig. 5.3. About 10 physical peaks can be exploited for the energy calibration. The
peak around 6000 a.u., corresponding to about 3000 keV, is given by pulser events,
while the peak at about 4800 a.u. is the 208Tl FEP at 2614.5 keV. The events above
the FEP are given by the summation of two coincident γ events.

For a typical one hour long calibration, 105 to 3 · 105 events are recorded for
each semi-coaxial detector, and 4 · 104 to 105 for each BEGe. The explanation for
this lower statistics in the BEGe’s can be found in their smaller dimensions and
in the fact that five detectors are on the same string. To collect more events the
sources should be left in more different positions for long enough time. In any
case, the better energy resolution of the BEGe’s allows to identify and properly
fit all the most prominent peaks regardless of the lower statistic. As a result, the
uncertainty on the energy scale is comparable for the semi-coaxial and the BEGe
detectors.

The first events to be rejected are the non-physical events by definition, i.e. the
pulser generated events. These are responsible for a peak at energies around
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Figure 5.3.: ANG2 raw spectrum (black) and spectrum after rejecting the pulser
events (red). The threshold for the main trigger is set here to about 500 keV. The
events at very low energy are mostly random coincidences, while the peak around
6000 a.u. in the raw spectrum is given by the pulser events.

3000 keV. The actual position of the pulser peak with respect to the γ peaks de-
pends on the amplitude of the original pulser signal, on the electronic components
of the preamplifier, and on the charge collection properties of the detector. The
physical and pulser events are identified by a tag “eventType” in the tier2 files:
the first are labeled with eventType 1, the latter with 0. The raw spectrum and the
spectrum after the cut of the pulser events are depicted in Figure 5.3.

The second cut regards the coincidences. In particular, events releasing energy
in more than one channel are rejected. As Figures 5.4 and 5.5 show, this cut
completely removes the very low-energy part of the spectrum. Namely, the events
below the 400 keV region are coincidences by definition: a threshold is set at a
voltage corresponding to ∼ 400 keV, and if the voltage of one channel overcomes
that threshold, the energy and the waveform of all channels with non-zero energy
are saved. Hence, the events with energy below 400 keV must be recorded in
coincidence with some other event with E > 400 keV in a different channel.

The coincidence cut rejects 4 to 13% of the total number of physical events. The
fraction of coincidence events strongly depends on the source activities, on the
detector configuration, and on the distance between the sources and the crystals.
The percentage of coincidence events for each channel is reported in Table 5.3.
Most of the cut events are in the continuum, as it is reasonable for the case of an
event undergoing a Compton scattering in a detector, and a full absorption in a
different one.

The third cut is the rejection of the events for which the offline reconstruction
of some parameter of interest (energy, rise time, baseline, trigger, . . . ) fails. Even
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Figure 5.4.: Spectrum of the events in coincidence with some other detector. This
cut mostly acts on the Compton continuum and at energies below the threshold,
for which there must be a main trigger on another channel.
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Figure 5.5.: Raw spectrum (black) and spectrum of the events surviving the coin-
cidence cut (red). All the events below the 400 keV threshold are rejected, as well
as part a ∼ 5% fraction of the continuum.
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Table 5.3.: Number of physical events and number of coincidences for each de-
tector. The percentage of coincidence events is on average higher for the coaxial
detectors because they were located in the 3-string arm and were therefore closer
to other diodes than the BEGe’s. Moreover the volume of a coaxial detector is
roughly a factor three bigger than that of the BEGe’s. The values refer to the
calibration run taken on the 15 February 2013.

Detector Physical Events Coincidences

ANG2 233946 25026 (10.7%)

ANG3 166048 17683 (10.7%)

ANG4 152400 17235 (11.3%)

ANG5 230211 22471 (9.8%)

RG1 78665 9812 (12.5%)

RG2 168898 9641 (5.7%)

GTF112 149383 17346 (11.6%)

GD32B 63805 5614 (8.8%)

GD32C 85489 7404 (8.7%)

GD32D 469157 5575 (8.1%)

GD35B 40979 2814 (6.87%)

GD35C 49354 1831 (3.71%)

though there is no physical reason behind, this selection is helpful to monitor
the effectiveness of the reconstruction algorithms used in GELATIO. The effect of
the cut is very small for all calibration data sets, since just 0.1–0.2% of the events
are rejected. A larger fraction of events rejected by this cut would be a clear
symptom for the presence of either some bug in the code, or of some unexpected
non-physical event. This is not the case for Phase I calibration data, for which
the percentage of events with failing reconstruction is always at the mentioned
level. The effect of this cut on the calibration spectrum is negligible, hence it is not
shown here.

The fourth cut is the rejection of the events for which the rise of the charge pulse
is not in the middle of the recorded waveform. In Gerda Phase I, the FADC was
tuned such that when the voltage rose above a defined threshold, the waveform
corresponding to roughly 80 µs before and after the trigger was recorded. The
baseline b is computed as the average height in the first nb bins of the trace,
which typically correspond to 70 µs. Denoting with x[i] the center and with y[i]
the amplitude of the ith bin in the trace, the baseline is:

b =
1

nb

nb∑
i=0

y[i] , (5.1)

while the baseline root mean square (RMS) is:

bRMS =

√∑nb
i=0 (y[i] − b)

2

nb
. (5.2)

In the signal reconstruction performed by GELATIO, a module is dedicated to the
calculation of the trigger time tt for each waveform. This is defined as the time
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Figure 5.6.: Trigger distribution for ANG2.

at which the charge pulse overcomes a threshold equal to twice the baseline RMS
and stays above this value for at least 40 µs:

tt = x[i] : x[j] > (b+ 2 · bRMS) ∀ j ∈
[
i; i+

40 µs

∆x

]
, (5.3)

where ∆x is the bin width.
The difference between the algorithm implemented in the FADC and the one

used in GELATIO causes the trigger value computed by this not to be peaked
always at the same value. For most events the trigger found with GELATIO is
within the [79.5; 82] µs range, as shown in Fig 5.6. The events with trigger outside
this range are typically coincidences which are not correctly recognized by the
FADC, and are rejected. Also in this case, the effect of the cut is very small (0.1–
0.2% of the events are affected). The information given by this selection is anyhow
useful for monitoring the effectiveness of the offline signal reconstruction and of
the FADC trigger algorithm.

The last two event selections regard the pile-up events. They are the quality cuts
which mostly affect the shape of the peaks in the spectrum and, hence, the preci-
sion achievable by the peak fitting. If the time interval between the interactions
is & 1 µs, two signals are superimposed in the same trace, as shown in Fig. 5.7.
This type of events is referred as in-trace pile-up. If the time interval between the
two interactions if O(100) µs, the waveform of the second signal would be super-
imposed to the exponential decay tail of the previous one (Fig. 5.8). These events
are called pre-trace pile-ups.

In GELATIO, the identification of in-trace pile-up events is performed via a
differentiation of the trace with a time delay δ = 2.5 µs:

y0[i]→ y1[i] = y0[i] − y0

[
i−

δ

∆x

]
, (5.4)
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Figure 5.7.: In-trace
pile-up event.
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Figure 5.8.: Pre-trace
pile-up event.
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Figure 5.10.: ANG2 spectrum before (black) and after (green) the rejection of in-
trace pile-up events.

where y0 and y1 are the original and the differentiated waveforms, respectively.
The waveform is then integrated with a moving average of width δ ′ = 2 µs:

y1[i]→ y2[i] =
∆x

δ ′

i∑
j=i−δ ′

y1[j] . (5.5)

The choice of the time constants δ and δ ′ is tailored to maximize the identification
of in-trace pile-ups, and to avoid the misidentification of multi-site events [202].
The application of the algorithm to the trace of Fig. 5.7 results in the waveform
shown in Fig. 5.9. At this point, the energy depositions are identified via the search
of the waveform region exceeding 4 times the baseline RMS for at least 1 µs. In
the analysis of 0νββ decay, the events with more than one energy deposition in
the same trace are certainly background induced, hence they are rejected. In the
case of calibration data, the removal of such events also yields smaller low-energy
tails in the peaks, as depicted in Fig. 5.10.

The last cut applied to the data is the rejection of pre-trace pile-ups. In this
case the baseline is systematically overestimated and the reconstructed energy is
smaller than the real one. Even if some filtering algorithms allow to correct for this
effect, this is not done in the analysis of Gerda data. Namely, as for the in-trace
pile-ups, the pre-trace pile-ups cannot be induced by a ββ decay event, hence they
are rejected.

A GELATIO module performs a fit of the same time range with a decaying
exponential of the form a + cet/τ, where τ is set to 150 µs for all the channels.
If the first half of the trace is flat, c will be zero and a (denoted in GELATIO as
“fitExpOffset”) will be equal to the baseline b. On the contrary, if the first half
of the trace is exponentially decaying, a and b will have different values. In the
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Figure 5.11.: FitExpOffset as a function of baseline for ANG2.

scatter plot of a against b, we expect to have a cluster of events centered around
the average value of a and b, plus some tail given by the pre-trace pile-ups. One
could then fit this distribution with a 2-dimensional Gaussian and reject the events
outside some pre-defined range. From the numerical point of view, it is easier to
fit a 2-dimensional Gaussian with the axes corresponding to those of the reference
frame. The solution is given by plotting the ratio a/b against b, as depicted in
Figure 5.11. The fit is performed only in the Gaussian part of the distribution
(red box in the scatter plot), which is estimated based on the distributions of b
and a/b only, and the cut consists of rejecting the events outside the 3 σ region
obtained from the 2-dimensional fit. The effect of this cut is shown in Figures 5.12:
the systematic underestimation of energy for pre-trace pile-up events yields to
the presence of low-energy tails in the spectral peaks. These are removed with
high efficiency by the pre-trace pile-up cut, leading to peaks with a Gaussian
distribution. For Phase I calibration data, the cut of pre-trace pile-ups affects 4 to
10% of the total number of events, depending on the detector and on the source
position and activity.

A summary of all quality cuts together with the cut implementation and the
survival probabilities is given in Tab. 5.4.

5.4 peak search and identification

Given the high number of calibration data sets available, an algorithm for an au-
tomatic peak search and identification is required. This is based on the “TSpec-
trum” [203] class of ROOT [195]. TSpectrum allows to search for an arbitrary
number of (Gaussian) peaks: firstly the highest peak is found, and subsequently
all the other peaks are searched in order of decreasing amplitude. The algorithm
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Figure 5.12.: ANG2 spectrum before (black) and after (green) the rejection of pre-
trace pile-up events.

Table 5.4.: List of quality cuts applied to calibration data in Gerda Phase I. The
survival probability for the cut of pulser events depends on the pulser setting and
is not reported here. The loss due to events mis-classification is < 0.1% [101].

Cut Cut implementation Survival probabilities

Pulser Reject pulser events O(1%)

Coincidences
Reject events with

4–13%
E > 0 in > 1 detector

Failing Reject non well-
0.1–0.2%

Reconstruction reconstructed events

Trigger
Reject events

0.1–0.2%
with t 6∈ [79.5; 82] µs

In-trace Reject events with
1–5%

pile-ups > 1 charge deposits

Pre-trace Reject events with
4–10%

pile-ups exponential baseline
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allows the user to define a threshold on the minimum required peak amplitude
(defined as a percentage of the highest peak amplitude), on the minimum distance
between neighbor peaks, on the typical peak width and on the maximum number
of peaks to be searched.

In the analysis of the calibration spectra and for peak search only, a spectrum
with bins of ∼ 1.5 keV is created. In this way, the peaks have a width of a few
bins, and random fluctuations of the counts on the continuum are reduced. The
threshold on the amplitude is set to 0.5%, the minimum distance between adjacent
peaks to ∼ 6 keV, the peak width (σ) to ∼ 2 keV, and the total number of peaks to
20. This allows to efficiently find all the γ lines with a net peak counts number of
& 50. For a typical 228Th calibration spectrum containing O(105) events, at least
10 peaks from Tab. 5.2 are found. In most cases, several spurious peaks are found,
too, due to the low threshold on the peak amplitude. A higher threshold would
avoid this effect, but would also not allow to find the low intensity peaks, which
could be used for the extraction of the calibration curve in case of high statistics
data sets.

The peak identification proceeds as follows. Firstly, the 208Tl line at 2614.5 keV
is identified as the peak with highest energy. Secondly, for each peak i in the
uncalibrated spectrum the ratio Ri(a.u.) between its position and the position of
the 2614.5 keV line is computed. This is then compared with the ratio between the
energy of each literature value j of Tab. 5.2 and 2614.5 keV, Rj(keV). If a literature
value j is found for which: ∣∣∣Ri(a.u.)

Rj(keV)
− 1
∣∣∣ < 0.01 , (5.6)

the peak i is identified with the literature value j, otherwise it is classified as
spurious and removed from the peak list. This algorithm assumes that the energy
calibration curve is linear at level of 1%, which is true for all Phase I data.

5.5 fitting of the spectral lines

The peak fitting is a crucial point for the extraction of the calibration curves. In
Gerda, the use of detectors with different geometries and charge collection prop-
erties is reflected in a variability of the peak shapes, which has to be accounted for.
Moreover, the presence of data sets with different statistic has to be considered in
the development of the fitting algorithm. These two obstacles have been faced by a
routine which automatically adjusts the fitting function to the peak characteristics.

The peaks are fitted with a different functions, according to the considered
peaks. The γ lines of Tab 5.2 with intensity higher than 5% and the annihilation
peak at 511 keV are parametrized with the Hypermet function [204]:

f(E) = A exp

(
−
(E− µ)2

2σ2

)
+B+

C

2
erfc

(
E− µ√
2σ

)
+

D

2
exp

(
E− µ

δ

)
erfc

(
E− µ√
2σ

+
σ√
2δ

)
+ F · (E− µ) , (5.7)
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which is the sum of a Gaussian distribution with mean µ and width σ over a
linear continuum B+ F · (E− µ), a low-energy step (third term) and a low-energy
tail (fourth term). This is parametrized as the product of a rising exponential with
decay constant δ and an inverse error function. The presence of a low-energy tail
is due to the events affected by an underestimation of energy as a consequence
of incomplete charge collection (see Ch. 6) or of the residual presence of pile-up
events in the spectrum.

The γ lines of Tab 5.2 with intensities below 5%, as well as the DEP and SEP,
are fitted with the sum of a Gaussian distribution, a low-energy step and a linear
background:

f(E) = A exp

(
−
(E− µ)2

2σ2

)
+B+

C

2
erfc

(
E− µ√
2σ

)
+ F · (E− µ) . (5.8)

For each peak, the fit range is defined a priori: if the continuum around the
peak is linear and no other peak is present in its vicinity, a ∼ 80 keV range is used,
otherwise the range is reduced according to the properties of the spectrum.

In case of low statistic, the fit of the low-energy step and the tail is not always
successful. Namely, the amplitude assigned to them by the fit routine might be
smaller than the corresponding statistical uncertainty. For this reason, a minimal
function is defined for all peaks as the sum of a Gaussian distribution over a linear
continuum. In case the parameters of the low-energy step and/or tail are not well
constrained, the fit is repeated without their contribution. The fitting method is
the same for each peak, differing just by the starting and the minimal fit function
used. The complete fit procedure is the following:

– the minimum and maximum of the fit range are computed according to
some predefined values;

– the absolute maximum of the histogram in the fit region is searched;
– a preliminary fit with a Gaussian distribution over a flat background is per-

formed in a very narrow region around the maximum;
– a preliminary fit with a first order polynomial B+ F · (E−µ) is performed on

the sides of the peak, fixing µ to the mean of the Gaussian. For the 2614.5 keV
peak only a flat background is considered;

– a fit with the starting function is performed (Eqs. 5.7 and 5.8), setting the ini-
tial values and the boundaries of all the parameters according to the results
of the preliminary fits. The boundaries are then restricted according to the
values of each parameter found so far, and the fit is repeated;

– if a tail is considered, the number of counts attributed to it and to the Gaus-
sian peak are computed;

– if the tail parameters are smaller than twice their errors or if the tail integral
is smaller than the 1% of the Gaussian integral, the fit is repeated without
considering the tail;

– if the step height is smaller than twice its error, the fit is repeated without it;
– The FWHM is computed as 2.355 · σ if only the Gaussian peak is considered.

If also the tail is present, the FWHM is extracted numerically on the sum of
the Gaussian distribution and the low-energy tail.

All the fits are performed using Minuit2 [205], which is characterized by a lower
failure probability than Minuit [206]. A likelihood fit is done in order to deal with
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both high and low statistic. A χ2 fit is also done for comparison, yielding different
results only in the case where the number of events both in the peak and in the
continuum is very small. The reason why some fits are repeated with different
boundaries is strictly related to the minimization algorithm. The extraction of
the minimum χ2 or maximum likelihood involves a high number of iterations
when functions with strongly correlated parameters are used. This is the case of
the Gaussian and the low-energy tail (Eq. 5.7). It is therefore necessary to set an
allowed range to some or all the parameters. By doing so, Minuit2 (and Minuit)
transform the function defined by the user into a new function, changing the
original parameter P1 into a new parameter P2 in the following way [206]:

P2 = arcsin

(
2
P1 − Pmin
Pmax − Pmin

− 1

)
, (5.9)

where Pmin and Pmax are the lower and the upper limits, respectively. Given this
non-linear transformation, if the best-fit parameter is close to the boundaries the
result might not be reliable. The fit has then to be repeated either releasing the
parameters or changing the boundaries such that the parameter stays roughly in
the middle of the allowed range. After several attempts, the methods presented
above appeared to be the most effective, both for the convergence of the fit and for
the stability of the result, which was studied by changing the boundaries and/or
the initial values.

A final check is performed on the effectiveness of the fit, rejecting the peak if
one of the following conditions is true:

– the amplitude of the Gaussian is smaller than 5 counts (too few events in the
peak);

– σµ > µ/1000 (bad evaluated peak position);
– FWHM > µ/100 (too broad peak);
– FWHM < µ/5000 (too narrow peak);
– |F| > 0.2 (too big slope in the linear background).

These are very weak requirements, which are not satisfied only in the case of a
clear fit failure. The fraction of failing fits over all Phase I calibration data is at the
0.2% level.

The fits of the 208Tl line at 2614.5 keV for ANG2 and GTF112 are shown in
Figs. 5.13 and 5.14, respectively. While in the first case the low-energy tail is small
and its amplitude is set to zero, in the second case it strongly affects the peak
shape and its parameters are well constrained by the fit. The fits of most of other
peaks reported in Tab. 5.2 are shown in Figs. A.1 and A.2.

5.6 calibration and resolution curves

The position of the peaks is then exploited for the extraction of the calibration
curve. For all spectra, two calibration curves are fitted to the data:

EkeV = a+ b · Ea.u. , (5.10)

EkeV = a+ b · Ea.u. + c · E2a.u. , (5.11)

(5.12)
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Figure 5.13.: Fit of 2614.5 keV line in the calibration spectrum for ANG2. The best
fit values are reported in the inset.

where EkeV is the calibrated energy (in keV) and Ea.u. is the uncalibrated one.
The plot of literature values versus peak positions is fitted via a χ2 minimization,
using Minos [206] for a better determination of the parameters uncertainties. The
residuals from the calibration curves are then calculated and plotted as function
of energy:

∆E = EkeV(Ea.u.|â, b̂, ...) − Elit , (5.13)

where EkeV(Ea.u.|â, b̂, ...) is the value of the fitted calibration curve in correspon-
dence of the peak position Ea.u., and Elit is the corresponding literature value.
The errors on the calibrated energies are calculated taking into account the covari-
ance matrix of the fit parameters:

σ2EkeV =

(
∂EkeV
∂Ea.u.

)2
σ2Ea.u.

+
∑

p=a,b,..

(
∂EkeV
∂p

)2
σ2p

+
∑
p6=q

∂EkeV
∂p

∂EkeV
∂q

Cov(p,q) , (5.14)

where p and q are generic parameters of the calibration curve. The error on the
residuals is then be found as:

σ2∆E = σ2EkeV + σ2Elit . (5.15)

In most cases Eq. 5.11 gives the best results, while for some detectors equation 5.10

gives already a good description of the data.
Two tests are performed to quantify the goodness of fit. Firstly, the χ2/NDF and

the corresponding probability are calculated using the routine provided by ROOT.
Secondly, a Wald-Wolfowitz Run-Test [207] is performed to check if the consid-
ered curve is enough to describe the data. This non parametric test computes a
probability for the fit according to how the residuals are grouped in clusters of the
same sign. If, for example, the first half of the residuals has a sign and the second
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Figure 5.14.: Fit of 2614.5 keV line in the calibration spectrum for GTF112. The
best fit values are reported in the inset.

half the opposite, the probability that this is given just by a statistical effect is very
low. In the present case, probabilities smaller than 0.1 are considered as a hint for
a bad description of the data.

The study of resolution is useful for comparing the performance of different
reconstruction algorithms and for the smearing of the MC spectra. The plot of
FWHM as function of energy is fitted using the formula of Eq. 3.23:

FWHM(E) = 2.355

√
η2

e2
ENC2 + ηF · E+ c2 · E2 =

=
√
a2 + b2 · E+ c2 · E2 . (5.16)

An alternative fit is also performed using the formula [167]:

FWHM(E) = a+ b
√
E . (5.17)

The curve obtained in this case is not used for the smearing of the MC spectra, but
only to compute the systematic uncertainty of the FWHM at Qββ related to the
choice of the fitting function.

The peak at 511 keV and the SEP are wider than the other gamma lines due to
Doppler broadening, therefore they are not considered for the fit. An example of
the resolution curve is reported in Figure 5.16.

5.7 evaluation of systematics on the energy scale

5.7.1 Data Selection

The detectors considered in this section are the six semi-coaxial and four BEGe
detectors used for the 0νββ decay search (see Tab. 4.4). All the analyses were
performed on the golden, silver and BEGe data sets, as reported in Tab. 5.5. The
selection of the calibration data was done according to two criteria. Firstly, the
calibrations taken in periods which are not considered for the 0ν2β analysis are
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Figure 5.15.: Residuals of the peaks positions in the uncalibrated spectrum from
the quadratic calibration curve for ANG2.
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Figure 5.16.: FWHM as a function of energy for ANG2.
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Table 5.5.: Data sets for analysis of systematic uncertainties related to the calibra-
tion procedure.

Data Run number and
set Detectors data taking period

Golden ANG1–5, RG1–2
24–32, 36–45

06.11.11–15.06.12, 27.07.12–02.05.13

Silver ANG1–5, RG1–2
34–35

15.06.12–27.07.12

BEGe GD32B, GD32C, GD32D, GD35B
35–45

08.07.12–02.05.13

discarded. For example, the calibrations taken during run 33 are not included in
this analysis. Secondly, only the calibrations effectively applied to the background
data are considered.

Each quantity (FWHM, systematic deviations and energy uncertainty) was de-
termined in two different ways:

– on a “super-tier3”, consisting of the sum of all calibrated spectra considered
for each data set;

– on the single calibration tier2 data sets and then averaging on the period of
validity of each calibration and on the error.

5.7.2 Deviation from Literature Values for the Super-Tier3 Data Set

A calculation of the systematic uncertainty on the energy reconstruction of each
single event is obtained by comparing the position of the peaks in the super-tier3
with the literature values. The fit of the peaks in the super-tier3 spectra is per-
formed with exactly the same procedure applied to the uncalibrated spectra (tier2)
for the extraction of the calibration curves. The differences between the fitted
peaks positions in the calibrated spectra super-tier3 spectra and the literature val-
ues for the peaks at 1620 keV, 2103 keV and 2615 keV are reported in Tab. 5.6.

The errors are the combination in quadrature of the uncertainty on the peaks
positions and that on the literature values. For some detectors and data sets a
systematic shift of the peaks in the super-tier3 spectra of up to 0.3 keV is present.
This is due to the fit applied to the peaks (see Sec. 5.5): in the case of a single
calibration spectrum, i.e. in the case of the uncalibrated tier2 spectra of a single
data set, the statistics is often not enough to constrain the low-energy tail of the
function given in Eq. 5.7. Therefore, in many cases the tail and/or the step are not
used in the final fit of the peaks. On the other hand, the super-tier3 spectra allow
to perform a fit with the maximal functions for all of the peaks. The systematic
deviation comes from the sub-optimal parametrization of the peak shapes in case
of low statistics spectra. As a cross-check, the fit of the super-tier3 spectra is per-
formed without the parametrization of the low-energy tail in the fitting function.
As a result, the deviations from literature values are reduced, but the fit shows a
worse χ2/NDF ratio.
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Table 5.6.: Deviation of several peaks positions from literature values for the
coaxial detectors and all Phase I data (super-tier3).

Deviation at
Detector 1620 keV [keV] 2103 keV [keV] 2615 keV [keV]

G ANG2 −0.05± 0.02 +0.10± 0.04 +0.06± 0.01
O ANG3 +0.04± 0.02 +0.11± 0.06 +0.13± 0.01
L ANG4 −0.01± 0.02 −0.09± 0.02 +0.03± 0.01
D ANG5 −0.30± 0.02 −0.10± 0.06 +0.13± 0.01
E RG1 −0.05± 0.03 +0.20± 0.10 +0.32± 0.03
N RG2 −0.35± 0.03 +0.27± 0.04 +0.19± 0.02

S ANG2 +0.08± 0.04 −0.05± 0.04 −0.15± 0.02
I ANG3 −0.10± 0.04 −0.15± 0.06 −0.12± 0.02
L ANG4 −0.01± 0.05 +0.03± 0.02 −0.15± 0.02
V ANG5 −0.17± 0.03 −0.02± 0.02 −0.05± 0.02
E RG1 +0.09± 0.05 −0.04± 0.01 +0.11± 0.03
R RG2 −0.11± 0.06 +0.18± 0.06 +0.07± 0.02

B GD32B +0.08± 0.02 −0.19± 0.06 −0.04± 0.01
E GD32C −0.24± 0.02 −0.28± 0.05 −0.01± 0.01
G GD32D −0.04± 0.03 −0.20± 0.06 −0.03± 0.01
e GD35B +0.01± 0.05 +0.02± 0.09 +0.02± 0.01

5.7.3 Average Single Calibration Residuals from Literature Values

A different approach in the calculation of the systematic uncertainty on the energy
reconstruction consists of calculating the average residuals of the literature values
from the calibration curves. This quantity is reported in Tab. 5.7 for the peaks at
1620 keV, 2103 keV and 2615 keV. In this case the values are in general smaller than
for the deviations calculated on the super-tier3, as expected.

For the 0νββ decay analysis, a systematic of ±0.2 keV in the energy reconstruc-
tion of each single event was considered [102]. This is a conservative choice which
accounts for the higher deviations and residuals obtained with ANG5, RG2 and
GD32C.

5.8 evaluation of energy resolution at qββ on phase i physics

data

One of the most important parameters in the search of 0νββ decay is the energy
resolution of the detectors. A reliable determination of the FWHM at Qββ is
mandatory for a successful analysis of the collected data. If the energy scale is sta-
ble over all the data collection period, the FWHM at Qββ can be taken from the
resolution curves obtained from the calibration data. In Gerda Phase I some gain
instabilities were present during the physics runs. The amplitude and frequency
of these instabilities depend on the detector. For this reason, the effective energy
resolution at Qββ on the physics data is expected to be – at least for some detec-
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Table 5.7.: Average residuals from the calibration curves in correspondence to
high energy peaks for the coaxial detectors and all Phase I data.

Residual at
Detector 1620 keV [keV] 2103 keV [keV] 2615 keV [keV]

G ANG2 −0.01± 0.03 +0.00± 0.02 +0.00± 0.01
O ANG3 −0.01± 0.02 +0.02± 0.02 +0.08± 0.06
L ANG4 −0.04± 0.02 −0.12± 0.02 +0.02± 0.04
D ANG5 −0.31± 0.02 −0.26± 0.01 +0.06± 0.07
E RG1 −0.11± 0.03 +0.06± 0.02 +0.11± 0.13
N RG2 −0.28± 0.03 +0.24± 0.02 +0.20± 0.12

S ANG2 +0.02± 0.05 −0.07± 0.04 +0.08± 0.05
I ANG3 −0.12± 0.04 −0.15± 0.03 +0.13± 0.08
L ANG4 −0.04± 0.05 −0.10± 0.04 −0.13± 0.10
V ANG5 −0.17± 0.04 −0.16± 0.03 +0.11± 0.09
E RG1 +0.05± 0.06 −0.09± 0.04 −0.05± 0.18
R RG2 −0.11± 0.07 +0.13± 0.05 +0.07± 0.04

B GD32B +0.06± 0.02 −0.21± 0.02 −0.01± 0.05
E GD32C −0.26± 0.02 −0.32± 0.02 +0.01± 0.09
G GD32D −0.02± 0.03 −0.20± 0.02 −0.01± 0.05
e GD35B +0.00± 0.05 −0.03± 0.03 −0.01± 0.09

tors – worse than that obtained on the basis of calibration data only. To quantify
this effect, the energy resolution of the background peaks present in the physics
spectra has to be compared with the value expected at the same energy from the
calibration data. In Phase I, the only background peak with sufficient statistic for
the extraction of the FWHM is the 42K peak at 1524 .6 keV [197].

For each of the data sets reported in Tab. 5.5, the FWHM at Qββ is computed
as follows for each detector separately:

– the FWHM at 1524.6 keV and its uncertainty are extracted from the resolu-
tion curves obtained from the calibration data. The exposure averaged values
from the single calibration tier2 data are used. This quantities are referred
as FWHM1525,cal and σ1525,cal from here on;

– the 42K peak on the physical spectra is fitted, and the FWHM extracted,
together with its uncertainty; This quantities are refered as FWHM1525,phys

and σ1525,phys from here on;
– the two values of the FWHM at 1524.6 keV are compared. If the two are not

compatible within 1 σ, a correction term is computed. In particular, if

FWHM1525,phys − FWHM1525,cal >
√
σ21525,phys + σ

2
1525,cal , (5.18)

the correction term ∆FWHM is defined:

∆FWHM = FWHM1525,phys − FWHM1525,cal . (5.19)

– the FWHM at Qββ is extracted from the resolution curves obtained from the
calibration data;



5.8 evaluation of energy resolution at qββ on phase i physics data 83

– if the condition of Eq. 5.18 is satisfied, the correction term ∆FWHM is added
to the FWHM at Qββ:

FWHMQββ,phys = FWHMQββ,cal +∆FWHM , (5.20)

Otherwise the FWHM at Qββ is simply that obtained from the calibration
data:

FWHMQββ,phys = FWHMQββ,cal . (5.21)

The FWHM of the three considered data sets is then calculated as the exposure
weighted average of the single detector values.

The error on FWHMQββ,phys is computed combining in quadrature the follow-
ing uncertainties:

– the statistical uncertainty σstat from the fits of all single tier2 calibration
data sets;

– the difference σsyst,fit between the FWHMQββ,cal obtained with the func-
tions given in Eqs. 3.23 and 5.17;

– the difference σsyst,dataset between the FWHMQββ,cal obtained from the
single tier2 calibration data sets and from the super-tier3 spectra;

– the uncertainty on the correction term ∆FWHM, if present.
The error on FWHMQββ,phys for the three data sets is then weighted on the expo-
sure of the single detectors.

5.8.1 FWHM at 1524.6 keV

As a first step, the FWHM at 1524.6 keV is extracted from the calibration and
physics data. In the case of calibration data, the value is extrapolated from the
resolution curve of each calibration run, and averaged over the time of validity of
the same. In detail:

FWHMcal =

∑
i
FWHMcal,i∆tcal,i

σ2cal,i·T∑
i
∆tcal,i
σ2cal,i·T

, (5.22)

σ2cal =
1∑

i
∆tcal,i
σ2cal,i·T

. (5.23)

where ∆tcal,i is the time of validity of the ith calibration, T is the total exposure,
and σcal,i is the error on the FWHM of the ith calibration. The systematic un-
certainty is computed as the sum in quadrature of two terms. The first is the
difference between the FWHM obtained with Eqs. 3.23 and 5.17. The second is the
difference between the average FWHM obtained from all single tier2 spectra and
the FWHM obtained from the corresponding super-tier3.

In the case of physics data, a fit of the 42K peak is done using a Gaussian
distribution over a flat background. Given the small statistic, it was not possible
to perform the fit separately for the Golden and the Silver data sets. Therefore a
unique fit was performed on all the Phase I data for the semi-coaxial detectors.

The uncertainty on the FWHM of the 42K peak is of about 0.3 keV for the semi-
coaxial detectors, and up to 0.7 keV for the BEGe detectors, due to the much lower
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Table 5.8.: FWHM at 1524.6 keV for all the detectors and all the three considered
data sets. The first column shows the data set, the second the detector, the third
the FWHM of the 42K peak (computed on all Phase I physics data), the fourth is
the FWHM at 1524.6 keV from the calibration data of the considered data set (the
first error is statistical, the second systematic), and the fifth is the correction term,
where used. The two errors on the offset are statistical and systematic and are
propagated from those in the previous two columns.

FWHM [keV] FWHM [keV]
Detector Physics Calibration Offset

G ANG2 5.17± 0.29 3.92± 0.01± 0.03 1.32± 0.29± 0.03
O ANG3 4.35± 0.26 4.37± 0.05± 0.08
L ANG4 4.48± 0.31 3.98± 0.03± 0.05 0.50± 0.31± 0.05
D ANG5 4.04± 0.22 3.97± 0.04± 0.06
E RG1 4.12± 0.32 4.22± 0.06± 0.18
N RG2 4.43± 0.31 4.67± 0.06± 0.18

S ANG2 5.17± 0.29 4.73± 0.04± 0.16 0.44± 0.29± 0.16
I ANG3 4.35± 0.26 4.40± 0.03± 0.16
L ANG4 4.48± 0.31 4.23± 0.04± 0.09
V ANG5 4.04± 0.22 4.02± 0.03± 0.15
E RG1 4.12± 0.32 4.27± 0.05± 0.20
R RG2 4.43± 0.31 4.63± 0.05± 0.25

B GD32B 2.25± 0.35 2.41± 0.04± 0.03
E GD32C 2.68± 0.55 2.40± 0.04± 0.03
G GD32C 3.45± 0.47 2.51± 0.05± 0.03 0.94± 0.47± 0.05
e GD35B 4.24± 0.69 3.85± 0.09± 0.05

statistic. The fit is performed several times changing the fit range to highlight
eventual systematic effects. All fit parameters are always stable within the statistics
uncertainties.

The values of the FWHM at the 42K peak, with the corresponding values given
by the calibration data and the correction terms are reported in Tab. 5.8.

5.8.2 Average Single-Calibration FWHM at Qββ

The FWHM at Qββ is computed on the calibration data as described in Sec. 5.8.1.
The values for all detectors and the three considered data sets are given in Tab. 5.9.
Where present, the correction terms of Tab. 5.8 are added to the FWHM at Qββ.

5.8.3 Official FWHM at Qββ

The FWHM for the considered data sets is then obtained by weighting the FWHM
for each detector with the corresponding exposure, which is reported in Tab. 6.11.
The final FWHM value for the considered data sets is given in Tab. 5.10.
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Table 5.9.: FWHM at Qββfor all the detectors and all the three considered data
sets. The first column shows the data set, the second the detector, the third the
FWHM at Qββ from the calibration data (the first error is statistical, the second
systematic), the fourth the eventual correction term, and the fifth the FWHM at
Qββ after adding the correction term, where used.

FWHM [keV] FWHM [keV]
Detector Calibration Offset Physics

G ANG2 4.52± 0.01± 0.00 1.32± 0.29± 0.03 5.84± 0.29± 0.08
O ANG3 4.53± 0.05± 0.03 4.53± 0.05± 0.12
L ANG4 4.44± 0.03± 0.02 0.50± 0.31± 0.05 4.94± 0.31± 0.07
D ANG5 4.16± 0.04± 0.03 4.16± 0.04± 0.07
E RG1 4.46± 0.07± 0.04 4.46± 0.07± 0.27
N RG2 4.91± 0.07± 0.04 4.91± 0.07± 0.25

S ANG2 4.85± 0.04± 0.03 0.44± 0.29± 0.16 5.29± 0.29± 0.25
I ANG3 4.57± 0.04± 0.03 4.57± 0.04± 0.20
L ANG4 4.36± 0.04± 0.02 4.36± 0.04± 0.10
V ANG5 4.21± 0.03± 0.03 4.21± 0.03± 0.18
E RG1 4.49± 0.06± 0.02 4.49± 0.06± 0.27
R RG2 4.83± 0.06± 0.03 4.83± 0.06± 0.32

B GD32B 2.62± 0.05± 0.02 2.62± 0.05± 0.07
E GD32C 2.63± 0.04± 0.02 2.63± 0.04± 0.04
G GD32C 2.74± 0.06± 0.02 0.94± 0.47± 0.05 3.68± 0.47± 0.06
e GD35B 3.96± 0.10± 0.07 3.96± 0.10± 0.07

Table 5.10.: Official FWHM at Qββ for the Golden, Silver and BEGe data sets. The
FWHM of each detector is weighted with the corresponding exposure. The first
error is statistic, the second systematic.

Data Set FWHM [keV]

Golden 4.83± 0.15± 0.13
Silver 4.63± 0.09± 0.22
BEGe 3.24± 0.16± 0.06
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5.9 evaluation of the systematics on the energy scale with
56

co

data

After the end of Phase I, several dedicated measurements were taken in Gerda

with the aim of better understanding the experiment’s performances. Among
these, a three weeks long calibration run was acquired with a 56Co source with
∼ 5 kBq activity. This was custom-produced via proton irradiation on a pure 56Fe
target by the Gerda group of the Technische Universtität München.

The choice of 56Co is motivated by the presence of 4 DEPs in vicinity of Qββ.
These can be used to cross-check the survival probabilities of SSE and MSE, which
are determined with 228Th measurements and MC simulations [208]. Moreover,
the 56Co spectrum is characterized by the presence of a about 25 gamma lines with
at least 0.1% emission probability, evenly distributed between 800 and 3500 keV.
Most of these γ’s are emitted in cascade, thus several summation peaks are visible
up to 4.2 MeV. Finally, up to 9 SEP and 5 DEP could be identified, provided that
a high statistics spectrum is available. It is therefore possible to perform a high
precision energy calibration using a total of about 40 peaks. which are listed in
Tab. 5.11. A 56Co spectrum collected with ANG4 is shown in Fig. 5.17.

At the moment of the measurement, only the 3-string arm was deployed (see
Tab. 4.4). Three calibration runs were performed, with the 56Co source at different
heights in order to collect enough statistics with all detectors. Due to some con-
current maintenance operations, strong gain drifts affected some detectors. Thus,
only part of the data can be exploited for the analysis.

The data are analyzed using a modified version of the calibration program. The
only difference with respect to the standard one is the list of peaks to be fitted.
The residuals from a quadratic calibration curve for ANG2 and ANG4 are shown
in Fig. 5.18. In both cases, most of the residuals are distributed within ±0.2 keV.
Higher values are only found for the summation peaks above 4 MeV, for which
a reliable spectral fit is not possible due to the limited statistics. The distribution
of all residuals for all the available detectors is centered at zero, and has a RMS
of 0.15 keV. This is in agreement with the 0.2 keV systematic uncertainty of the
energy scale assumed for the Phase I 0νββ decay analysis. Moreover, no hint is
found for a possible > 0.2 keV shift of the DEPs, as claimed in [209].
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Type Energy [keV] Intensity [%]

Annihilation 511

γ 787.743(5) 0.311(3)
γ 846.770(2) 99.9399
γ 977.372(5) 1.421(6)
γ 1037.843(4) 14.05(4)
γ 1175.101(4) 2.252(6)
γ 1238.288(3) 66.46(12)

SEP 1260.357(4)
γ 1335.40(3) 0.1224(12)
γ 1360.212(4) 4.283(12)
γ 1442.746(6) 0.180(4)
γ 1462.322(6) 0.074(4)

SEP 1504.215(5)
SEP 1523.791(5)
DEP 1576.500(4)
γ 1771.357(4) 15.41(6)
γ 1810.757(4) 0.640(3)
γ 1963.741(8) 0.707(4)
γ 2015.215(5) 3.016(12)
γ 2034.791(5) 7.77(3)

SEP 2087.500(4)
γ 2113.135(5) 0.377(3)

DEP 2180.029(8)
γ 2113.135(5) 0.377(3)

DEP 2231.503(4)
DEP 3273.079(4)
γ 2276.131(4) 0.118(4)

SEP 2498.645(4)
γ 2523.09(11) 0.059(4)
γ 2598.500(4) 16.97(4)

SEP 2691.029(8)
SEP 2742.503(4)
SEP 2762.079(4)
SEP 2940.232(4)
γ 3009.645(4) 1.036(13)
γ 3202.029(8) 3.209(12)
γ 3253.503(4) 7.923(21)
γ 3273.079(4) 1.8759(20)
γ 3451.232(4) 0.949(5)
γ 3548.05(6) 0.1955(15)

SUM 4048.799(8)
SUM 4100.273(5)
SUM 4119.849(5)

Table 5.11.: 56Co gamma lines
> 500 keV relevant for the en-
ergy calibration of Gerda. Val-
ues from [197].
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Figure 5.17.: 56Co spectrum measured with ANG4 in the [0; ∼ 4200] keV range.
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Figure 5.18.: 56Co residuals from calibration curve.
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R E P R O C E S S I N G O F G E R D A P H A S E I D ATA W I T H T H E Z A C
F I LT E R

In this chapter, the development of a new shaping filter for the energy reconstruc-
tion is described. This filter was used for a full reprocessing of Gerda Phase I
data. In Sec. 6.1 a short review on signal shaping is given. Secs. 6.2 and 6.3 are
dedicated to the development and the optimization of the new filter. The results
of the reprocessing are reported in Sec. 6.4. Finally, a re-analysis of 0νββ decay
is presented in 6.5, while the prediction for the Phase II sensitivity on T0ν1/2 on the
basis of the obtained improvement in energy resolution is given in Sec. 6.6. Part
of the chapter content was published as a Gerda collaboration paper [3].

6.1 signal shaping

The goal of a spectroscopy measurement is the determination of one or more phys-
ical parameters which characterize each single event. To maximize the precision
of the measurement, the shape of the signal has to be modified in a dedicated
way. This operation is referred to as “signal shaping” and can be performed either
through a filtering circuit, or with the convolution of the digitized signal trace
with a filtering algorithm. The advantages of digital shaping are that an infinite
number of filters are available, and that the filter itself can be improved in a later
stage and applied to the recorded data.

In the case of energy reconstruction, we are interested in measuring the total
charge deposited in the detector.

6.1.1 Digital Shaping in Gerda

In Gerda Phase I the waveforms were digitized with 14 bits precision and 100MHz
sampling frequency [172], with 16384 samples for each pulse. For energy recon-
struction only, the traces are rebinned summing up 4 consecutive bins. In this way,
the waveforms contain 4096 bins of 40 ns width. A typical waveform is shown
in Fig. 6.1: when the voltage overcomes the trigger threshold, a ∼ 164 µs trace is
recorded. After a ∼ 80 µs long baseline the charge signal rises up with a ∼ 1 µs rise
time followed by an exponential decay due to the discharge of the feedback capac-
itor. The exponential tail has a time constant τ = RfCf. For Gerda, τ ' 150 µs.

The standard energy reconstruction used in Gerda Phase I is a pseudo-Gaussian
filter, implemented as:

91
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Figure 6.1.: Typical
waveform recorded in
Gerda Phase I. A ∼

80 µs long baseline is
recorded before each
signal rise. The expo-
nential decay tail cor-
responds to the dis-
charge of the feed-
back capacitor.

– a delayed differentiation of the signal trace:

y0[i]→ y1[i] = y0[i] − y0

[
i−

∆x

δ

]
, (6.1)

where y0[i] amplitude of the trace in the ith bin, ∆x is the bin width, and
δ = 5µs;

– a series of 25 moving average (MA) operations:

yk[i]→ yk+1[i] =
∆x

δ

i∑
j=i− δ

∆x

yk[j] k = 1, . . . , 25 . (6.2)

The output signal has a quasi-Gaussian shape, and its height is proportional to
the energy deposited in the detector. The main steps of the pseudo-Gaussian filter
algorithm are graphically visualized in Fig. 6.2. The choice of a 5 µs shaping time
and of 25 iterations for the MA ensures a good filtering of the high-frequency noise
and avoids the maximum of the shaped signal to move out of the time window.

The pseudo-Gaussian filter is proven to be a very fast and robust algorithm
leading to a quasi-optimal energy resolution if the 1/f noise component is negli-
gible [173]. In Gerda Phase I, the preamplifiers were placed at 30-60 cm distance
from the diodes in order to minimize the background. Moreover, the cables con-
necting the detector to the front-end electronics were simple unshielded OFHC
copper strips with a soft PTFE insulation. For this reason, a strong low-frequency
noise was present for some of the Phase I detectors, which makes the use of a
dedicated shaping filter preferable.

As described in Sec. 3.4, the ENC depends on the properties of the detector, of
the preamplifier and of the connection between them. In Gerda, detectors with
different geometries and impurity concentrations are used, leading to different
values of CD and IL. In addition, the non-standard connection between the diodes
and the preamplifiers results in different input capacitances Ci. An improvement
in energy resolution can therefore be obtained by tuning the parameters of the
shaping filter individually for each detector.
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Figure 6.2.: Top left: typical waveform recorded in GERDA Phase I. Top right:
the waveform after the differentiation operation described in Eq. 7.2. Bottom: the
signal after one (left) and 25 (right) moving average operations (see Eq. 6.2).

Finally, the noise features are strongly dependent on the presence of non-coaxial
cables for the connections of the diodes to the front-end electronics, yielding to
low-frequency disturbance. For this reason, the shaping filter parameters leading
to an optimal energy resolution are expected to be different for different detector
arrangements.

6.2 the zac filter

A new shaping filter has been developed with the aim of improving the energy
resolution of Gerda Phase I data. Several factors are considered in the filter design
and optimization. First, the filter ENC is minimized, with special attention to low-
frequency noise. Second, the charge integration is maximized. Finally, the filter
parameters are optimized separately for each detector and Phase I data are divided
in data-sets, corresponding to different detector configurations in Gerda.

Assuming an infinite drift velocity of the charge carriers in the crystal, the cur-
rent signal induced at the detector anode is delta-like:

s0(t) = Q · δ(t) . (6.3)

In presence of noise, the recorded signal is transformed into:

s1(t) = s0(t) +n(t) = Q · δ(t) +n(t) , (6.4)
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where n(t) is the instantaneous value of the noise. In the ideal case of an in-
finitely long signal trace, the most precise energy determination is obtained by
performing the convolution of the signal with a cusp-like filter of the form f(t) =

exp (−|t|/τs) [173, 174, 210]:

E = max
[∫+∞

−∞ s1(t) exp
(
−t/τs

)
dt

]
, (6.5)

where τs is the reciprocal of the corner frequency, i.e. the frequency at which the
ENC contributions of the series and parallel noise are equal.

In the real case, the recorded trace has a finite length 2L and the optimal filter is
of the form [211, 210]:

f(t) =

sinh
(
t
τs

)
0 < t < L

sinh
(
2L−t
τs

)
L < t < 2L .

(6.6)

If strong low-frequency noise or disturbances are present, the best energy reso-
lution is obtained using a shaping filter with total zero area [212]. Moreover, the
low-frequency baseline fluctuations, e.g. due to microphonics, are well suppressed
by filters with parabolic shape [213]. This can obtained by subtracting two parabo-
las from the sides of the cusp filter keeping the area under the parabolas equal to
that underlying the cusp.

In the real case, the charge collection process is not instantaneous and lies in
the [0.2; 1.5] µs range, depending on the location of energy deposition within the
crystal and on the detector electric field configuration. Hence, the charge collection
cannot be approximated with a δ-function. If a cusp filter is used, the charge is
not fully integrated. This leads to an underestimation of the deposited energy and
to the presence of low-energy tails in the spectral peaks, as anticipated in Sec. 3.5.
This effect is called “ballistic deficit” and can be minimized using two approaches.

A first possibility is to modify the cusp filter by inserting a central flat part,
denoted as “flat top”, of the duration of almost the maximum length of the charge
collection. The first implementation of the method was the gated-integrator analog
circuit [214]. The use of a filter with flat top allows to fully integrate the charge,
but has the disadvantage of not filtering the noise for the time window FT in which
the flat filter is applied. It is therefore necessary to use the minimum FT which
provides a full charge integration.

Other possible methods for the correction of ballistic deficit rely on the depen-
dence of the reconstructed energy on the pulse rise time [215, 216, 217]. The
advantage of these techniques is that they are not sensitive to low-frequency noise,
but a fine tuning of the algorithm parameters is needed. In Gerda Phase I, the
presence of up to 14 detectors made the applicability of such methods too compli-
cated if compared with the achievable improvement in energy resolution, which
was below the percent level.
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The final choice was a Zero-Area finite-length Cusp filter with central flat top
that will be referred as ZAC from here on. It is implemented as:

ZAC(t) =



sinh
(
t
τs

)
+A ·

[(
t− L

2

)2
−
(
L
2

)2]
0 < t < L

sinh
(
L
τs

)
L < t < L+ FT

sinh
(
2L+FT−t

τs

)
+A ·

[(
3
2L+ FT − t

)2
−
(
L
2

)2]
L+ FT < t < 2L+ FT ,

(6.7)

where FT is the length of the flat top, while A is a constant chosen such that the
total integral is zero. Dealing with digitized signal traces, a discrete numerical
expression has to be adopted for the shaping filter. This is obtained with the
substitution t→ ∆t · i, where ∆t is the sampling time and i the sample index. The
total number of samples for the ZAC filter is nZAC, which satisfies the relation
2L+ FT = ∆t ·nZAC. The construction of the ZAC filter is depicted in Fig. 6.3.

In order to perform the signal shaping, the original current pulse has to be
reconstructed from the digitized trace, corresponding to the preamplifier output
signal (Fig. 6.1). This is performed with a deconvolution of the preamplifier re-
sponse function, an exponential decay with time constant τ = RfCf. Specifically,
it is implemented as the convolution with the two-samples filter:

fτ =

[
1,− exp

(
−
∆t

τ

)]
. (6.8)

No correction for the finite band-width of the electronics was applied. Since the
convolution operation is commutative, the convolution between the ZAC filter and
the inverse preamplifier response function fτ can be performed:

FF[i] = ZAC[i] ·
(
− exp

(
−
∆t

τ

))
+ZAC[i+ 1] · 1

i = 1, . . . ,nZAC − 1 . (6.9)
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The final filter FF is shown in red dashed in Fig. 6.4. The convolution of each
signal waveform y with FF is then performed, leading to the shaped signal z:

z[i] =

i+nZAC−2∑
k=i

y[k] · FF[i+nZAC − 1− k] ,

i = 1, . . . ,ny −nZAC + 2 , (6.10)

where ny is the number of samples in the digitized trace (4096 for Gerda Phase
I). The shaped signal z for the trace of Fig. 6.1 is shown as blue full line in Fig. 6.4.
The energy E is taken as the maximum height of z. The parameters to be optimized
are the filter length 2L, the flat-top FT , the shaping time τs, and the preamplifier
decay constant τ.

6.3 the optimization of the zac filter

The data considered for the optimization of the ZAC filter are the calibration runs
taken during the entire Phase I, corresponding to the November 2011 – May 2013
period. The detectors considered are ANG2–5 from the HdM experiment, RG1–
2 from IGEX and four of the five BEGes (with names starting with GD). These
are the same detectors used for the 0νββ decay analysis [102]. The data were
divided in the four data sets listed in Tab. 6.1, corresponding to different detector
configurations in Gerda. In total, 72(45) calibration runs are available for the
coaxial (BEGe) detectors.

For each of the data sets of Tab. 6.1, the first and the last calibration run were
considered. Given their longer duration, one more calibration run taken in the
middle of periods A and D was used, too. It is expected that the charge collec-
tion properties of all detectors remain constant within all Phase I duration, while
the electronic noise and disturbances can change between different periods, but
should be stationary within the same data set. If this is the case, the parameters of
the ZAC filter giving the best energy resolution should be constant for each data
set.

The choice of the shaping filter affects the electronic and charge collection terms
of Eq. 3.23. While the ENC is not energy dependent, the optimal flat-top varies
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Table 6.1.: Data sets definition for the optimization of the ZAC filter. The division
of the period from 02.06.12 to 02.07.12 into two data sets is due to their very
different noise conditions, mostly related to microphonics induced by maintenance
operation performed in the first half of June 2012.

Data set Duration Detector configuration

A 09.11.11-22.05.12 ANGs + RGs + GTFs
B 02.06.12-15.06.12 ANGs + RGs + GTF112
C 15.06.12-02.07.12 ANGs + RGs + GTF112
D 08.07.12-21.05.13 ANGs + RGs + GTF112 + BEGes

at different energies. In order to quantify the improvement in energy resolution
provided by an energy dependent flat-top tuning, the ZAC filter was optimized
on the 583.2 keV and on the 2614.5 keV peaks of 208Tl for one detector and one
calibration run only. It turned out that the optimal flat-top is almost constant at all
energies, and that the obtainable improvement at low energy (∼ 500 keV) is below
1%, while it is negligible at Qββ. Based on this, the optimization of the ZAC
filter was performed only on the 2614.5 keV 208Tl line, with a major reduction of
computing time.

The standard quality cuts used for the analysis of calibration runs were applied
to the data. These include the rejection of muon events, events with trigger outside
the 80-82 µs range, coincidences and pile-up events (see Sec. 5.3). The energy
reconstruction was then performed only on the surviving events.

The energy spectrum was reconstructed with different values of the four filter
parameters L, FT , τs and τ. In particular:

– the total filter length 2L + FT was varied for only one calibration run be-
tween 120 and 163 µs. As expected [210], the best energy resolution was
obtained for the longest possible filter, because all the available information
contained in the signal trace is exploited for energy reconstruction. Given
the variability of the trigger time within a 2 µs range, the maximum of the
shaped signal can be at one of its extremes when the maximum filter length
of 163 µs is used, leading to an energy underestimation. This effect com-
pletely disappears if the filter is shortened by 2 µs. Hence, the optimization
was performed with 2L = 160 µs, and a total filter length 2L+ FT of ∼ 161 µs,
depending on the FT choice;

– the optimal length of FT is related to the charge collection time in the detector.
For coaxial detectors this is typically between 0.6 and 1 µs, depending on the
electric field configuration and on the location of the energy deposition. For
BEGes it is slightly longer due to the slower charge drift. The value of FT
was therefore varied between 0.5 and 1.5 µs in 120 ns steps;

– the value of τ can in principle be calculated knowing the feedback resistance
and capacitance. In reality τ is modified by the presence of parasitic ca-
pacitance in the front-end electronics. Moreover, given the presence of long
cables a signal deformation can arise. Therefore, τ is normally obtained by
fitting the pulse decay tail. This was not possible due to the presence of more
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than one exponential, so τ was varied between 100 and 300 µs with 5 µs step
size.

The peak at 2614.5 keV peak was fitted with the Hypermet function [204] de-
scribed in Sec. 5.5:

f(E) = A exp

(
−
(E− µ)2

2σ2

)
+B+

C

2
erfc

(
E− µ√
2σ

)
+

D

2
exp

(
E− µ

δ

)
erfc

(
E− µ√
2σ

+
σ√
2δ

)
. (6.11)

The FWHM was obtained numerically from the fitting function after the sub-
traction of the flat and step-like background components. The energy resolutions
resulting from different parameters of the ZAC filter were compared, and the pa-
rameters leading to a minimal FWHM were chosen for the full reprocessing of
the data. The optimal parameters of the ZAC filter for period D are reported in
Table 6.2 as an example. For all the four data sets, the parameters leading to the
best energy resolution remain constant within the same period. Moreover, the op-
timal value for FT is also constant for entire Phase I. On the other side, variations
are present in the optimal values of τs and τ if different data sets are compared.
With reference to Tab. 6.3, the optimal τs varies by 2 to 4 µs for all the coaxial
detectors, with the exception of RG2, while τ changes by up to 60 µs. The appli-
cation of the filter parameters to different data sets with respect to that used for
the optimization leads to FWHM variations of up to 3%. The stability of the op-
timal parameters within the same data set and their variability between data sets
confirms the dependence of the microphonic disturbances on the cable routing.

Table 6.2.: Optimized parameters of the ZAC filter for period D. While the filter
length 2L is equal for all the detectors, the FT varies between 0.5 and 1.2 µs, ac-
cording to the charge collection properties of each diode. As expected, the BEGes
need a slightly longer FT due to their longer charge drift time.

Detector 2L [µs] FT [ns] τs [µs] τ [µs]

ANG2 160 600 9 190

ANG3 160 840 16 220

ANG4 160 720 13 250

ANG5 160 960 17 170

RG1 160 720 12 210

RG2 160 680 8 240

GD32B 160 1080 13 220

GD32C 160 960 16 170

GD32C 160 840 15.5 170

GD35B 160 1200 17 135
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Table 6.3.: Optimized shaping time τs and of the effective preamplifier time con-
stant τ for the four periods. The values for the BEGe detectors are not shown
because they were present only in period D.

τs [µs] τ [µs]
Detector A B C D A B C D

ANG2 8 7 7.5 9 200 150 210 190

ANG3 15 11 13 16 200 180 230 220

ANG4 13 10 11 13 200 250 250 250

ANG5 17 15 15 17 180 190 190 170

RG1 13 10 11 12 180 180 200 210

RG2 8 8 8 8 260 250 250 240

6.4 results on phase i calibration and physics data

Once the optimization of the ZAC filter was completed, all Phase I calibration
and physics data were reprocessed with the optimized ZAC filter. While the filter
optimization was performed with a dedicated software tool tailored to the mini-
mization of computing time, the final reprocessing was done using GELATIO. A
copy of the “official” tier2 and tier3 was produced, with an additional variable
given by the energy calculated with the ZAC filter.

Given the need to be as unbiased as possible, the following procedure has been
followed, in which each step is performed only after the previous has been suc-
cessfully completed with no indication for any possible failure or problem:

– the tier2 files, containing the uncalibrated spectra, of all calibration runs are
created;

– the calibration curves are extracted using the standard calibration routine
described in chapter 5;

– the stability of FWHM, peak positions and calibration curve parameters is
checked;

– the tier3 files, containing the calibrated spectra, are produced for all calibra-
tion runs;

– the deviations of the peak positions in the calibrated spectra from the litera-
ture values are computed and plotted over time;

– all the calibration spectra of each detector are summed. These high-statistics
spectra, denoted from here on as super-tier3, are then used to further check
the peak positions, to study the energy dependence of the FWHM, and to
determine the FWHM at Qββ;

– the difference between the energy reconstructed with the ZAC and the pseudo-
Gaussian filter for each event is computed for a random subset of all calibra-
tion data, and possible systematic deviations from zero are searched;

– the tier2 and tier3 files of the physics data are created;
– the difference between the energy reconstructed with the ZAC and the pseudo-

Gaussian filter for each event of all physics data is computed, and the possi-
ble existence of systematic deviations from zero is searched;

– the effective FWHM at Qββ for physics data is calculated.
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The results of each of the mentioned step were discussed within a restricted group
of collaborators before undertaking the following one. The whole work was then
presented to the Gerda collaboration, but the energy distribution of the events
in the 10 keV region around Qββ was not shown. This was done only after all
the points quoted above had been discussed, and after a general agreement was
achieved on the eventual re-publication of the 0νββ decay analysis on the repro-
cessed data.

In order to provide a clearer picture to the reader, the results will not be pre-
sented here in the chronological order described above. First, the improvement in
energy resolution for the calibration data will be presented. In a second part, the
effective energy resolution at Qββ for physics data will be provided. Finally, the
systematic effects of the reprocessing will be described.

6.4.1 Energy Resolution for Calibration Data

A first remarkable result of this work is the improvement of the energy resolution
between 5 and 23% for the 208Tl FEP at 2614.5 keV for all the Phase I calibration
data. Fig. 6.5 shows the summed spectrum (super-tier3) of all Phase I calibrations
around the 2614.5 keV line for ANG2. The same plots for all the semi-coaxial
and BEGe detectors are reported in Figs. B.1 and B.2, respectively. In all cases,
the amplitude of the Gaussian component is larger for the spectrum obtained
with the optimized ZAC filter and its width is correspondingly reduced. The
parameters B and C describing the continuum below the peak are compatible
for the two shaping filters. While for the coaxial detectors a low-energy tail has
to be accounted for in the fit, the amplitude of the tail in the BEGe detectors
is negligible. The tail it therefore automatically removed from the fit. This is
attributed to the smaller dimensions of the BEGe detector and its reduced charge
collection inefficiency. For the coaxial detectors the tail amplitude D is strongly
reduced when the ZAC shaping is used thanks to the presence of the flat-top that
yields an improved integration of the collected charge.

A deeper understanding of the result is provided by studying the evolution of
the FWHM as function of energy, which is fitted according to Eq. 3.23. Fig. 6.6
shows the resolution curve obtained from the super-tier3 spectra for ANG2. The
same is shown for all detectors in Figs. B.3 and B.3. As expected, the major im-
provement regards the ENC, which reduces FWHM2 at all energies by a con-
stant. For all channels and for both the pseudo-Gaussian and the ZAC filter the
charge production term w2p = 2.355 ηF is comparable with the theoretical value of
1.64 · 10-3 keV. Finally, the charge collection term w2c for the ZAC filter is in most
cases compatible within the uncertainty with the value obtained for the pseudo-
Gaussian filter. An exception is represented by ANG3 and RG2, for which a longer
flat-top could further reduce the charge collection inefficiency. In any case, the
large uncertainty of this parameter is due to the lack of peaks above 3 MeV which
makes the fit imprecise. This term is the smallest of the three and accounts for
maximally 15% of the width at 2614.5 keV.

One of the original motivations for the application of the ZAC filter to the Gerda
Phase I data was the observation of temporary deterioration of the energy resolu-
tion in some detectors interpreted as due to time-evolving microphonic distur-
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Figure 6.5.: 208Tl line
for ANG2. All Phase I
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ported in the plot.
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bance not being properly treated by the pseudo-Gaussian filter. This is confirmed
by the comparison of the FWHM over time for both filters. Fig. 6.7 shows the
FWHM of the 208Tl 2614.5keV line for three detectors and for all Phase I cali-
bration runs. In case of ANG2 the FWHM obtained with the pseudo-Gaussian
shaping fluctuates between 4.5 and 4.4 keV. In June 2012 stronger microphonic
disturbances caused a FWHM increase up to about 5.1 keV. When the ZAC filter
is used the effect is significantly reduced and the FWHM obtained for the affected
calibrations is brought back to a value consistent with the average. Stronger fluc-
tuations were present for GD35B: a very poor energy resolution was observed
during the first month of operation together with a continuous worsening of the
spectroscopic performances in the last 4 months of Phase I. Also in this case the
ZAC filter energy reconstruction is unaffected by the low-frequency baseline fluc-
tuations induced by microphonics and allows to stabilize the FWHM over time to
about 2.8 keV. The time development of the FWHM for all detectors is given in
Figs. B.5, B.6 and B.7
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Table 6.4.: Average FWHM over all Phase I. The improvement is computed as the
difference between the FWHM for the pseudo-Gaussian and that for the ZAC filter.
Only the statistical uncertainty due to the peak fit is quoted.

FWHM at 208Tl FEP [keV] Improvement
Detector pseudo-Gaussian ZAC [keV]

ANG2 4.712(3) 4.314(3) 0.398(4)
ANG3 4.658(3) 4.390(3) 0.268(4)
ANG4 4.458(3) 4.151(3) 0.307(4)
ANG5 4.323(3) 4.022(3) 0.301(4)
RG1 4.595(4) 4.365(4) 0.230(6)
RG2 5.036(5) 4.707(4) 0.329(6)

GD32B 2.816(4) 2.699(3) 0.117(5)
GD32C 2.833(3) 2.702(3) 0.131(4)
GD32D 2.959(4) 2.807(3) 0.152(5)
GD35B 3.700(5) 2.836(3) 0.864(6)

The Phase I average FWHM for the 208Tl line at 2614.5 keV for each detector,
obtained from the graphs of Figs. B.5, B.6 and B.7, relative to the pseudo-Gaussian
and the ZAC filter are reported in Tab. 6.4. The average improvement was cal-
culated as the difference between the two values. This is about 0.31 keV for the
coaxial and 0.13keV for the BEGe detectors, apart from GD35B for which a much
larger improvement is obtained, as described above.

6.4.2 Energy Resolution for Physics Data

The effective energy resolution at Qββ for the physics data is computed as de-
scribed in Sec. 5.8. As a first check, the summed energy spectra in the 1515-
1535 keV range for all Phase I data for the six coaxial and the four BEGe detec-
tors used for the 0νββ decay analysis are shown in Figs. 6.8 and 6.9, respectively.
The FWHM obtained with the pseudo-Gaussian shaping for the coaxial detectors
is 4.49 ± 0.11 keV, while it is 4.09 ± 0.11 keV if the ZAC filter is used. In the
case of BEGes, the ZAC filter provides a 2.75± 0.21 keV FWHM compared to the
3.05± 0.30 keV obtained with the pseudo-Gaussian. The comparison in this case
is harder due to the limited number of events.

Tab. 6.5 reports the FWHM at 1524.6 keV of each detector and data set as ob-
tained from the 42K peak fit and from calibration data. The first is determined
with an unbinned likelihood fit using a Gaussian peak over a constant continuum
in the [1515; 1535] keV range. The measured values both for the peak position
and width remain consistent within their uncertainties if the fit range is changed
by ±5 keV. The energy resolution at 1524.6 keV from calibration data has been
extrapolated from the resolution curves. The difference between the FWHM cal-
culated on the super-tier3 and the corresponding value calculated on each single
tier2 and averaged over all the calibration runs is given as systematic uncertainty.
The fact that the systematic uncertainties always lie below 0.04 keV is an indica-
tion of the good performance of the ZAC filter when many data sets taken in
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tra merged together.

different times and conditions are merged together. This was not the case for the
semi-Gaussian shaping (see Tab. 5.8), where the systematic uncertainties are one
order of magnitude higher. Also in this case a correction term is computed, where
needed. Finally, the exposure-weighted average is calculated for the golden, silver
and BEGe data sets, leading to the final values of the FWHM at Qββ reported
in Tab. 6.7. The overall improvement is 0.48± 0.24 keV for the golden data set,
0.36± 0.27 keV for the silver data set, and 0.50± 0.26 keV for the silver data set.
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Table 6.5.: FWHM at 1524.6 keV for all Phase I detectors and all three data sets.
The first column shows the data set, the second the detector, the third the FWHM
of the 42K peak (computed on all Phase I physics data), the fourth is the FWHM
at 1524.6 keV from the calibration data of the considered data set (the first error is
statistical, the second systematic), and the fifth is the correction term, where used.
The two errors on the offset are statistical and systematic and are propagated from
those in the previous two columns.

FWHM [keV] FWHM [keV]
Detector Physics Calibration Offset

G ANG2 4.75± 0.27 4.006± 0.003± 0.007 0.74± 0.27
O ANG3 3.88± 0.22 4.078± 0.003± 0.038
L ANG4 4.10± 0.30 3.846± 0.003± 0.016
D ANG5 3.61± 0.20 3.627± 0.003± 0.017
E RG1 3.84± 0.28 3.874± 0.004± 0.016
N RG2 4.31± 0.31 4.286± 0.004± 0.036

S ANG2 4.75± 0.27 4.056± 0.005± 0.004 0.69± 0.27
I ANG3 3.88± 0.22 4.099± 0.005± 0.033
L ANG4 4.10± 0.30 3.896± 0.005± 0.014
V ANG5 3.61± 0.20 3.673± 0.005± 0.018
E RG1 3.84± 0.28 3.898± 0.006± 0.001
R RG2 4.31± 0.31 4.237± 0.008± 0.034

B GD32B 2.32± 0.30 2.263± 0.004± 0.006
E GD32C 2.64± 0.44 2.256± 0.003± 0.003
G GD32D 3.18± 0.43 2.366± 0.005± 0.025 0.81± 0.43
e GD35B 2.42± 0.47 2.439± 0.004± 0.011
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Table 6.6.: FWHM at Qββ obtained from the calibration data obtained with the
ZAC shaping: the values are taken from the resolution curve fitted to the super-
tier3. The first error is statistical, the second is the difference from the FWHM at
Qββ averaged on each single calibration tier3 and considered here as systematic
uncertainty. In case a correction term has to be applied, its value is reported in the
right column. In this case, the reported error is the combination in quadrature of
all the statistical and systematic uncertainties involved.

FWHM [keV] FWHM [keV]
Detector Physics Calibration Offset

G ANG2 4.143± 0.003± 0.003 0.74± 0.27 4.88± 0.27
O ANG3 4.234± 0.004± 0.029
L ANG4 3.986± 0.003± 0.013
D ANG5 3.813± 0.004± 0.007
E RG1 4.069± 0.005± 0.040
N RG2 4.486± 0.005± 0.039

S ANG2 4.199± 0.006± 0.001 0.69± 0.27 4.89± 0.28
I ANG3 4.252± 0.006± 0.032
L ANG4 4.020± 0.007± 0.012
V ANG5 3.857± 0.006± 0.031
E RG1 4.091± 0.008± 0.007
R RG2 4.435± 0.009± 0.028

B GD32B 2.478± 0.006± 0.008
E GD32C 2.480± 0.004± 0.002
G GD32D 2.604± 0.006± 0.033 0.81± 0.43 3.41± 0.43
e GD35B 2.641± 0.066± 0.014

Table 6.7.: FWHM at Qββ for the Golden, Silver and BEGe data sets. The val-
ues from Table 6.6 are averaged according to the corresponding exposure. The
corrected FWHM is used for ANG2 and Anubis. The FWHM for the spectra re-
constructed with the Gaussian shaping are reported for reference.

ZAC Pseudo-Gaussian
Data set FWHM [keV] FWHM [keV]

Golden 4.25± 0.13 4.83± 0.20
Silver 4.27± 0.13 4.63± 0.24
BEGe 2.74± 0.20 3.24± 0.17
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Figure 6.10.: Average deviations of the peak position on the tier3 spectra from
literature values for ANG2.

6.4.3 Systematics

A further comparison between the performances of the pseudo-Gaussian and the
ZAC filter is provided by the study of the systematic effects related to the signal
shaping and the energy calibration. The improvement in energy resolution given
by the ZAC filter is also reflected in a more precise determination of the energy
scale for the single calibration runs. Fig. 6.10 shows the residuals of the 208Tl peak
position from the quadratic calibration curve averaged over all Phase I calibration
runs for ANG2. Both for the pseudo-Gaussian and the ZAC shaping, the average
residuals are of order of 10-2 keV. Hence, they are much smaller than the peak
widths and do not give a significant contribution to the systematic uncertainty of
the energy calibration.

A second check is the comparison of the deviations of the peaks positions in the
calibrated spectra from the literature values. The deviations obtained with the two
filters in the super-tier3 and the average deviations calculated on each single tier3
spectrum for the 208Tl line at 2614.5 keV are given in Tab. 6.8. In the majority of
the cases, the deviations and residuals obtained with the ZAC shaping are smaller
than those of the semi-Gaussian shaping. This further confirms the improvement
in energy reconstruction yielded by the ZAC filter.

A more informative evaluation of the energy calibration precision is obtained
by calculating the uncertainty δE of the calibration curve at a given energy, e.g. at
Qββ. For each calibration run the quantity δE(E = 2039 keV) is calculated by error
propagation on the calibration curve parameters. Using Monte Carlo (MC) simu-
lations 105 events were randomly generated according to a Gaussian distribution
with zero mean and sigma equal to δE(E = 2039 keV). The distributions from all
Phase I calibration runs are then summed up and the systematic uncertainty of
the energy scale at 2039 keV is given by the half-width of the 68% central interval.
This results to be between 0.03 and 0.06 keV and is up to 16% smaller for ZAC with
respect to the pseudo-Gaussian filter, depending on the detector. The systematic
uncertainty on the energy reconstruction at Qββ for GD35B is shown in Fig. 6.11

as an example. The values of δE(E = 2039 keV) for all the detectors are reported
in Tab. 6.9.
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Table 6.8.: Deviations of the 2614.511 keV 208Tl line from the literature val-
ues [197]. Both the value from the super-tier3 and the average value for the single
calibration runs are reported. The values for the semi-Gaussian shaping are the
same as in Tabs. 5.6 and 5.7.

ZAC Shaping Pseudo-Gaussian Shaping
Super-tier3 Average Cal. Super-tier3 Average Cal.

Detector Deviation [keV] Residuals [keV] Deviation [keV] Residuals [keV]

G ANG2 0.06± 0.01 0.00± 0.01 0.06± 0.01 0.00± 0.01
O ANG3 0.05± 0.01 0.01± 0.08 0.13± 0.01 0.08± 0.06
L ANG4 0.05± 0.01 0.01± 0.03 0.03± 0.01 0.02± 0.04
D ANG5 0.08± 0.01 0.04± 0.07 0.13± 0.01 0.06± 0.07
E RG1 0.23± 0.02 0.04± 0.15 0.32± 0.03 0.12± 0.13
N RG2 0.05± 0.01 0.03± 0.11 0.19± 0.02 0.20± 0.12

S ANG2 0.05± 0.01 0.01± 0.01 −0.15± 0.02 0.08± 0.05
I ANG3 0.03± 0.01 0.00± 0.07 −0.12± 0.02 0.13± 0.08
L ANG4 0.04± 0.01 0.01± 0.02 −0.15± 0.02 −0.13± 0.10
V ANG5 0.04± 0.01 0.05± 0.02 −0.05± 0.02 0.11± 0.09
E RG1 0.19± 0.04 0.00± 0.26 0.11± 0.03 −0.05± 0.18
R RG2 0.04± 0.03 −0.01± 0.02 0.07± 0.02 0.07± 0.04

B GD32B 0.00± 0.01 0.01± 0.02 −0.04± 0.01 −0.01± 0.05
E GD32C 0.02± 0.01 0.02± 0.01 −0.01± 0.01 0.01± 0.09
G GD32C 0.01± 0.01 0.02± 0.02 −0.03± 0.01 −0.01± 0.05
e GD35B 0.00± 0.01 0.00± 0.01 0.02± 0.01 −0.01± 0.09

δE(E = 2039 keV) [keV]
Detector Pseudo-Gaussian ZAC

ANG2 0.041 0.035
ANG3 0.048 0.042
ANG4 0.045 0.042
ANG5 0.036 0.037
RG1 0.057 0.053
RG2 0.056 0.053
GD32B 0.035 0.035
GD32C 0.032 0.029
GD32D 0.042 0.041
GD35B 0.062 0.052

Table 6.9.: Systematic on the energy scale
at Qββ for golden coax and BEGe detec-
tors. For the coaxial detectors, the values
refer to the golden data set only.
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Figure 6.11.: System-
atic of the energy
scale for GD35B

A fundamental cross-check of the reprocessed data is given by the event-by-
event comparison of the energy obtained with the ZAC and the pseudo-Gaussian
filter. This is performed by calculating the energy difference of the events in the
2614.5 keV peak as shown in Fig. 6.12 for ANG2 and a typical calibration run. For
all the detectors this distribution is a Gaussian with a mean value compatible with
zero and a width σ ∼ 0.8 keV. The same behavior is observed at all energies for
both calibration and physics data.

6.5 re-analysis of 0νββ decay with gerda phase i data

This section describes the re-analysis of 0νββ decay search using the Phase I
data reprocessed with the ZAC filter. Before releasing the reprocessed data to the
collaboration, the decision was taken not to publish a new result on 0νββ decay
search on a stand-alone paper, but to combine the reprocessed data with the first
data of Gerda Phase II. For this reason, the results reported here are not in any
case to be considered official, but rather a case study for the future Gerda analyses.
The author and the Gerda collaboration kindly require to refer to [102] until a new
collaboration paper on 0νββ decay analysis is released.

6.5.1 Comparison of Physics Spectra Obtained with the Pseudo-Gaussian and the ZAC
Filters

Before proceeding with the analysis, the Phase I physics spectra for the golden,
silver and BEGe data sets obtained with the pseudo-Gaussian and the ZAC filter
were compared. They are shown in Fig. 6.13: the spectra are well superimposed
also in the region where the calibration curves are extrapolated, i.e. below 511 keV
and above 2615 keV. In particular, the α events around 5 MeV are reconstructed at
the same energy by both the shaping filters, and the spectra thresholds (∼ 50 keV)
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Figure 6.12.: Event by
event energy differ-
ence for ANG2. The
events in the 2615 ±
5 keV range are used.

differ by less than 1 keV. Also the background induced γ lines are reconstructed
at the same energy and agree with the literature values for both filters.

More interesting is the comparison of the spectra around Qββ. Fig. 6.14 shows
the 40 keV region around Qββ for the golden, silver and BEGe data sets and the
two filters. The events shown are those surviving the quality cuts, but before the
application of pulse shape discrimination (PSD). The energy of each single event
varies by up to 2 keV, in agreement with the distribution reported in Fig. 6.12.

The events which mostly affect the 0νββ decay analysis are those in the 10 keV
region of interest (ROI) around Qββ. The energy reconstructed with the pseudo-
Gaussian and the ZAC filter, together with the data set, the date and the time are
given in Tab. 6.10. Out of the 7 events in the ROI, only 3 survive the PSD cut. When
the ZAC filter is used, all these 3 events move slightly apart from Qββ. Hence, the
limit on 0νββ decay half-life is expected to be higher if the ZAC reconstructed
energy is exploited.
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Figure 6.13.: Physics spectrum for golden, silver and BEGe data sets obtained with the pseudo-
Gaussian (black) and the ZAC filter (red).
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Figure 6.14.: Energy spectra relative to the golden, silver and BEGe data sets before
the application of PSD for the pseudo-Gaussian (black) and ZAC filter (red).

Table 6.10.: Events in the 10 keV region around Qββ. For each event the energy
obtained with the pseudo-Gaussian and the ZAC shaping are reported.

Energy [keV] PSD
Data set Detector Gaussian ZAC Date Time Passed

Golden ANG5 2041.8 2040.7 18-Nov-2011 22 : 52 no
Silver ANG5 2036.9 2036.8 23-Jun-2012 23 : 02 yes
Golden RG2 2041.3 2041.5 16-Dec-2012 00 : 09 yes
BEGe GD32B 2036.6 2036.6 28-Dec-2012 09 : 50 no
Golden RG1 2035.5 2034.3 29-Jan-2013 03 : 35 yes
Golden ANG3 2037.4 2038.4 02-Mar-2013 08 : 08 no
Golden RG1 2041.7 2041.3 27-Apr-2013 22 : 21 no
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Table 6.11.: Detector parameters for 0νββ decay analysis.

Exposure FWHM at Qββ [keV]
Detector [kg·y] fenr f76 εPSD εγ Gaussian ZAC

G ANG2 3.55610 0.871(51) 0.866(25) 0.918(18) 0.9 5.84(30) 4.88(27)
O ANG3 3.00128 0.866(57) 0.883(26) 0.916(18) 0.9 4.53(13) 4.234(29)
L ANG4 2.97743 0.901(57) 0.863(13) 0.916(18) 0.9 4.94(32) 3.986(13)
D ANG5 3.44689 0.831(48) 0.856(13) 0.918(18) 0.9 4.16(8) 3.813(8)
E RG1 2.64856 0.904(59) 0.855(15) 0.915(18) 0.9 4.46(28) 4.069(40)
N RG2 2.28174 0.831(53) 0.855(15) 0.912(18) 0.9 4.91(26) 4.486(40)

S ANG2 0.25278 0.871(51) 0.866(25) 0.918(18) 0.9 5.29(38) 4.94(27)
I ANG3 0.21334 0.866(57) 0.883(26) 0.916(18) 0.9 4.57(20) 4.252(6)
L ANG4 0.21165 0.901(57) 0.863(13) 0.916(18) 0.9 4.36(11) 4.020(14)
V ANG5 0.24502 0.831(48) 0.856(13) 0.918(18) 0.9 4.21(18) 3.857(32)
E RG1 0.18827 0.904(59) 0.855(15) 0.915(18) 0.9 4.49(28) 4.091(11)
R RG2 0.19327 0.831(53) 0.855(15) 0.912(18) 0.9 4.83(33) 4.435(29)

B GD32B 0.54988 0.890(27) 0.877(13) 0.899(18) 0.92 2.62(9) 2.478(10)
E GD32C 0.61754 0.911(30) 0.877(13) 0.901(18) 0.92 2.63(6) 2.480(5)
G GD32D 0.56234 0.923(26) 0.877(13) 0.899(18) 0.92 3.68(47) 3.41(43)
e GD35B 0.67489 0.914(29) 0.877(13) 0.901(18) 0.92 3.96(12) 2.641(15)

6.5.2 0νββ Decay Analysis: Procedure and Parameters

The analysis of 0νββ decay is performed following a Bayesian approach. Similar
studies have been performed using the profile likelihood method by other mem-
bers of the Gerda collaboration, hence they are not reported here.

Suppose we have a set of energy measurements ~E = E1, . . . ,En for a total of n
events, and that we need a set of parameters ~θ to properly describe the energy
distribution of the events. The energy of each event follows a distribution f(E|~θ),
while the total number of events will follow a Poisson distribution. The extended
likelihood can be formulated as:

L
(
~E|~θ
)
=
νn

n!
e-ν

n∏
i=1

f
(
Ei|~θ

)
=
e-ν

n!

n∏
i=1

[
ν · f

(
Ei|~θ

)]
, (6.12)

where ν is the expectation value for the total number of events n. We can express
ν as the sum between the total number of signal events s and background events
b, and we can split the energy distribution of the single events into a signal and
a background components. In particular, we assume the signal to be distributed
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according to a Gaussian centered at Qββ, and the background to be flat in all the
fit region of width ∆E:

f
(
E|~θ
)
= fs

(
E|~θ
)
+ fb

(
E|~θ
)

=
s

s+ b

1

σ
√
2π

exp
(
−
(E−Qββ)

2

2σ2

)
+

b

s+ b

1

∆E
. (6.13)

Notice that f is normalized to unity. We can then expand Eq. 6.12 into:

L
(
~E|~θ
)
=
e-(s+b)

n!

n∏
i=1

[
(s+ b)

(
s

s+ b
G(Ei|Qββ,σ) +

b

s+ b

1

∆E

)]

=
e-(s+b)

n!

n∏
i=1

[(
s ·G(Ei|Qββ,σ) +

b

∆E

)]
, (6.14)

where we summarized the Gaussian into G(Ei|Qββ,σ) for convenience. The log-
likelihood is then given by:

lnL
(
~E|~θ
)
= −s− b+

n∑
i=1

ln
(
s ·G(Ei|Qββ,σ) +

b

∆E

)
, (6.15)

where the term ln (n!) has been dropped because it does not influence the result.
Following the Bayesian approach, the maximization is performed on the log-

likelihood for the parameters given the data:

lnL
(
~θ|~E
)
= lnL

(
~E|~θ
)
+

m∑
k=1

lnπ(θk) +C , (6.16)

where π(θk) is the prior probability for the parameter θk, for a total of m param-
eters, and C is a constant coming from the normalization of the probability and
which can be set to zero.

The posterior probability for the parameter of interest θ̄ is extracted via marginal-
ization [218]: the log-likelihood lnL

(
~θ|~E
)

is integrated over all the parameters, but
θ̄, and normalized to unity. At this point, a criterion has to be chosen for the in-
terpretation of the result. The standard choice is to compute the distance between
the mode of the marginalized distribution and the value corresponding to the
background-only hypothesis. In our case the parameter of interest is the inverse
of the 0νββ decay half-life, θ̄ = 1/T0ν1/2, and distance of the mode in the marginal-
ized 1/T0ν1/2 distribution from zero is computed. If this distance has a significance
of at least 99.73% (corresponding to 3σ for a Gaussian distribution), a claim for
evidence is made and the result is reported as the mode, together with the 68.3%
central interval. On the contrary, if the mode is at zero or close to it, the limit at
90% credibility interval (CI) is quoted.

So far, no detail about the expectation values s and bwas given. For the 0νββ de-
cay analysis we can recall Eq. 2.38:

s =
1

T0ν
1/2

ln 2 ·NA
mA

· fenr · fAV · εγ · εSSEpsd ·mt

b = BI ·∆E ·mt . (6.17)
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The parameter of interest is 1/T0ν1/2, while the active volume fraction fenr, the
enrichment fraction fenr, the efficiency for 0νββ decay detection εγ, the PSD
efficiency εSSEPSD and the background index BI are nuisance parameters, and the
Avogadro number NA, the atomic mass mA, the exposure mt and the fit range
width ∆E are constant.

If in the case of one single detector, we just have to plug the expressions of
Eq. 6.17 into Eq. 6.15. For the analysis of Gerda Phase I data a broad variety of
choices is possible. Namely, it must be considered that:

– fenr, fenr, εγ, εSSEPSD and mt are detector dependent. In particular, the expo-
sure values of the single detectors differ by up to 35%;

– the BI and the width of the Gaussian distribution for the signal parametriza-
tion, σ = FWHM/2.355, depend both on the detector and on the data set
(golden, silver).

For the official 0νββ decay analysis of Phase I data [102], a common fit was
performed on the three data sets (golden, silver and BEGe), and the energy spectra
of all detectors belonging to the data set were merged together. In this analysis,
the log-likelihood is expressed as:

lnL
(
~E|~θ
)
=

3∑
d=1

[
−sd − bd +

nd∑
i=1

ln
(
sd ·G(Ei|Qββ,σd) +

bd
∆E

)]
, (6.18)

where the index d runs over the three data sets, and nd is the number of events
for each data set. Given the small uncertainty affecting fenr, fenr, εγ, εSSEPSD and
Qββ, these parameters were considered constant. Their errors were considered as
systematic. The propagation was performed by repeating the analysis a number
of times, each time sampling the value of these four parameters from a Gaussian
distribution with mean and sigma corresponding to those reported in Tab. 6.11.
On the other side, BId and FWHMd = 2.355 · σd were considered as nuisance
parameters, and their prior probability was inserted in Eq. 6.16.

As an alternative approach the spectra of all detectors are kept separated, and
fenr, fAV , εγ, Qββare considered as nuisance parameters, to which a prior prob-
ability is assigned according to the values of Tab. 6.11. For Qββ the value
2039.006(50) keV is used [100]. The log-likelihood is in this case:

lnL
(
~E|~θ
)
=

3∑
d=1

mc∑
c=1

[
−sc − bc +

nc∑
i=1

ln
(
sc ·G(Ei|Qββ,σc) +

bc

∆E

)]
, (6.19)

where the index d runs over the data sets (golden, silver, BEGe), and the index c
over the detectors of a given data set. Considering all data sets and detectors, a
total of 64 parameters is used, against the 7 of the standard analysis.

6.5.3 Results

The analysis is performed for the spectra reconstructed with the pseudo-Gaussian
and the ZAC filter, using both the official method with merged spectra and the al-
ternative approach with separate spectra for each detector. In order to understand
the origin of possible differences, the fit is run also on the golden, silver and BEGe
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Table 6.12.: Results of 0νββ decay analysis for the pseudo-Gaussian and the ZAC
energy reconstructed spectra using the official analysis method, and keeping each
detector spectrum separate.

T0ν1/2 90% CI Lower Limit [yr]
pseudo-Gaussian ZAC

Data set Official Separate Official Separate

Golden 1.71 · 1025 1.72 · 1025 1.89 · 1025 2.00 · 1025
Silver 1.24 · 1024 1.19 · 1024 1.24 · 1024 1.20 · 1024
BEGe 3.79 · 1024 3.79 · 1024 3.80 · 1024 3.79 · 1024

All 1.92 · 1025 2.06 · 1025 2.09 · 1025 2.36 · 1025

data sets only. All the results are reported in Tab. 6.12. For the official analysis, the
use of the ZAC filter yields a ∼ 0.17 · 1025 yr higher limit on T0ν1/2. This difference
comes from both the improved energy resolution and the outwards shifting of the
three events in the 10 keV region around Qββ.

The alternative analysis approach gives a further 0.25 · 1025 yr increase in the
0νββ decay half-life limit when all data sets are exploited. The two analyses yield
the same result for the BEGe data set due to the absence of events around Qββ
(see Tab. 6.10). For the silver data set no difference is introduced by the improved
energy resolution, while a ∼ 0.05 · 1024 yr worse limit is obtained with the appli-
cation of the alternative analysis. This is probably due to the propagation of the
uncertainty on the nuisance parameters. A 0.21 · 1025 yr difference on the T0ν1/2
limit is obtained on the golden data set, again due to the better energy resolution
and the event shifts. On the contrary, the BI is compatible within its uncertainty
for all data sets, shaping filter and statistical analysis.

To further understand the capability of the alternative analysis, we can compare
the T0ν1/2 limits obtained on the single data sets with that obtained using all three.
Both for the pseudo-Gaussian and the ZAC case, the standard analysis on all
data sets yields a limit which is just ∼ 0.20 · 1025 yr higher than for the golden
data set only, although the limit obtained with the silver and BEGe data sets are
∼ 0.12 · 1025 yr and ∼ 0.38 · 1025 yr, respectively. Using the alternative analysis, the
T0ν1/2 limit with all data sets is ∼ 0.35 · 1025 yr higher than that obtained with the
golden data set only. This means that the alternative analysis exploits to a higher
extend the information contained in the energy spectra of each single detector.

On the basis of the results presented here it is clear that the alternative analysis
yields a higher sensitivity especially with the use of a high number of detectors
with different energy resolution and BI. This is of particular interest for the analy-
sis of 0νββ decay with Gerda Phase II data, in which ∼ 40 detectors are going to
be operated.
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6.6 sensitivity to 0νββ decay in gerda phase ii

The influence of an improved energy resolution on the physics reach of Gerda

Phase II can be quantified by studying the sensitivity curve for a 90% CI limit on
T0ν1/2 . This is done using toy MC simulations.

The Phase II detectors will consist in 17.6 kg of coaxial, and 20.0 kg of BEGes.
Given their different resolutions and PSD properties (and, hence, background lev-
els), the analysis has to be performed on two separate data sets. Since the actual BI
and energy resolution of each detector is not available yet, the study is performed
only using the official analysis described in Sec. 6.5.2. The sensitivity as function
of the exposure mt can be obtained by generating N virtual experiments for fixed
values of mt, with events sampled only from the background distribution. The
0νββ decay analysis is then performed on each of the spectra and the 90% CI
limit on T0ν1/2 is extracted. For each value of the exposure, 104 experiments have
been simulated. Exposures in the range from 1 to 200 kg·yr, with 1 kg·yr steps,
have been considered. The number of events in the spectra was generated accord-
ing to a Poisson distribution, with an expectation value given by the BI. This is
assumed to be 0.005 and 0.001 counts/(keV·kg·yr) for coaxial and BEGe detectors,
respectively. The nuisance parameters σ = FWHM/2.355 and the total efficiency
ε are sampled from Gaussian distributions centered around the detector-averaged
values taken from Phase I (Tab. 6.11). For each exposure, the median sensitivity
is extracted, as well as the 1σ and 3σ equivalent coverage regions. The study is
performed twice:

– assuming the same FWHM at Qββ obtained in Phase I. This is 4.8(2) keV for
the coaxial, and 3.2(2) keV for the BEGe detectors (Tab. 6.7);

– using the values obtained with the Phase I reprocessed calibration data, and
averaging over the detectors. In this case the FWHM is 4.2 and 2.6 keV
for the coaxial and the BEGes, respectively. These values are slightly better
than those reported in Tab. 6.7, the difference coming from the fact that the
worsening in energy resolution due to the merging of the physics runs is
neglected. This can be assumed thanks to the deployment in Gerda Phase II
of improved front-end electronics, which should lead to a higher energy res-
olution on the single calibration run and, consequently, also on the physics
data. We assume in any case an uncertainty of 0.2 keV on the FWHM, as for
Phase I.

The results are shown in Fig. 6.15 for the two cases. An improvement of 4.5%
on the median sensitivity (bold line) is obtained with the use of the ZAC filter
for all the exposures. On the contrary, the 3σ region is not affected in the same
way by the improved resolution. The reason comes from the deep Poisson regime
characterizing the analysis. If no event is present in the region of interest (ROI),
the same limit is set with both the energy resolutions, corresponding to ∼ 2.3 signal
counts. This is the case of the highest dotted lines in Fig. 6.15. Similarly, if one
event is present exactly at Qββ, the result is again very similar in the two cases.
This case is reflected on the bottom dotted lines. Once the energy resolution and
BI of each channel are available, the study can be repeated with the alternative
approach described in Sec. 6.5, with an even larger improvement in sensitivity.
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The importance of an improved energy resolution is not only given by the en-
hanced sensitivity discussed so far. The main advantage is that narrower peaks
allow to perform a more precise modeling of the experimental background. Con-
sequently, the determination of the BI at Qββ is more precise and the result on the
0νββ decay is more robust. Last but not least, all the other possible analysis results
obtained with Gerda Phase II will profit from an improved energy resolution, as
well.
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D I S C R I M I N AT I O N O F B E G E D E T E C T O R S

In Gerda Phase II, ∼ 20 kg of enriched BEGe detectors are going to be operated in
addition to the ∼ 18 kg of coaxial detectors used in Phase I. The Gerda Phase II
sensitivity to a possible 0νββ decay signal strongly depends to the pulse shape
discrimination (PSD) performance of BEGe detectors. If the current PSD method
is already proven to be highly effective in the distinction between signal-like and
background-like events [208], a further improvement can be provided by an opti-
mized digital shaping filter for the extraction of the current pulse. For this reason,
a set of digital shaping filters has been tested and optimized on a single calibration
run of Gerda Phase I, with the aim of scrutinizing the achievable performance and
improving the Phase II sensitivity.

In Sec. 7.1 a short review of the current PSD method for BEGe detectors is given.
Sec. 7.2 describes the optimization of new digital shaping filters, while the results
obtained with Phase I calibration data and the perspectives for Phase I are reported
in Sec. 7.3.

7.1 pulse shape discrimination of bege detectors

The reasons why BEGe detectors have been selected for Gerda Phase II are their
superior energy resolution and PSD performance, as described in Sec. 4.1.1. The
reduced dependence of the peak shape on the position of the energy deposition,
can be exploited in the discrimination between different event topologies. The
possible signal types are:

– single site events (SSE) induced by 2νββ or 0νββ decay, with the total elec-
trons energy absorbed in a small fraction (O(mm3)) of the detector volume;

– SSE induced by a γ undergoing a photoelectric absorption (if Eγ . 1 MeV),
or a Compton scattering plus a photoelectric absorption in a small region of
the detector;

– SSE induced by a γ with Eγ > 1022 keV undergoing a pair production:
the electron releases its energy within a few mm, while the positron slows
down to the eV level before annihilating with an electron of the crystal lattice,
inducing two 511 keV γ’s which escape the detector volume. This is the case
of events in the 208Tl DEP at 1592.5 keV;

– multi site events (MSE) induced by a γ undergoing multiple Compton scat-
tering, or a Compton scattering plus a photoelectric absorption in two sepa-
rate regions of the detector;
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– MSE induced by a γ with Eγ > 1022 keV undergoing a pair production, with
the absorption of one of the 511 keV γ’s in a different detector region. This
is the case of events in the SEP;

– slow pulse induced by β’s being emitted on the n+ surface. Given the small
electric field at the n+ electrode, the charge collection is slower than for bulk
events and the signal will present a longer rise time;

– fast pulse induced by energy release close to the p+ electrode. In this case
the high electric field yields yields a fast charge collection, with a signal
characterized by a short rise time. During physics runs, these events are
mostly given by α contamination of the p+ contact.

The current signal readout at the p+ contact has different shapes, depending on
the interaction type [219, 168]. While for a SSE the current pulse shows a single
maximum, for a MSE it is characterized by more than one local maximum. For a
fixed energy, the amplitude of a SSE current pulse is therefore larger than a MSE.
Given that the charge collection time is energy dependent in first approximation,
similar current pulse shapes are expected for SSE at different energies, the differ-
ence being only their amplitude. Based on this, the ratio A/E between the current
pulse amplitude A and the deposited energy E can be exploited for the distinction
between SSE and MSE. Following the same reasoning, a slow n+ contact pulse
will be characterized by a smaller A/E value than a SSE, while a fast p+ contact
pulse will have a larger A/E.

The plot of A/E vs E for a test measurement performed with a BEGe detector
is reported in Fig. 7.1, where the A/E has been normalized such that the SSE are
have A/E ∼ 1. A broad low A/E tail given by MSE and slow pulses is present at all
energies, with values of A/E down to ∼ 0.2, while the sparsely populated region
above A/E = 1 is induced by events taking place in the vicinity of the p+ contact.

7.1.1 Shaping of Current Signal in Gerda Phase I

The first step for the PSD is the calculation of the current pulse from the preampli-
fier output charge pulse recorded by the FADC. In absence of electronic noise, this
could be done with a differentiation of the charge trace. In reality, the noise in the
range of few MHz has to be filtered out in order to obtain a good signal-to-noise
ratio on the current pulse.

In Gerda Phase I a different philosophy has been followed for calibration and
physics runs. During these, a 160 µs long trace with 10 ns sampling time is
recorded for each pulse. The higher number of events involved would involve
a significant use of disk space if the same was done in calibration runs. Hence,
a “high frequency” (HF) waveform with 4 µs length and 10 ns sampling time is
recorded in addition to the 160 µs long trace with 40 ns sampling time used for
energy reconstruction.

The current pulse reconstruction was performed during Gerda Phase I with the
following algorithm, applied to the HF trace.

– Three moving average (MA) operations with δ = 50 ns width are applied:

xi[t]→ xi+1[t] =
1

δ

t∑
t ′=t−δ

xi[t
′] i = 0, . . . , 2 (7.1)
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Figure 7.1.: A/E vs E for the DD BEGe detector. The data refer to a measurement
performed with a test stand as part of Gerda Phase II preparation.

where x0 is the original trace. This operation allows to filter out the noise
with frequency higher than ∼ 20 MHz.

– The trace is differentiated, leading to the current pulse x3:

x2[t]→ x3[t] = x2[t] − x2[t−∆t] (7.2)

where ∆t = 10 ns is the sampling time.
– A ×10 subsampling of the current pulse is done, followed by three MA with
10 ns width. This last step is performed with the aim of improving the
precision in the A determination.

The value of A/E is then calculated as the ratio between the maximum of the
shaped current trace and the calibrated energy.

This shaping of the current pulse proved to be robust and reliable over all
Phase I data taking [208]. Nevertheless, some improvements are possible, which
might lead to a higher sensitivity to 0νββ decay. As for energy reconstruction, the
only reason for using the same filter for all detectors is the ease of data processing.
On the other hand, an extensive test of different shaping filters for the current
pulse can be performed. Moreover, the filter parameters can be optimized sepa-
rately for each detector. Finally, faster and more reliable subsampling techniques
are available and should be scrutinized, too.

7.2 optimization of digital shaping filters for psd

Based on the above mentioned considerations, several digital shaping filters have
been tested, and their PSD performances compared. The study has been per-
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formed on a single Phase I calibration run for the four BEGe detectors used for
0νββ analysis. The aim of the work is to prove the feasibility of the filter optimiza-
tion for current pulse reconstruction in view of Phase II data collection.

The first modification to the standard pulse processing regards the subsampling.
The use of 3× 10 ns MA on the subsampled trace works as a low-pass filter and
involves the application of 3 operations on each trace. The separation between the
subsampling and noise filtering allows to disentangle the contributions of the two
on the PSD performances and to perform a separate optimization of them.

Several subsampling algorithms are available in many software packages. In
our case, the cubic-spline interpolation provided by ALGLIB [220] was chosen for
its speed, efficiency and stability. The only parameter into play in the process is
the subsampling factor, k. In order to fully exploit the information available in the
trace, the subsampling was applied to the original digitized trace and not after the
filtering.

Following the philosophy used for the development of the ZAC filter (see Ch. 6),
a set of digital filters has been applied via convolution to the subsampled trace.
Each HF trace is subject to the following operations:

– subsampling by factor k, with the sampling time transformation ∆t→ ∆t ′ =

∆t/k

– Convolution with the inverse of the preamplifier response function (see Sec. 6.2):

fτ =

[
1,− exp

(
−
∆t ′

τ

)]
x[i]→ y[i] = x[i] ·

(
− exp

(
−
∆t ′

τ

))
+ x[i+ 1] · 1

i = i, . . . ,n− 1 (7.3)

where τ is the preamplifier decay constant, τ = RfCf, and n is the number
of bins in the resampled trace.

– Convolution with the shaping filter F of length nF:

y[i]→ z[i] =

i+nF−1∑
k=i

y[k] · F[i+nF − k]

i = 1, . . . ,n−nF + 1 (7.4)

In reality, the convolution of filter F with the inverse preamplifier response func-
tion fτ is performed once for all, such that only one operation is applied to the
resampled trace x. The amplitude A is given by the maximum of the shaped pulse
z.

The main difference with respect to the development and optimization of filters
for energy reconstruction is that no optimal filter can be computed from the theory
because no ideal pulse is available. Namely, even if the time evolution of charge
collection for a SSE does not strongly depend on the location of energy deposit
inside the detector, some variability does exist, making the calculation of the ideal
filter impossible. Recalling the argumentation given in Sec. 6.2, the proof that the
sinh -like cusp filter provides the best energy resolution is based on the assumption
of a δ-like current pulse. Since the charge collection is not instantaneous, the
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flat top is introduced to ensure the full integration of the deposited charge. The
effectiveness of the cusp filter with non-zero flat top is ensured by the fact that
the charge collection has a much shorter duration than that of the shaping filter.
In other words, for energy reconstruction the shape of the current signal can be
completely ignored as long as the flat top is as long as the charge collection time.
The task is completely different when A is to be computed. In this case we are
interested in extracting the maximum of the current pulse, whose shape depends
on the event type and location in the detector volume. It is therefore clear that the
computation of an ideal shaping filter is in this case impossible.

A set of filters F for the reconstruction of the current pulse has been tested.
Given the need not to integrate the charge, no flat top is used. Moreover, given
that the duration of charge collection if ofO(1) µs, the noise on the MHz frequency
range has to be filtered out, making the employment of zero area filters not neces-
sary. Finally, the length of the filter should be of the order of the charge collection
time. In general, the filter will be characterized by two parameters, i.e. length 2L
and shaping time τs. The list of tested filters is given below.

– Gaussian:

F(t) =
1

τ2
√
2π
· exp

(
−
(t− 2L)2

2τ2s

)
(7.5)

– Lorentzian:
F(t) =

1

πτs
· 1

1+
(
t−L
τs

)2 (7.6)

– Sinh-cusp:

F(t) =
1

2τs

(
cosh

(
L
τs

)
− 1
)
sinh

(
t
τs

)
0 < t < L

sinh
(
2L−t
τs

)
L < t < 2L

(7.7)

– Exponential cusp:

F(t) =
1

2τs

(
exp

(
L
τs

)
− 1
)
exp

(
t
τs

)
0 < t < L

exp
(
2L−t
τs

)
L < t < 2L

(7.8)

– Mexican hat:

F(t) =

(
1−

(t− L)2

τ2s

)
· exp

(
−
(t− L)2

2τ2s

)
(7.9)

– Delayed differentiation, for which no convolution was used, but the follow-
ing numerical algorithm on the trace y given in Eq. 7.3:

y[i]→ z[i] = y[i] −
1

m
·
i−1∑

k=i−m

y[k] with m =
2L

∆t ′
(7.10)

All the filters presented here have a total area equal to one, except from the last
two, for which the total area is zero.
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7.2.1 Comparison of Filter Performances

In order to compare the performances obtained with the different filters, we need
to define a criterion for the optimization of the PSD algorithm. This is more
complex than for the case of energy reconstruction described in Ch. 6, due to the
large variety of possible signal topologies listed in Sec. 7.1. As shown in Fig. 7.1,
the SSE events band is superimposed to a broad low A/E tail given by MSE and
n+-contact events. Additionally, p+-contact events induce a high A/E tail. In
the physics data of Gerda these events are mainly α decays from the p+-contact
surface, and represented only about 10% of the total background at Qββ [198].
The largest background component is given by 42K β decays on the n+-contact
with a low A/E value [208]. For this reason, we can tune the PSD on the separation
between the SSE band and the low A/E tail, neglecting the presence of the high
A/E tail.

The final goal of PSD is the maximization of sensitivity to a possible 0νββ decay
signal. Recalling Eqs. 2.37 and 2.38, and noting that the limit on T0ν1/2goes as:

T̂0ν1/2 ∝
ns√
nb

(7.11)

we can define a figure of merit (FOM) as:

FOM =
εSSEpsd√
εMSEpsd

(7.12)

where εSSEpsd and εSSEpsd are the PSD survival probabilities for SSE and MSE at Qββ.
Since only calibration data are involved in this work, for which no clear SSE peak is
available at Qββ, we will assume that the survival probabilities for the net counts
of the 208Tl DEP at 1592.5 keV and the 212Bi full energy peak (FEP) at 1620.5 keV
are equal to εSSEpsd and εSSEpsd at Qββ, respectively. Hence, the FOM becomes:

FOM =
εDEP√
ε1620

(7.13)

where the psd subscript is dropped due to the laziness of the author. This approx-
imation is justified by the fact that 1620.5 keV is mostly composed by MSE due
to the high Compton cross section for γ’s of that energy, while the DEP is mostly
made of SSE. Moreover, the SSE and MSE efficiencies can in first approximation
be considered equal at ∼ 1.5 MeV and Qββ [208].

The evaluation of the filter performances and the filter optimization will be tai-
lored on the FOM maximization. In order to determine the FOM, a cut on A/E
and a procedure for the evaluation of εDEP and ε1620 need to be defined. These
definitions are arbitrary, in the sense that the cut definition and the analysis pro-
cedure for the calculation of the survival probabilities are not unique. Different
choices can lead to different FOM and to different sensitivities to 0νββ decay. The
purpose of this work is just to test if the use and optimization of different filters
for the reconstruction of the current pulse can provide a substantial improvement
in sensitivity. Hence, it is only limited to the improvement of the current signal
processing, and a unique definition of the A/E cut and FOM calculation is used.
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Figure 7.2.: A/E fit for Compton continuum in the 1520–1700 keV range relative to
the GD32B data. The best-fit parameters are reported.

The comparison of different cut procedures and FOM calculations is planned for
Phase II, where the BEGe detectors are expected to provide the strongest contribu-
tion to the sensitivity to 0νββ decay.

For the definition of the A/E cut, the events in the Compton region between
1520 and 1700 keV are exploited, excluding two 10 keV region around the DEP
and the 1620.5 keV peak. The distribution of A/E for these events obtained with
GD32B is shown in Fig. 7.2. It is composed by a SSE peak around 0.47 a.u., with
a broad tail on its left given by MSE and n+-contact events, and a few p+ contact
events on its right. The SSE peak and the left-side tail are fitted with the function:

f(A/E) =
n√
2πσ

exp

(
(A/E− µ)2

2σ2

)

+
C1
2

exp
(
A/E− µ

δ1

)
erfc

(
A/E− µ√

2σ
+

σ√
2δ1

)
+
C2
2

exp
(
A/E− µ

δ2

)
erfc

(
A/E− µ√

2σ
+

σ√
2δ2

)
(7.14)

where the tail is parametrized through a large component with decay constant δ1
and a narrow component with decay constant δ2. The parameters are extracted
with a binned likelihood fit in ROOT. The PSD cut is defined by keeping the events
in the [µ− 2σ,µ+ 2σ] range, and rejecting those outside.

In order to extract the survival probabilities and the FOM, a spectral fit is per-
formed on the original energy spectrum in the [1520, 1700] keV range, and in the



128 optimization of digital filters for psd of bege detectors

Energy [keV]
1520 1540 1560 1580 1600 1620 1640 1660 1680 1700

C
ou

nt
s/

(0
.3
3

ke
V

)

20

40

60

80

100 Before PSD
After PSD

εDEP =
(
87.8+6.0

−5.5

)
%

ε1620 =
(
14.9+3.7

−3.4

)
%

FOM = 2.22+0.33
−0.33

Figure 7.3.: Energy spectrum before and after PSD relative to the GD32B data.

the energy spectrum containing the accepted events only. The fitting function is
in this case:

f(E) =
nDEP ·∆E√

2σ
exp

(
−
(E− 1592.5)2

2σ2DEP

)
+
C ·∆E
2

erf
(
E− 1592.5√
2σDEP

)

+
n1620 ·∆E√

2σ
exp

(
−
(E− 1620.5)2

2σ21620

)
+nCompton ·∆E (7.15)

where ∆E is the bin width. The function is the sum of a flat background for the
Compton continuum, plus two Gaussian distributions for the DEP and 1620.5 keV
line, and a high-energy step for the DEP. The binned likelihood fit is performed
using BAT [221], and the posterior probability density functions (PDF) for nDEP
and n1620 are saved to disk. The PDF of εDEP, ε1620 and FOM are extracted via
random sampling of nDEP and n1620 PDFs obtained from the original spectrum,
and of those surviving the PSD cut. For each of these parameters, the mode and
the 68.3% central interval are saved to disk.

Fig. 7.3 shows an example of the original energy spectrum, and that with the
events accepted by the PSD for GD32D. The best fit curves are shown, and the
values of εDEP, ε1620 and FOM are reported on the figure.

7.2.2 Filter Optimization

The optimization was run for all the six filters mentioned above. The first five
involve the convolution of the HF trace with the shaping filter. First, the optimal
filter length was extracted using a fixed subsampling factor and shaping time. As a
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result, the FOM reaches a plateau for 2L & 1.5 µs. Hence, a filter length 2L = 2 µs
was chosen. A scan of the subsampling factor k in the [1, 30] range and of the
shaping time τs in the [1 : 100] ns range with 1 ns step was performed.

For the delayed differentiation, the scan was run on the subsampling factor
(k = 1, . . . , 30) and on the filter length 2L in the [5, 500] ns range with 5 ns step.

7.3 results and perspectives

Among the six tested filters, the best FOM was obtained with the Gaussian fil-
ter and the delayed differentiation, with similar values in both cases for all four
detectors. Hence, only the results obtained with these two filters are reported.

Fig. 7.4 shows εDEP, ε1620 and the FOM as function of the shaping time for the
Gaussian filter, and as function of the filter length for the delayed differentiation
for GD32B with subsampling factor 20. The uncertainty on εDEP is about 6%,
while it is between 30% and 40% for ε1620, due to the very small number of
counts in the 1620.5 keV peak after the application of PSD. As a result, the lower
uncertainty on the FOM is at the 15% level, while the upper one is about 20%.

Looking at the central values of the acceptance scatter plots, it is clear that while
εDEP is always around 85%, with variations of about 2-6% over all the considered
range, εDEP varies by up to a factor two. This results in a variation of the FOM by
about 30%. Even if the best and worst FOM are still compatible within 2σ, a clear
trend is present. The highest FOM is around 2.6 for τs ∼ 60 ns with the Gaussian
filter, and for 2L ∼ 300 ns with the delayed differentiation. The reference value for
the FOM obtained with the standard reconstruction of A/E described in Sec. 7.1.1
is 2.20+0.32

−0.27. More details on the comparison are given below.
The dependence of the FOM on the subsampling factor k is shown in Fig. 7.5

for BD32B and the delayed differentiation filter. A rise for small values of k is
expected, but this is not visible in the data. Namely, the FOM seems to be inde-
pendent from k, with an average value of 2.66± 0.16, where the uncertainty is the
RMS. This behavior is opposite to what found with the standard shaping [222],
and can be explained either by the limited statistics of the considered data set, or
by a null improvement yielded by the subsampling of the trace. In order to disen-
tangle the two possible causes, a data set with much higher statistics is needed.

The comparison between the performances of the Gaussian and delayed differ-
entiation filters with the standard Phase I shaping is given in Tab. 7.1 for all four
BEGe detectors. For the new filters, the best FOM is reported. Given the unclear
effect of the subsampling, the reported results are relative to the optimization of
the filters with no subsampling applied. A correct determination of the FOM sta-
tistical uncertainty should take into account the statistical uncertainty on the single
FOM evaluation, and the variability of the FOM with respect to the shaping time
or filter length. As stated above, the lower uncertainty is about 15%, and the upper
about 20%, with slightly higher values for GD35B due to the smaller number of
events surviving the PSD. A quantification of the FOM improvement is not possi-
ble on the base of the current statistics. The values obtained with both Gaussian
and the delayed differentiation filter are between 10 and 25% higher than those
obtained with the standard shaping.
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To summarize, no clear statement can be made on the real improvement in sen-
sitivity at this stage, although an indication for a ∼ 10–25% enhancement is found.
Given the FOM improvement obtained with the Gaussian and delayed differentia-
tion filter, the same filter optimization technique is going to be applied extensively
throughout Gerda Phase II. Long dedicated calibration runs are going to be per-
formed with the aim of precisely determining the achievable improvement. These
runs will also allow the comparison the two selected filters, and and the quantifi-
cation of the effect yielded by the subsampling.
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Figure 7.4.: Acceptances and FOM for GD32B for the Gaussian filter (left) and the delayed differen-
tiation (right) with resampling factor 20
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Table 7.1.: Best FOM for Gaussian and delayed differentiation filters.

Best FOM Reference FOM
Detector Gaussian Differentiation 3× 50 ns MA

GD32B 2.6 2.6 2.20+0.32
−0.27

GD32C 2.2 2.2 2.05+0.27
−0.24

GD32D 2.8 2.8 2.52+0.45
−0.36

GD35B 4.0 4.2 3.19+0.85
−0.61
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P R O D U C T I O N A N D C H A R A C T E R I Z AT I O N O F 228 T H
C A L I B R AT I O N S O U R C E S F O R G E R D A P H A S E I I

This chapter describes the production and characterization of 228Th calibration
sources for Gerda Phase II. In Section 8.1 the production of low-neutron emission
228Th sources is revised. Sections 8.2 and 8.3 describe the measurements of the
sources activity and neutron strength. In Section 8.4 the results of leak test after
use in cryogenic environment are reported. The content of this chapter is also
available in [2].

As reported in Sec. 5.1, the optimal source for the energy calibration in Gerda is
228Th. The main drawback of using 228Th sources is that, starting from a 228Th
nucleus, 5 α particles with energies between 5 . 2 and 8 . 8 MeV are emitted before
a stable nucleus (208Pb) is reached [197] (see Fig. 5.1). If the radioactive substance
is embedded in materials with low threshold for (α , n ) reactions, a parasitic neu-
tron flux is obtained. This is the case for standard commercial sources, for which
ceramic components, e.g. NaAlSiO2, are used for practical reasons. In Gerda,
neutrons could generate 77Ge and 77mGe via 76Ge activation, both of which
undergo beta decay with > 2 MeV Q-value, or they could be captured in the ma-
terials surrounding the detectors and produce high energy gamma rays. The back-
ground contribution at Qββ prior to the application of PSD and liquid argon veto
cuts induced by such neutrons would be 3 · 1 0−5 counts/ (keV·kg·yr·kBq) [181].
With a total activity of ∼ 7 0 kBq, this would not fulfill the background require-
ments of Gerda Phase II [190]. The reduction of the neutron source strength by
about one order of magnitude can be achieved by embedding 228Th in a metallic
material with cross section for (α , n ) reactions higher than 8 . 8 MeV. As de-
scribed in [181, 223], gold is the best candidate due to its 9 . 9 4 MeV threshold, its
< 20 µm range for 228Th alphas, its ductility and ease of procurement.

Given the ultra-low background requirements of the Gerda experiment and
the need to deploy the sources at cryogenic temperatures, it is crucial to avoid
any leakage of the source active material. Thus, a new leak test procedure with
a sensitivity to leaks of . 1 0 mBq activity was developed at the ENEA-INMRI,
Italy, and tested for the first time on the Gerda Phase II sources.

8.1 production of
228

th sources with low neutron emission

The production technique of 228Th sources with reduced neutron emission was
originally developed by the University of Zurich (UZH) and the Paul Scherrer In-
stitute (PSI). Several prototype sources were produced during Gerda Phase I [181].

133
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The technique was later used and improved [223] to produce a strong calibration
source of several MBq activity for Borexino. A brief summary of the technique is
given below for completeness.

The radioactive substance was provided in form of ThCl4 dissolved in 1 M HCl
by Eckert und Ziegler Isotope Products Int., Valencia (CA), USA, with a total 228Th
activity of 150± 23 kBq (Fig. 8.1a). Chlorine has two stable isotopes, 35Cl and 37Cl,
both of which have (α,n) thresholds below 8.8 MeV. It is therefore mandatory to
completely separate chlorine from thorium prior before its deposition on gold. The
thorium tetrachloride solution was evaporated in a PTFE crucible almost to dry-
ness; it was subsequently worked-up two times with 1 ml concentrated nitric acid
and dried by evaporation (Fig. 8.1b). Thus the ThCl4 was converted in Th(NO3)4

using surplus concentrated HNO3 through the reaction:

3ThCl4 + 16HNO3

∼115

◦C
−−−−→ [3Th(NO3)4]s + [4NOCl + 8H2O + 4Cl2]g , (8.1)

where the subscripts s and g stand for solid and gaseous, respectively. Subse-
quently, the solid Th(NO3)4 was diluted in two molar HNO3 and transferred into
a gold crucible prepared out of a 2 × 2 cm gold foil of 20 µm thickness. The
gold has a > 99.99% purity and was produced by mechanical means, lamination
and hammering, with no alteration of the original purity level [224]. The HNO3

was evaporated by heating the solution to ∼ 120◦C (Fig. 8.1c). Subsequently, the
gold crucible was folded and heated to ∼ 700◦C to form ThO2 on the gold sur-
face (Fig. 8.1d). The evaporation of the remaining nitrogen and oxygen was done
through the reaction:

3Th(NO3)4

∼700

◦C
−−−−→ [3ThO2]s + [12NO2 + 3O2]g . (8.2)

Finally, the gold crucible was further folded (Fig. 8.1e) and wrapped in a second
gold foil of the same dimension in order to prevent any loss of radioactive material
(Fig. 8.1f). The procedure was performed separately for each of the four sources.
The production of the Gerda Phase II sources was performed at the Institute for
Nuclear Chemistry of the University of Mainz, Germany.

The sources were then encapsulated by Eckert und Ziegler Nuclitec GmbH,
Braunschweig, Germany, with a double-sealed stainless steel VZ-3474 capsule
(Fig. 8.2), and certified according to ISO-2919 requirements.

8.2 measurement of the source activity

A precise measurement of the sources activity is required for several reasons. First,
a correct 0νββ decay analysis can be performed only if a proper understanding
of all the background components is available. This is possible thanks to the
development of a background model via MC approach and the fit of the model to
the physics data. The correctness of the MC geometry and physics implementation
can be assessed by simulating the calibration measurements and comparing the
simulated with the experimental spectra recorded by the germanium detectors. In
Gerda Phase I, the activity of the calibration sources was known within a 15%
uncertainty [181], hence the quality of the MC model could only be inferred by
comparing the spectral shape of simulated and measured spectra, and not by the
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(a) Solution of ThCl4 in 1 M HCl. (b) Evaporation of clorine.

(c) HNO3 evaporation. (d) Conversion of Th(NO3) to Ch)2

(e) Folding of the inner gold foil, containing the
ThO2.

(f) Outer gold foil.

Figure 8.1.: Source production.
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(a) Inner source capsule (left) with the 228Th in
the gold envelope (right).

(b) Gold envelope pressed in the inner capsule.

(c) Outer capsule, inner capsule and outer cap-
sule lid.

(d) Detail picture of the TIG welded inner cap-
sule lid.

Figure 8.2.: Source encapsulation.
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absolute number of events. Second, the simulation of the calibration measurement
is required for the evaluation of the PSD efficiency on the DEP, the Compton
continuum and the full energy peaks [208]. Finally, a measurement of the LAr veto
efficiency for different background source locations can be addressed by lowering
the 228Th sources to different positions and comparing the measured with the
simulated suppression factors.

The measurement of the Phase II 228Th source activities was performed in the
Gator facility [225] at LNGS. Gator consists of a high-purity p-type coaxial ger-
manium crystal encased in an ultra-low activity copper cryostat. The detector
is placed in a 25× 25× 33 cm3 cavity where the material samples can be inserted.
The integrated background of Gator is ∼ 0.16 events/min in the 100-2700 keV range.
The ∼ 30 kBq activity of Phase II sources induces a count rate which is 4 orders
of magnitude higher, hence the measurements described here can be considered
background free.

A 20 min long measurement was performed for each of the four sources, placed
on a PTFE holder at ∼ 120 mm distance from the top of the detector to reduce the
pile-up rate. The dead time was between 16 and 25%, depending on the source
activity. The spectrum is recorded in the 10-2770 keV range, thus covering the
entire 228Th spectrum, with the highest energy line at 2614.5 keV.

In order to determine the activity, a Geant4 based simulation was performed [226].
The implementation of Gator geometry in the simulation is shown in Fig. 8.3. The
measured spectrum for one of the four sources is shown in Fig. 8.4. A negligible
fraction of events are present in the experimental spectrum above the 2614.54 keV
peak. These are pile-up events and are not accounted for in the MC. Similarly,
a ∼ 25% discrepancy between data and MC is visible below ∼ 70 keV. This is at-
tributed to a sub-optimal implementation of the 228Th decay chain in Geant4. To
avoid any bias due to the two effects explained above, the analysis is performed
in the 100-2617 keV range.

For the comparison of measured and simulated data the finite experimental
energy resolution is applied to the simulated spectrum via energy smearing on
a single event basis. This is obtained with the substitution of the original event
energy E with

E→ E+∆E , (8.3)

where ∆E is a random number generated from a Gaussian distribution centered
at zero and with a FWHM given by the resolution curve (see Sec. 5.6).

The activity is determined with a maximum likelihood analysis performed with
BAT [221]. The log-likelihood is written as:

lnL =
∑
bin i

ln

(
λkii e−λi

ki!

)
, (8.4)

where ki is the measured number of events and λi the expectation value in the bin
i, defined as:

λi =
A ·∆t · Ri
NMC

, (8.5)

where A is the source activity, ∆t is the live time of the measurement, Ri is the
number of events in the i-th bin of the simulated spectrum, and NMC is the total
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Figure 8.3.: Gator MC
geometry

Table 8.1.: Measured activity of the four Gerda Phase II 228Th calibration sources.
The first error is to the statistical uncertainty of the fit, while the second is the total
systematic uncertainty.

Source Activity [kBq]

AD9854 24.2± 0.1 (stat) +1.1
−0.9 (syst)

AD9855 34.2± 0.1 (stat) +1.5
−1.3 (syst)

AD9856 30.8± 0.1 (stat) +1.4
−1.2 (syst)

AD9857 41.3± 0.1 (stat) +1.8
−1.6 (syst)

number of simulated events. The only free parameter is A, its best value is given
by the maximum of lnL, and its uncertainty is obtained from the central 68.3%
interval.

The experimental spectrum, along with the simulated one scaled according to
the best-fit result, is shown in Fig. 8.4 for one of the sources. The good agreement
between data and MC at all energies in the considered range together with the
high statistics of the measurement are reflected in a statistical uncertainty on the
activity of ∼ 2h. The activity of the four Phase II sources is reported in Tab. 8.1.

The major source of uncertainty for this measurement is of systematic origin.
It is due to the limited knowledge of the experiment’s geometry, to an imprecise
knowledge of the cross sections for the physics processes involved, and to the
fitting procedure itself.

Regarding the implementation of the geometry in the MC simulation, the major
uncertainty is induced by the distance between the source and the germanium
crystal, known with ±2 mm precision. All other uncertainties connected to the
geometry and thickness of the materials in between can be considered negligible.
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Figure 8.4.: 228Th spectrum recorded by the Gator spectrometer with the AD9857
source (black), together with the simulated spectrum (red) scaled according to the
best fit. The gamma lines used for the energy calibration in Gerda are labeled.

A difference of ±2 mm distance has negligible effect on the spectral shape but
results in a different covered solid angle and, therefore, a different activity. The
simulations and the analysis have been repeated after changing the source height
by ±2 mm. This results in a +2.5

−2.1% systematic error on the activity.
The uncertainty due to the limited accuracy of the physics models implemented

in Geant4 is almost exclusively related to that of the cross sections for the pho-
toelectric, Compton and pair production processes. The accuracy of these was
estimated to be at a 5% level, as described in [227]. As for the previous case,
the simulations have been repeated after separately changing the cross sections of
each of the three processes by ±5%. The possible energy dependence of the cross
section for the three processes is below the 5% level, hence it is not considered.
Given the considered energy range, the largest effect on the activity is induced by
the cross section for Compton scattering and is −2.0

+2.5%. The systematic error related
to the photoelectric effect is −0.4

+0.2%, while the one related to the pair production is
below 1h.

Finally, the uncertainty given by the choice of the energy range used for the anal-
ysis has to be considered. To quantify this effect, the analysis has been repeated
by increasing the minimum of the energy range from 100 to 2600 keV with 20 keV
steps. The root mean square (RMS) of the resulting activities distribution has been
taken as systematic error. This results at 2.5% level.

The three sources of systematic uncertainties considered so far originate from
independent causes. Therefore, the errors are summed in quadrature, resulting
in a +4.4

−3.9% uncertainty in the activity. As a comparison, the activity of the Gerda

Phase I sources was only known with a ±15% uncertainty [181]. Given the high
precision obtained in the measurement, a more precise validation of the Gerda

Phase II MC simulation is possible. In addition, the measurement of 56Co and
226Ra radioactive sources for Gerda Phase II will be performed using the same
procedure.
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8.3 neutron strength measurement

The measurement of the neutron source strength of the four Gerda Phase II
sources was performed with a LiI(Eu) detector and a 3He counter underground
at LNGS in a low background environment. As both detectors are suitable for the
detection of thermal neutrons, a moderator had to be used in order to thermalize
the neutrons emitted by the 228Th sources. Namely, the neutrons are character-
ized by a continuum energy spectrum with a maximum at ∼ 2.5 MeV [181]. Three
measurements were performed: first, the total detection efficiency was determined
using an AmBe neutron source of known neutron strength, keeping the same ge-
ometrical configuration as for the 228Th sources screening. In a second step, the
background spectrum was acquired for a period long enough to make its influ-
ence on the neutron source strength uncertainty smaller than the systematic error.
Finally, the four Gerda Phase II sources were measured.

8.3.1 Measurement with LiI(Eu) Detector

The first measurement of the neutron source strength was performed with a LiI(Eu)
detector. The physical process exploited for the detection of thermal neutrons is:

6
3Li + n → 7

3Li∗ → 3
1H +42 He + 4.78 MeV . (8.6)

The experimental signature is a peak at the Q-value of the reaction, i.e. 4.78 MeV.
Given the different light yield induced by electrons with respect to alphas and
tritons [228], the thermal neutron peak is recorded at ∼ 4.1 MeV in electron-
equivalent energy scale [229]. Since no environmental γ-ray is commonly present
with an energy higher than 2615 keV (full energy peak of 208Tl), this assures a
very good γ-n discrimination. A major concern for the detection of small thermal
neutron fluxes is the presence of environmental thermal neutrons, as well as ra-
dioactive contaminants of the LiI(Eu) crystal bulk or its surface, emitting α or β
particles in the 3.5-4.5 MeV range.

The employed experimental setup consists of a LiI(Eu) cylindrical crystal with
25.4 mm diameter and 3 mm height enriched to 96% in 6Li provided by Scionix,
Bunnik. The crystal is coupled to a 1” square R8250 low-background photomul-
tiplier tube (PMT) from Hamamatsu Photonics. In order to minimize the back-
ground, the system is encased in a custom made copper holder (Fig. 8.5a). The
detector is surrounded by 20 cm thick borated polyethylene (PE) panels acting as a
shielding for external neutrons. A 2 cm thick lead brick and a 5 cm thick PE mod-
erator were present in front of the detector during all measurements (Fig. 8.5b).
The detector was designed in the past to measure the neutron fluxes of the 228Th
prototype sources produced during Gerda Phase I. A detailed description can be
found in [181].

The determination of the total efficiency εwas performed using an AmBe source
with a neutron strength of 160 ± 4 n/s [230]. For this measurement only, the
setup was installed at the surface laboratory at LNGS. The AmBe source was
measured for 12.56 h, and a 5 days long background run was performed under
the same conditions. The collected spectra are shown in Fig. 8.6. The analysis was
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(a) The LiI(Eu) crystal coupled to the 1” PMT and
mounted on the copper holder.

(b) The detector (in the copper case) in the bo-
rated PE shielding, together with the 5 cm thick
PE moderator and the 2 cm thick Pb absorber.
The sources were mounted on the holder in front
of the Pb brick.

Figure 8.5.: LiI detector.

performed via a maximum likelihood analysis in the 7000-9500 bin range, with ε
as the parameter of interest:

lnL = ln

(
λkss e−λs

ks!

)
+ ln

(
λkbb e−λb

kb!

)
−

(S− µS)
2

2 · σ2S
, (8.7)

where ks and kb are the measured number of counts in the fit range for the AmBe
and the background measurement, respectively, while λs and λb are the corre-
sponding expectation values, and S is the known AmBe neutron flux. A Gaussian
prior is assigned to S, with µS = 160 n/s and σS = 4 n/s. The expectation values
are defined as:

λs = ∆ts · (ε · S+B) , (8.8)

λb = ∆tb ·B , (8.9)

where B is the background index in events/s in the fit range and ∆ts (∆tb) is the
live time of the AmBe (background) measurement. The measured efficiency is:

ε =
(
5.32+0.18

−0.15 ± 0.27
)
· 10−4 , (8.10)

where the first error is the statistical uncertainty of the fit and the second is the
systematic related to the choice of the energy range for the fit.

The four Gerda Phase II sources were measured together underground for 11
days, and a background measurement was carried out for 142 days. Fig. 8.7 shows
the two recorded spectra. The determination of the neutron source strength was
performed using the same method as for the efficiency. The log-likelihood contains
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Figure 8.6.: LiI spectra recorded with and without the AmBe source. The peak
due to thermal neutrons is clearly visible around channel 8000, corresponding to
about 4.1 MeV in electron-equivalent energy scale. For these measurements only,
the LiI(Eu) detector was operated at the surface laboratory at LNGS.

a Gaussian prior for the total efficiency and the total activity A = 130.4± 5.5 kBq
of the four sources:

lnL = ln

(
λkss e−λs

ks!

)
+ ln

(
λkbb e−λb

kb!

)
−

(ε− µε)
2

2 · σ2ε
−

(A− µA)
2

2 · σ2A
, (8.11)

where the subscripts s and b refer to the measurement with the sources and the
background, respectively. The expectation values are given by:

λs = ∆ts · (ε ·A · S+B) , (8.12)

λb = ∆tb ·B . (8.13)

The resulting neutron source strength is:

S =
(
8.2+1.7

−1.2 ± 1.1
)
· 10−7n/(sec · Bq) . (8.14)

The first uncertainty is the statistical error from the fit, while the second is the
systematic uncertainty related to the choice of the energy range. This in particu-
lar includes the effect of the background peak present around channel 7000 (see
Fig. 8.7).

The measured neutron source strength is based on the assumption that the
AmBe and 228Th emitted neutron spectra are the same. As mentioned in [181, 223],
while the first has a mean energy at ∼ 4 MeV, gold-encapsulated 228Th yields a
mean neutron energy of 2.58 MeV. The use of the same total efficiency for the
AmBe and 228Th measurements thus induces a systematic error, which was com-
puted to be 12% in [223]. As a result, the neutron source strength for the Gerda

Phase II calibration sources is:

S =
(
8.2+1.7

−1.2(stat)± 1.1(fit range)± 1.0(eff)
)
· 10−7n/(sec · Bq) . (8.15)
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Figure 8.7.: Background of the LiI(Eu) detector operated underground at LNGS
(red) and spectrum recorded with the four Gerda Phase II 228Th sources (black).
While the γ contribution is only present up to channel ∼ 6000, a thermal neutron
signal is present around channel 8000. The faint peak in the background spectrum
around channel 7000 is likely due to an internal α contamination of the crystal.

For comparison, the same measurement and analysis were performed for a com-
mercial 228Th source (i.e., with ceramic substrate) with 19.5± 2.9 kBq activity. The
neutron source strength in this case is 7.5+2.5

−1.3 · 10
−6 n/(sec·Bq). Thus, the use of

gold as a support material for 228Th yields a reduction in the emitted neutron flux
by one order of magnitude.

8.3.2 Measurement with 3He Detector

A second measurement of the neutron source strength was performed with a 3He
counter. The exploited reaction is: Ero un bambino e

già me n’ero accorto
– raccontò Qfwfq –
Gli atomi d’idrogeno
li conoscevo uno per
uno, e quando ne
saltava fuori uno
nuovo lo capivo
subito. I. Calvino,
Le Cosmicomiche

3
2He + n→31 H + p + 746 keV . (8.16)

The expected signal induced by thermal neutrons is therefore a peak at 746 keV.
In spite of this low Q-value, γ radiation does not represent a background for the
measurement because of the gaseous state of the detector, with a mean energy
deposit for electrons of about 2 keV/cm. The discrimination between neutrons
and gammas or electrons is thus performed based on the deposited energy alone.

The 3He counter is a LND-2531 produced by LND inc., New York. The tube has
an effective diameter of 47.75 mm and a height of 203.2 mm. It is filled with 3He
at a pressure of 6078 mbar and is operated at 1950 V. The counter is inserted in a
6.5 cm thick 4π PE moderator, on which a borehole is present for source insertion.
The distance between the tube and the bottom of the borehole is 1.1 cm. The
system is shielded by a 113Cd foil and a 4π castle of borated paraffin with 10 cm
thickness for the absorption of environmental neutrons.

The four sources were screened for 17.5 hours, while the background spectrum
was acquired for 10 days. The total detection efficiency, determined using an
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Figure 8.8.: Background of the 3He counter operated underground at LNGS (red)
and spectrum recorded with the four Gerda Phase II 228Th sources (black). The
thermal neutron peak is visible around channel 2900, while the broad continuum
below channel 2000 is due to γ background.

AmBe source in a previous measurement, is (7.13 ± 0.85) · 10−2 [231]. Follow-
ing the same analysis procedure used for the LiI(Eu) measurements, the neutron
source strength of the Gerda Phase II sources is:

S =
(
9.4+2.0

−0.8(stat)± 0.4(fit range)± 1.1(eff)
)
· 10−7n/(sec · Bq) , (8.17)

where the first uncertainty is statistical, the second is the systematic due to the
choice of the energy range, and the third is the efficiency related systematic.

8.3.3 Interpretation of the Results

The neutron source strengths measured with the LiI(Eu) and the 3He detectors
agree within the errors. This demonstrates the reliability of the LiI(Eu) as a low-
flux neutron detector. For both measurements, the total uncertainty of ∼ 20% is
mostly due to the limited statistics. A higher precision could be obtained with a
longer screening, but this was not possible due to time constraints related to the
preparation of Gerda Phase II.

Previous measurements performed with two custom 228Th sources for Gerda

Phase I lead to similar results [181]. The measured neutron source strengths vary
between 7.59 · 10−7 n/(sec·Bq) and 1.50 · 10−6 n/(sec·Bq), depending on the source
and detector. In this case the uncertainties were ∼ 30%, which might explain
the spread of the values by up to a factor two. A more precise measurement
was performed in [223] on a 228Th source with gold substrate and the same
encapsulation of the Gerda sources. The measured neutron source strength of
(1.22± 0.17) · 10−6 n/(sec·Bq) is also in good agreement with the results presented
here.

The agreement of independent measurements on the gold-encapsulated 228Th
sources confirms the reliability of the production technique. The reproducibility
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Table 8.2.: Experimental conditions and results for the leak test performed at
ENEA-INMRI.

Number of BB readings 108

Number of A1, LN, A2 readings for each source 6

Counting time [s] 6000

Mean BB count rate
[
s-1
]

0.00250
Experimental standard deviation of BB count rate

[
s-1
]

0.00087
Expected Poisson standard deviation

[
s-1
]

0.00064
Decision threshold for the net indivitual count rate

[
s-1
]

0.00202

of 228Th sources with neutron emission at the level of 10−6 n/(sec·Bq) can thus
be guaranteed to present and future low background experiments. In the case of
Gerda Phase II, the neutrons emitted by the calibration sources induce a back-
ground index at Qββ of ∼ 2 · 10−4 counts/(keV·kg·yr) prior to the application of
PSD and LAr veto. This is a factor 5 lower than the total expected background
and is sufficient to fulfill the Phase II requirements.

8.4 leak test of radioactive sources for cryogenic systems

A new set of leakage tests intended to check the tightness of 228Th radioactive
sources after deployment at cryogenic temperatures has been developed at the Isti-
tuto Nazionale di Metrologia delle Radiazioni Ionizzanti of ENEA (ENEA-INMRI).
It consists of a series of source insertions in acetone and liquid nitrogen, each one
followed by a search for possible leaks. A blank capsule, identical to the Gerda

228Th sources but with no radioactive material, was used for a cross-check. Each
of the four radioactive sources and the blank capsule was enveloped in circular
aluminium foil of 24 cm2 surface, and dipped in acetone (A1) for 1 hour. After
acetone evaporation, the α contamination of the aluminium foil was measured
with a Berthold LB 770 α-β low level counter. The operation was repeated us-
ing liquid nitrogen (LN) and then one more time with acetone (A2). The same
procedure, without the second immersion in acetone, was applied without using
any radioactive source or blank capsule for background determination. While the
background measurement is needed to assess the intrinsic contamination of alu-
minium, the comparison between the α count rates obtained with the real and
blank capsules allow to disentangle between real 228Th leaks and possible remov-
able surface contaminations. Since the blank and the background count rates are
not distinguishable, they have been considered as belonging to the same popula-
tion (BB).

The distribution of A1, LN and A2 count rates for each of the four sources was
compared with that of BB. The test conditions and the results of the analysis are
reported in Tab. 8.2. Following [232], the decision threshold at 95% confidence
level was calculated based on the standard deviation of the BB readings. The ex-
perimental standard deviation of the BB includes components of variability due to
counting statistics, long term system stability and homogeneity of used materials.
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Table 8.3.: Activity found after each source treatment, with reported 2 σ uncertain-
ties.

Source A1 [mBq] LN [mBq] A2 [mBq]

AD9854 7.5± 3.5 1.0± 6.3 4.4± 3.8
AD9855 4.2± 4.6 1.0± 6.1 4.0± 3.0
AD9856 1.0± 2.9 -0.8± 2.7 -0.2± 3.6
AD9857 3.2± 3.8 2.6± 6.4 0.8± 3.9

If the sample reading of the sources exceeds the decision threshold, a 228Th leak
has been detected.

Out of all the 24 LN readings only 2 (8.3%) exceed the decision threshold, while
they are in average lower than the A1 and A2 readings. In addition, the A1 count-
ing rates are always slightly higher than those of A2. This means that the higher
LN counting rates are not induced by a 228Th leak, but from a surface contamina-
tion of the source capsules, which is removed by the two insertions in acetone.

The activity removed from each of the sources after the A1, LN and A2 immer-
sions is reported in Tab. 8.3. The efficiency of the counter was measured with a
standard 241Am source with known activity (555.64 Bq) and is 0.3968. A more
precise measurement of the counting efficiency would be possible with an open
228Th source, which was not available at the moment of the measurement. In any
case, no large energy dependence is expected in the efficiency of the counter in
the 5-10 MeV range, inside which the α particles of both 214Am and 228Th are
contained. For all sources, no leak is detected after the insertion in LN and the
second insertion in acetone. Hence the sources are suited to be used in Gerda

Phase II.
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C O N C L U S I O N S A N D O U T L O O K

The Gerda experiment is searching for 0νββ decay in 76Ge. Isotopically modi-
fied germanium crystals with ∼ 86% enrichment in 76Ge are used as source and
detectors for the process. With a BI of 10-2 counts/(keV·kg·yr) and a 21.6 kg·yr
exposure, Gerda Phase I set the strongest limit on the half-life of the reaction,
T0ν1/2 > 2.1 · 10

21 yr (90% C.L.). In Phase II, Gerda aims at a sensitivity > 1026 yr
on T0ν1/2 with 100 kg·yr exposure. The experimental sensitivity is enhanced with
a larger active mass, a lower BI, and an better energy resolution. The optimiza-
tion of energy resolution and the BI minimization are the main topics of this
thesis. Alongside with these, the calibration of the energy spectrum and the de-
termination of the systematic uncertainty on the single event energy induced by
the calibration procedure are a important ingredients for a successful 0νββ decay
search, and are part of this work.

The precision of the calibration procedure is a mandatory requirement for a
reliable analysis of Gerda data. The calibration of the energy scale in Gerda is
performed weekly with the insertion of three 228Th sources in the vicinity of the
detectors. The calibration frequency and the presence of a dozen detectors make
the use of an automatic procedure for the analysis of calibration data necessary.
A dedicated software was developed for the automatic search, identification and
fit of the peaks in the calibration spectrum. This represented the official tool for
energy calibration of Gerda Phase I. The information from the calibration data
is also used to extract the systematic uncertainty of the energy determination for
each single event, which is 0.2 keV for Phase I data. The resolution curves obtained
from the calibration data and the comparison of these with the energy resolution
of the 42K peak in the physics spectrum are exploited for the extraction of the
FWHM at Qββ. In addition to this, the precision of the energy reconstruction
is cross-checked with a dedicated 56Co calibration run performed at the end of
Phase I. The calibration software is then further extended and improved for the
analysis of Phase II data, and is already in use by the Gerda collaboration.

A better energy resolution can be obtained tuning the shaping filter on the de-
tector and noise properties. In Phase I, for some detectors the signal quality was
strongly deteriorated by low-frequency baseline fluctuations due to the long non-
coaxial cables connecting the diodes to the front-end electronics. The ZAC filter
was developed and its parameters optimized on Phase I calibration data. The re-
processing of all Phase I data with the optimized ZAC filter yields a 0.3 keV lower
FWHM at the 208Tl 2514.5 keV line, and a ∼ 0.5 keV improvement on the FWHM
at Qββ for the physics data. The larger improvement obtained on the physics data
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is due to the higher precision of the energy calibration achievable with the ZAC-
reconstructed energy spectra, and to the reduced sensitivity of the ZAC filter to
microphonic noise. Thanks to this, the application of the calibration curves to the
physics data and the merging of data sets affect less severely the energy resolution
than for the spectra reconstructed with the pseudo-Gaussian shaping filter.

The reprocessed Phase I physics data are used to test the performance of al-
ternative methods for 0νββ decay analysis. Firstly, the Bayesian method used
in Gerda is applied to the reprocessed spectra, and a new limit on the process
half-life is obtained, T0ν1/2 > 2.09 · 10

25 yr (90% C.I.), which is 9% higher than that
achieved with the semi-Gaussian shaping. In a second step, the fit is performed
on the individual detector spectra, and all involved parameters are inserted in
the fit with a proper prior based on previous independent measurements. The
spectra separation allows to fully exploit the available information, and yields a
limit of T0ν1/2 > 2.36 · 1025 yr (90% C.I.), 23% higher than the one obtained with
the standard analysis and the semi-Gaussian shaping. This clearly demonstrates
the advantage given by the separation of the individual detector spectra. Fur-
thermore, the impact of the improved energy resolution on Phase II sensitivity
is computed with the generation of toy MC spectra using the predicted BI of
10-3 counts/(keV·kg·yr) and a 15% better resolution with respect to the one ob-
tained with the semi-Gaussian shaping in Phase I. As a result, a ∼ 5% higher
median sensitivity is obtained with the Bayesian method applied on two data sets,
corresponding to the merged spectra of semi-coaxial and BEGe detectors. Once
the BI and energy resolution of individual channels are available, the sensitivity
can be extracted keeping the individual detector spectra separate. In this case, the
improvement is expected to be higher than 5%, as it is for the limit resulting from
Phase I data.

The optimization of digital filters is also applied to the reconstruction of cur-
rent pulses for PSD with BEGe detectors. A set of 6 filters was tested and opti-
mized for 4 BEGe detectors on a single calibration data set from Gerda Phase I.
The filter optimization was tailored on the maximization of a FOM defined as
FOM = εDEP/

√
ε1620, where εDEP and ε1620 are the survival probabilities for

the 208Tl DEP at 1592.5 keV and the 214Bi line at 1620.5 keV, respectively. For
all detectors, the best performances are obtained with a Gaussian shaping and a
delayed differentiation filter, which yield comparable results. A precise determi-
nation of the FOM improvement is not possible due to the limited statistics of the
considered data set, but a positive indication for a 10–25% higher FOM is found.
Based on this result, the filter optimization technique for PSD is planned to be
extensively applied to Gerda Phase II data in the near future.

Alongside with the analysis of Phase I data, part of my effort was dedicated
to the production and characterization of 4 228Th calibration sources for Gerda

Phase II. The γ activity is determined with a ±4% total uncertainty thanks to a
background-free measurement performed underground at LNGS with the Gator
spectrometer. The neutron source strength was measured with a 3He and a low-
background LiI(Eu) detector. Also in this case, the measurements were performed
underground at LNGS. The two measurements yield results in agreement within
the uncertainties. The neutron source strength of the Gerda Phase II sources is
∼ 106 n/(sec·Bq), and is one order of magnitude lower than that of a commercially
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available 228Th source. This reduced source neutron activity fulfills the back-
ground requirement for Gerda Phase II. Additionally, the tightness of Phase II
calibration sources after the deployment in cryogenic environment was investi-
gated with a dedicated leak test. As a result, the presence of leaks is excluded at
the 10 mBq level.

Furthermore, a study of the perspectives for the 0νββ decay search was per-
formed as a byproduct of the thesis writing. The probability distribution for the
effective Majorana mass as a function of the lightest neutrino mass in the standard
three neutrino scheme is computed via a random sampling from the distributions
of the involved mixing angles and squared mass differences. If a flat distribution
in the [0; 2π] range for the Majorana phases is assumed, the probability of obtain-
ing |mββ| < 10-3 eV in the NH regime is below 7%. If the cosmological bound
on the sum of the neutrino masses is inserted in the calculation, a 3.32 · 10-3 eV
(2.14 · 10-2 eV) discovery sensitivity on |mββ| would yield a 90% probability to
detect 0νββ decay in case of NH (IH). Finally, the probability distribution for T0ν1/2
as function of the lightest neutrino mass is given for different values of the NME.

In summary, important contributions in terms of data reconstruction and anal-
ysis were made to the improvement of the Gerda sensitivity. A digital shaping
filter for energy reconstruction was developed and optimized, yielding a & 5%
improvement on the T0ν1/2 sensitivity of Gerda Phase II. If a similar approach is
applied to the reconstruction of the current pulse for the PSD of BEGe detectors,
a & 10% improvement in sensitivity is achievable. Additionally, the calibration
of all Gerda Phase I data was performed with a dedicated program developed
in the context of this PhD work. 4 228Th calibration sources with reduced neu-
tron strength for Gerda Phase II were produced and characterized, and fulfill the
Phase II background requirements. Finally, a phenomenological study of |mββ|

was performed, which lead to the probability distribution of |mββ| and T0ν1/2 on
the basis of the current knowledge of the involved parameters.





A
P E A K F I T S O N C A L I B R AT I O N S P E C T R A

This appendix gives the fit of all 228Th peaks used for the extraction of the cali-
bration curve of ANG2 for the February 15, 2013 calibration run. The spectra are
reconstructed using the semi-Gaussian filter. The best fit values are reported in
the inset.
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Figure A.1.: Fit of peaks in calibration spectrum for ANG2.
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Figure A.2.: Fit of peaks in calibration spectrum for ANG2.





B
P E A K F I T S A N D S TA B I L I T Y P L O T S F O R T H E Z A C S H A P I N G
F I LT E R

This appendix reports the following plots for all detectors used for the Phase I
0νββ decay analysis.

– fit of the 208Tl peak on the super-tier3 of semi-coaxial and BEGe detectors
(Figs. B.1 and B.2). For the semi-coaxial detectors, only the calibration runs
acquired during the period corresponding to the golden data set are used;

– FWHM2 as a function of energy for the super-tier3 of semi-coaxial and BEGe
detectors (Figs. B.3 and B.4). For the semi-coaxial detectors, only the calibra-
tion runs acquired during the period corresponding to the golden data set
are used;

– FWHM as a function of time for all calibration runs of Gerda Phase I
(Figs. B.5, B.6 and B.7).

In all cases, the results obtained with both the pseudo-Gaussian and ZAC filter
are reported.
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Figure B.1.: 208Tl line for the super-tier3 of the calibration runs taken in the period corresponding
to the golden data set. All calibration runs are merged together. The best fit values are reported in
the plot.
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Figure B.2.: 208Tl line for the BEGe detectors. All Phase I calibration runs are merged together. The
best fit values are reported in the plot.
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Figure B.3.: FWHM2 as a function of energy for the super-tier3 of semi-coaxial detectors. The
calibration runs taken in the period corresponding to the golden data set are used. The best fit
values are reported.
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Figure B.4.: FWHM2 as a function of energy for the super-tier3 of BEGe detectors. The best fit
values are reported.
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Figure B.5.: Time evolution of FWHM for the 208Tl line at 2614.5 keV over all Phase I.
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Figure B.6.: Time evolution of FWHM for the 208Tl line at 2614.5 keV over all Phase I.
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Figure B.7.: Time evolution of FWHM for the 208Tl line at 2614.5 keV over all Phase I.
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In view of Gerda Phase II, a new software package called Gerda-Advanced-
Gerda-Analysis (Gerda-ada is being developed by the collaboration. It is de-
signed to comprehend all the tools for the analysis of tier2 data and provide the
final data files for the analysis of the physics data. The tasks of Gerda-ada are
the following:

– analysis of calibration data from germanium detectors, PMTs and SiPM;
– calibration of the energy scale for germanium detectors, PMTs and SiPM;
– extraction of PSD cut parameters for BEGe and semi-coaxial detectors;
– extraction of LAr veto cut parameters;
– optimization of signal filtering for energy reconstruction and PSD of germa-

nium signals;
– event selection for 0νββ decay search and other analyses of the physics data;
– creation of tier3 files.

Gerda-ada is coded in C++11 and is based on ROOT6, which is guaranteed to
be maintained for all the duration of Gerda Phase II. It additionally depends on
CLHEP [193], MGDO [191], GELATIO [192] and the newly developed framework
for modular data analysis DatABriCxx [233]. Being a project in fast development,
additional dependencies on other packages are being added or planned. A com-
plete documentation of the framework is currently not possible, and will be given
once the software package reaches a stable version. All the input and output pa-
rameters of the various routines are of JSON format [234]. The parsing of the
JSON files is performed by DatABriCxx.

The source code of Gerda-ada is available to all the Gerda collaboration. It can
be compiled and installed on any system with GNU-C++. So far, the installation
has been successfully completed on several Linux and MacOS distributions.

The core of Gerda-ada has been designed by the author, M. Agostini, L. Pan-
dola and O. Schulz. In addition to this, the author developed and implemented the
tool for the analysis of calibration data, denoted “CalibGPII” (Calibration Gerda

Phase II). Specific analysis tools are currently being integrated by several other
members of Gerda.

In the following sections, a review of the procedure for the analysis of Phase II
calibration data is given. In Sec. C.1 the main steps of the calibration routine are
reported, in Sec. C.2 the algorithm for the fit of the spectral peaks is described,
and in Sec. C.3 the additional designed developments of the Phase II calibration
program are described.
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c.1 calibration of phase ii data

The analysis scheme of the calibration data is very similar to the one used in
Phase I and reported in Ch. 5. Therefore only the general procedure is given
here, together with the main differences introduced for Phase II. The analysis flow
consists of the following steps:

– the JSON files with the detector parameters (name, mass, dimensions, . . . )
and detector configuration (detector-channel mapping, high voltage) are read;

– the JSON files with the source parameters (name, activity, . . . ) and source
configuration (position, deployment, . . . ) are read;

– the tier2 ROOT files are opened;
– the event selection is applied. Differently from Phase I, the list of quality

cuts can be modified by the user;
– the peak search and identification is performed;
– the fit of the spectral lines is performed;
– the calibration and resolution curves are extracted;
– the best-fit functions for all the considered peaks, calibration curves and

resolution curves are saved to ROOT files and as png images, too. The
calibration curves are saved in JSON format, too.

The main differences with respect to the software used in Phase I regard the in-
terface to the input/output parameter files and the peak fitting routine. The first
modification is justified by the need of a common format of the parameter files
for all the Gerda analysis tools, while the improvement of the fit procedure is
justified by both computational and physical reasons, as explained below.

c.2 algorithm for automatic peak fitting

In Gerda-ada, several modifications have been applied to the algorithm for peak
fitting. In Phase II, a total of about 2 · 10 · 105 fits have to be performed, to be
compared with the ∼ 2 · 10 · 104 of Phase I. For this reason, the fitting routine
needs to be further improved and the identification of failing fits automatized.

The parametrization of the spectral peaks is slightly different than in Phase I, as
described below. In the following, the uncalibrated energy is referred as x.

– For the high-statistics peaks a corrected Hypermet function [235] is used:

f(x) =
A

σ
√
2π

exp

(
−
(x− µ)2

2σ2

)
+B+

C

2
erfc

(
x− µ√
2σ

)
+

D

2
exp

(
σ2

2δ2

)
exp

(
x− µ

δ

)
erfc

(
x− µ√
2σ

+
σ√
2δ

)
+ F · (x− µ) (C.1)

which is the same as Eq. 5.7, with a different low-energy tail normalization.
In this way, the correlation between σ and δ is correctly taken into account,
and the fit convergence time reduced [235].

– The low-statistics peaks are described with a Gaussian distribution over a
linear continuum:

f(x) =
A

σ
√
2π

exp

(
−
(x− µ)2

2σ2

)
+B+ F · (x− µ) (C.2)
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In Phase I, the low-energy step was never used for these peak, hence it is
removed from the fitting function.

– The SEP and DEP are parametrized with a Gaussian distribution over a linear
continuum and a high-energy step:

f(x) =
A

σ
√
2π

exp

(
−
(x− µ)2

2σ2

)
+ B +

C

2
erf

(
x− µ√
2σ

)
+ F · (x − µ) (C.3)

The presence of the high-energy step accounts for events in which one of
the two 511 keV γ’s undergoes a Compton scattering in the detector before
escaping from it (see Sec. 3.1.4).

– For 228Th spectra, the 511 keV line is the sum of the annihilation peak and
a γ line at 510.77 keV (see Tab. 5.2). The ratio between the amplitude of
the two depends on the detector size and on the position of the calibration
source with respect to the detector. In general it is . 3 : 1. In Phase I, this fact
was not considered. The presence of this weaker γ peak at 0.2 keV distance
from the annihilation peak does not strongly affect the measurement of the
peak position because of the Doppler broadening acting on the annihilation
peak. Thus, the systematic introduced by this non-optimal parametrization
of the peak is well below 0.1 keV. A > 3σ deviation of this peak position from
the calibration curve is visible only for spectra with good resolution (BEGe’s)
and > 106 events. To remove this bias, an additional Gaussian term is added
to the corrected Hypermet function:

f(x) =
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(C.4)

in which the ratio µ1/µ2 is fixed to 511/510.77 keV.
The automatization of the peak fitting routine relies on two ingredients. Firstly,

a preliminary estimation of all function’s parameters is performed, leading to the
assignment of initial values and allowed ranges. Secondly, the peak fit is per-
formed iteratively with different algorithms and fitting functions, following the
same philosophy used in Phase I (see Sec. 5.5) All the steps of the fitting proce-
dure are described below.

In the following, the central value of a bin with index i is denoted as x[i], and its
amplitude y[i]. In the first step, the fit region [x[a]; x[d]] is divided in three parts
for the study of the central peak and of the continuum on its sides. With reference
to Fig. C.1, the boundaries of the central peak region b and c are searched. The
average on the left of the peak is calculated:

ȳ[m] =
1

m− a+ 1

m∑
i=a

y[m] (C.5)
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x[a] x[b] x[m] x[c] x[d]

y[m]

B

B+C

FWHM

Figure C.1.: Schematic of
a typical spectral peak.
The ranges for the peak
fit and main parameters
involved in the fitting al-
gorithm are reported.

where x[m] is the x coordinate of the total maximum. The corresponding RMS is:

RMS[m] =

√∑m
i=a (y[i] − ȳ[m])2

m− a+ 1
(C.6)

The maximum index is then iteratively lowered by one unit (m → m− 1 → m−

2→ . . . ) until the following condition is reached:

y[b] 6 ȳ[b] + RMS[b] + 1 b ∈ [a;m] (C.7)

The bin b indicates the position at the right of which the peak starts to rise. The
approximation of the continuum on the left side of the peak with a flat distribution
is not affected by the presence of possible slopes, which are typically small enough
not to invalidate the algorithm described above. The same routine is applied to
the right side of the peak, and the two coordinates x[b] and x[c] are found.

In a second stage a simultaneous fit of the regions [x[a]; x[b]] and [x[c], x[d]] is
performed. For high statistics peaks the fitting function is:

f(x) =

{
B+ F · (x− µ) +C x ∈ [x[a]; x[b]]

B+ F · (x− µ) x ∈ [x[c]; x[d]]
(C.8)

For low statistics peaks:
y = B+ F · (x− µ) (C.9)

And for the SEP and DEP:

f(x) =

{
B+ F · (x− µ) x ∈ [x[a]; x[b]]

B+ F · (x− µ) +C x ∈ [x[c]; x[d]]
(C.10)

The parameters B, F and C used here correspond to the same in Eqs. C.1, C.2, C.3
and C.4. The initial values Bini, Fini and Cini as well as the parameter ranges for
the final fit of the whole peak region are set to:

Bini = B̂

Bmin = B̂− 3 · σB (C.11)

Bmax = B̂+ 3 · σB
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where B̂ is the best fit value of B just found, and σB the corresponding uncertainty.
The same is done for F and C.

At this point, the mean of the Gaussian distribution is computed:

µ̂ =

∑c
i=b x[i] · y[i]∑c
i=b y[i]

(C.12)

The initial value and range for µ are set to:

µini = µ̂

µmin = µ̂− 15 ·∆x (C.13)

µmax = µ̂+ 15 ·∆x
(C.14)

where ∆x is the bin width.
In the next step, σ is estimated. The two bins l and r are searched on the left

and right of the peak, respectively, for which:

y[l](r) = B+
y[m] −B

2
(C.15)

The initial value and the range for σ are then given by:

σini =
x[r] − x[L]

2.355
σmin = 0 (C.16)

σmax = x[r] − x[L]

Additionally, the initial value for the area A of the Gaussian peak is computed
as the total area in the [x[b]; x[c]] range, minus the contribution of the flat contin-
uum and that of the low-energy step, if present. The sloping component of the
continuum is neglected, being symmetric on the two sides of the peak. Thus:

Aini =

c∑
i=b

y[i] −
(x[c] − x[b]) ·B

∆x
−

(x[c] − x[b]) ·C
2∆x

Amin = 0 (C.17)

Amax = 5 ·Aini

Finally, the initial values for the parameters of the low-energy tail are chosen
arbitrarily according to the typical values obtained in Phase I. The amplitude D is
set as function of the peak amplitude:

Dini =
y[m]

20

Dmin = 0 (C.18)

Dmax = 100 · y[m]

(C.19)
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While the value of the decay constant of the exponential is initialized as function
of σ:

δini = 6 · σini
δmin = σini (C.20)

δmax = 20 · σini

The final peak fit is then performed using Minuit2 according to the following
procedure:

– a first χ2 is performed to get a first estimate of the best-fit parameters;
– a maximum likelihood fit (ROOT option “L”) is run, leading to the final

estimate of the parameters;
– the maximum likelihood fit is repeated with the use of Minos for the correct

handling of asymmetric uncertainties;
– the fit of the low-energy tail is checked. If its amplitude is not large enough,

or not well enough constrained, the fit is repeated without the tail. In partic-
ular, the requirement for a reliable fit are:

D̂ < 2 · σD (C.21)

and:∫x[d]
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2
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(
σ2

2δ2

)
exp

(
x− µ

δ

)
erfc

(
x− µ√
2σ

+
σ√
2δ

)
< 0.1 ·A (C.22)

– the fit of the low- or high-energy step is checked. If its amplitude is not well
constrained, the fit is repeated without the step. The applied condition is:

C < σC (C.23)

Once the final fit is available, the FWHM is computed in two ways. Firstly, the
FWHM of the Gaussian distribution is taken:

FWHM = 2.355 · σ (C.24)

Secondly, if the low-energy tail is present, the FWHM is computed numerically
also on the Gaussian and tail components. This is done searching the zeroes of
the function:

g(x) =
A

σ
√
2π

exp
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−
(x− µ)2

2σ2
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D

2
exp
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exp
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δ
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2σ
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2δ

)
−
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2

(C.25)

where max (g(x)) is the maximum of the peak in the [x[a]; x[d]] range. The function
g(x) is zero for two values x[l] and x[r] at the left and right side of the peak,
respectively. The FWHM is given as:

FWHM = x[r] − r[l] (C.26)
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In order to compute the uncertainty on the FWHM, the 68% coverage band for the
function g(x) is extracted, and the calculation is repeated after having substituted
the best-fit parameters with the ones describing the ±1σ band.

During the Phase II integration tests some detectors suffered strong gain insta-
bilities within the duration of a calibration run. Hence, the shape of the peaks in
the energy spectra were not as expected and could not be fitted properly. As an
example, if the a sudden gain jump of few keV takes place during the data collec-
tion, the peaks show a double component. The FWHM of the fitted function will
be larger than it would be for data taken in stable conditions, and the χ2/NDF of
the fit will be � 1. A list of checks is therefore necessary to make sure that the
peak fits are reliable. For the moment, the following conditions are required:

FWHM < 20 keV
σFWHM
µ

< 5 · 104 (C.27)

If they are not satisfied, the peak is not exploited for the extraction of the cali-
bration and resolution curves. A further cut based on the χ2/NDF ratio is under
development and is expected to be applied for the analysis of Phase II calibration
data. Further checks might be included in the future, depending on the quality of
the data.

Finally, the residuals and pulls, i.e. the residuals normalized to their uncer-
tainty, for the peak fit are extracted. These are useful for a visual check of the
performance of all peak fits. For each bin i in the considered range, the residual
r[i] of the spectrum from the best-fit function f̂(x[i]) in the same bin is given by:

r[i] = y[i] − f(x[i])

σ
+(-)
r[i] = σ

+(-)
y[i] (C.28)

where σ+(-)
r[i] is the upper (lower) uncertainty of the residual r[i], and σ+(-)

y[i] is the

same for y[i]. The pulls p[i] and their upper (lower) uncertainties σ+(-)
p[i] are given

by:

n[i] =

{
σ+
y[i] y[i] > 0

σ-
y[i] y[i] < 0

p[i] =
y[i]

n[i]
(C.29)

σ
+(-)
p[i] =

σ
+(-)
y[i]

n[i]

For the analysis of the Phase II integration tests data, the residual and pull graphs
have only be used for a visual check of the fit performance. As for the χ2/NDF
check, an algorithm to quantify the reliability of the fit is being developed and is
expected to be ready by the start of Phase II.

The Phase II calibration software presented here has been successfully tested in
∼ 2 · 102 spectra so far, with a total of ∼ 2 · 103 peak fits. The percentage of failures
in the peak fitting is O(10-3). This is enough to ensure a reliable determination
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of the energy scale for all considered spectra, provided that they are not affected
by strong deficiencies. If 2 · 105 are collected, a maximum of O(102) failures is
expected. Additional improvements of the peak fitting routine can be developed
based on the failing cases.

c.3 further developments

A list of further developments to the calibration program for Gerda Phase II are
planned to be implemented in the near future. Two main features are going to be
added to the peak fitting routine, as described below.

– The initial values of the low-energy tail amplitude and decay constant can
be extracted fitting the left side of the Gaussian peak. In particular, the
logarithm of the spectral amplitude lny[i] can be computed and fitted with
a linear function:

lny[i] = p0 + p1 · (x[i] − µ) x[i] ∈ [x[b]; x[m]] (C.30)

and the parameters D and δ can be initialized solving the system of equa-
tions:

p0 = ln
[
D

2
exp

(
σ2

2δ2

)]
p1 =

1

δ
(C.31)

where the two terms on the right side correspond to the factors of the low-
energy tail. The erfc factor has been dropped because its amplitude is 1 for
x < µ, hence its logarithm vanishes.
In Eq. C.30 the fit is performed on the left half of the Gaussian peak. If the tail
is not very pronounced, the upper bound of the fit range should be reduced
so that only the very first part of the peak is considered. Preliminary studies
show that using [x[b], xk] with xk = (x[b] + x[m])/2 as a fit range provide a
good estimation;

– The linear continuum and the eventual step can be described in an alterna-
tive way using one right-handed and one left-handed steps:

C1
2

erfc

(
F1 · (x− µ)√

2σ

)
+
C2
2

erf

(
F2 · (x− µ)√

2σ

)
(C.32)

Due to the lack of a physical explanation for the use of this parametrization,
this is planned to be employed only to extract the systematic on the energy
scale coming from the choice of the fitting function.

– The design of a check of the fit quality based on the χ2/NDF and on the
study of the residuals and pulls is ongoing, too.

Moreover, additional features regarding the extraction of the calibration and
resolution curves are on the development pipeline, as listed here.

– The calibration curve is currently extracted through a χ2 fit with Minuit2.
This can be substituted rather easily by an analytic fit. While the best fit
parameters are expected to remain the same for the two cases, their uncer-
tainties might be affected by the employed method.
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– The resolution curve can be computed fixing the charge production term wp
(see Eq. 3.21). Also in this case, the alternative fit can be exploited for the
study of systematics.

– As for the calibration curve, an analytic fit can be used for the resolution
curve, too. In particular, this can be applied to the squared of Eq. 3.23.

All these tasks are currently under design or implementation, and are expected
to be available in the beginning of Phase II.





D
M E A S U R E M E N T O F T H E 56C O S O U R C E A C T I V I T Y

In view of other 56Co calibration runs during Phase II it is necessary to precisely
quantify the activity of the source used in Phase I, in order to better estimate the
required irradiation time for the source production. A dedicated measurement
was performed with the Gator facility [225] at LNGS. As for the measurement of
the Phase II 228Th sources (see Sec. 8.2), the count rate induced by the 56Co ac-
tivity is 3 orders of magnitude higher than the background rate of Gator, hence
the measurement described here can be considered background free. The source
was placed on the top of the detector cryostat, and the energy spectrum was ac-
quired for 3 0 min. Since Gator is normally used for material screening, where the
gamma peak with highest energy is the 208Tl line at 2 6 1 4 . 5 keV, the spectrum
is recorded in the [ 0 ; 2 7 0 0 ] keV region. This was not changed in order to pre-
vent any instability of the setup, with the consequence that the high-energy part
of 56Co spectrum is not available. Nevertheless a good precision in the activity
determination was achieved.

The measurement of the source activity follows the same procedure used for
the Phase II 228Thsources (see Sec. 8.2). Thanks to the available statistics and to
the good agreement between data and MC, an accurate evaluation of the activity
is possible, with a statistical error of 0 . 6h (see Fig. D.1).

The systematic uncertainty is computed taking into consideration the geometri-
cal effects and the cross sections used in the MC. While the measurements of the
228Th source activities were taken with the sources at a ∼ 1 2 0 mm distance from
the detector top, the lower activity of the 56Co source allowed to place it directly
on the detector cryostat. Hence, the distance between the source and the crystal
is known with a sub-millimeter precision and the systematic uncertainty induced
by it on the activity is negligible. On the contrary, the limited precision on the
cross section of the photoelectric, Compton and pair production processes are con-
sidered, yielding a ± 2% effect, which is comparable to what obtained with the
Phase II 228Th sources. Additionally, the systematic related to the limited knowl-
edge of the n+ dead layer thickness is determined. The simulations are repeated
by changing the DL by ± 0 . 1 mm, resulting in a ∼ 0 . 7% systematic uncertainty
on the activity.

The final value for the 56Co source activity about 1 0 days after the production
is:

A = 5 . 1 2 2 ± 0 . 0 0 3 (stat)+0 .04
−0 .03 (DL) ± 0 . 1 0 (cross section) kBq . (D.1)
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Figure D.1.: Measured and simulated 56Co spectra, scaled according to the best
fit value for the source activity.
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