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Abstract

Radioactive decay is widely assumed to be a stochastic process which can-
not be influenced by external conditions. However, in recent years claims on
an annual modulation in decay rates of the order O(10−3) have been made.
The modulation experiment is designed to investigate the stability of decay
rates with time. It contains four identical setups on three different conti-
nents to investigate seasonal effects. These locations are Purdue University
in the U.S., Nikhef in the Netherlands, Centro Brasileiro de Pesquisas Físi-
cas (CBPF) in Brazil and the University of Zurich in Switzerland. In every
location three of the four used sources are monitored with NaI(Tl) detectors.
For the Zurich setup, these are 54Mn, 60Co and 44Ti. In this thesis almost
one year of data from the Zurich setup was analyzed. The data processing
is optimized to obtain reliable decay rates for further analysis. In particu-
lar, the spectra are examined for saturated peaks which must be excluded
from the analysis. The stability of the detector calibration is verified after
some improvements to the calibration algorithm. The analysis procedure
was fine-tuned by introducing a background correction for the 54Mn source
because of its low decay rate. A statistical framework to search for annual
modulation is then introduced with a least squares fitting algorithm. The
statistical framework also takes into account possible influences of environ-
mental parameters, which can have an indirect effect on the decay rate by
influencing the detection efficiency of the NaI crystals. The performance of
the fitting algorithm is investigated with a Monte-Carlo simulation of data
sets with and without modulation. The sensitivity is estimated with an-
other Monte-Carlo simulation. At the end, for every monoenergetic line in
the data of the Zurich setup, a limit on the modulation amplitude is found,
which is consistent with the sensitivity. In the 60Co decay an amplitude
limit of 2.7 · 10−3 is set.
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1. Introduction
It is widely assumed that radioactive decay is a spontaneous process which can be
defined only using the half-life, which is a characteristic of a particular isotope.
It is impossible to predict which nucleus will decay next, only the number of nu-
clei which decay in a given time can be estimated. Radioactive decay cannot be
influenced by external conditions such as temperature or pressure [1]. In recent
years Jenkins et al. [2] claimed an annual modulation in the radioactive decay of
long-lived isotopes which is correlated with the Earth-Sun distance. There are
also other papers [3, 4] which support the theory of Jenkins et al. [2]. The claimed
annual variations are of the order O(10−3).

Papers also exist which reject modulation of decay rates. Norman et al. [5] refute
the correlation between decay rates and the Earth-Sun distance and also set limits
on a possible modulation amplitude which are of the order O(10−4). Others have
also found evidence for no modulation in decay rates [6, 7].

The modulation experiment was constructed to re-examine the idea of an annual
modulation in long-lived radioactive decays. The experiment consists of four se-
tups located on three different continents. In this experiment not only the decay
rate is measured, but also external parameters such as temperature, pressure and
radon level are measured and documented. With these values, changes in the de-
cay rate can be related to systematic influences.

The experimental setup at Zurich has been taking data with eight NaI(Tl) detec-
tors for almost two years. The goal of this thesis is to perform a first analysis on
the Zurich data set. In the first step of analysis the data have to be processed, to
obtain decay rates from the raw waveforms. Chapter 4 describes this processing
including some modifications which were needed to achieve stable performance on
the one year of Zurich data. In chapter 5 the further analysis of this data is pre-
sented, which results in a limit on the amplitude of modulation allowed by these
data.
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2. Theory
2.1. Radioactive decay
If a nucleus is stable it can not convert spontaneously into another nucleus. But
if a nucleus is unstable it can decay after a finite time into other nuclei while
emitting α-particles, electrons or positrons or it can decay through fission. Finally,
a nucleus can decay from an excited state into its ground state while emitting γ-
rays. A necessary but not sufficient condition for a nucleus to decay is that the
mass of the nucleus is larger than the sum of the masses of the decay products.

M(AZX) ≥M(A′Z′Y ) +M2 (2.1)

A
ZX is a particular nucleus with atomic number Z and mass number A. A′Z′Y is the
nucleus to which A

ZX decays andM2 is the mass of the emitted α-particle, electron,
positron or second fission product. Ever if this condition is fulfilled spontaneous
decay can be prevented by a potential barrier or symmetry conditions.
Radioactive decay is a spontaneous process which can be described by an expo-
nential decay law. The probability that a particle decays is equally likely per unit
time for every nucleus of the same isotope. The activity A of a source with N
radioactive nuclei is

A = −dN
dt

= λN (2.2)

where λ is the decay constant, or the decay probability for single nucleus per unit
time. Through integration we get the activity at the time t.

A(t) = A0e
−λt (2.3)

A radioactive isotope can be characterized by its half-life. This is the time after
which half of the unstable nuclei have decayed.

τ = 1
λ

t1/2 = τ · ln 2 (2.4)

where τ is the mean lifetime of a radioactive particle before decay [8].
As mentioned at the beginning of this chapter there are various types of radioac-
tive decay. The endpoint of a radioactive decay is a stable state. This can be
achieved through alpha decay, beta decay, gamma decay, electron capture, inter-
nal conversion or nuclear fission. Because in the modulation experiment only beta
decay, electron capture and gamma decay are relevant, these three decay modes
are discussed more closely in the following.
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2.2. Beta decay
β− decay is the conversion of a neutron into a proton, while emitting an electron
and a electron antineutrino:

A
ZX →A

Z+1 Y + e− + ν̄e (2.5)

where the atomic number Z gives the number of protons, the mass number A is
the number of nucleons in the nucleus which is the sum of protons and neutrons.
X and Y stand for the respective element. This decay is energetically possible if
the mass of the daughter atom is smaller than the mass of its isobaric neighbor
[9].

M(A,Z) > M(A,Z + 1) (2.6)

This is the case if a neutron at the Fermi edge can get into a lower unoccupied
proton level after converting into a proton. The produced electron and antineu-
trino leave the nucleus after their formation [8].

β+ decay is the opposite process of the β− decay. It is characterized by the
conversion of a proton in a neutron, while emitting a positron and a electron
neutrino:

A
ZX →A

Z−1 Y + e+ + νe (2.7)

This decay is possible if the mass of the parent atom is at least 2me greater than
that of the daughter:

M(A,Z) > M(A,Z − 1) + 2me (2.8)

Where me is the mass of the electron [9]. This relation is fulfilled if, because of the
conversion, the new neutron can occupy a lower energy level than the proton was
in. If that is the case the binding energy of the daughter nucleus is larger than
that of the parent nucleus. This excess of energy is released as kinetic energy of
the positron and neutrino emitted in this process.
A characteristic of β+ decay is that the emitted positron annihilates with an elec-
tron after having been slowed down. This process emits two photons in opposite
directions with an energy of 511 keV [8].

2.3. Electron capture
In electron capture an atomic electron from one of its atomic shells is captured and
reacts with a proton to create a neutron, while an electron neutrino is emitted.

A
ZX + e− →A

Z−1 Y + νe (2.9)
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Figure 1: The three types of γ-ray interaction and their probability of occurrence
as a function of Z of the absorber material and the incident γ-ray’s
energy. The lines show the values where the two neighboring processes
are equally probable [10].

Most of the time this electron comes from the K-shell, the innermost shell of the
atom. In this process a vacancy is produced in this low energy shell in which an
electron from a higher shell can fall down while emitting characteristic X-rays [8].
The condition that this decay is possible is

M(A,Z) > M(A,Z − 1) + ε/c2 (2.10)

where ε is the excitation energy of the atomic shell of the captured electron [9].

2.4. Gamma decay
The nucleus can be described with a shell model. The nucleons are able to occupy
discrete energy states inside the nucleus. If a nucleon is left in an higher energy
state after an α- or β decay the nucleus is excited. This nucleon can de-excite
into a lower energy state by emitting electromagnetic radiation, which is called
γ-radiation. The excited nucleus decays by γ-decay into its ground state [9, 1]:

A
ZX

∗ →A
Z X + γ (2.11)

2.5. Gamma-ray interactions
To explain the mechanism of operation of the detector used in the modulation
experiment three kinds of γ-ray interactions are introduced: the photoelectric
effect, Compton scattering and pair production. These three processes lead to the
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total or partial transfer of photon kinetic energy to electron kinetic energy. It is
through these three processes that energy is deposited in the NaI(Tl) crystals.
The probability of the three γ-ray interactions in values of the atomic number Z
and the γ-ray energy are shown in figure 1.

2.5.1. Photoelectric absorption

In photoelectric absorption a photon interacts with an atom which absorbs the full
energy of the photon and ejects a photoelectron. This interaction cannot happen
with a free electron. Because of the energy and momentum conservation a third
reaction partner, the nucleus which takes the recoil energy, is needed. In most
cases, if the photon has sufficient energy, the photoelectron is ejected from the
K-shell of the atom. It has an energy given by the difference of the energy of the
incident photon Eγ = hν (h is Planck’s constant and ν is the frequency) and its
original binding energy Eb [10].

Ee− = hν − Eb (2.12)

After the photoelectron is emitted a vacancy is created in the shell from which the
photoelectron came. This vacancy is quickly filled by an electron from a higher
shell and X-rays are emitted to release the energy difference between the two shells.
These characteristic X-rays have an energy which can be described by Moseley’s
law

E = Ry(Z − 1)2
( 1
n2 −

1
m2

)
(2.13)

where Ry = 13.6 eV is the Rydberg’s constant, n and m are the principal quantum
numbers and Z is the atomic number. If this energy is transferred to an electron
from the same atom instead, and the energy is larger than the binding energy, the
electron can be emitted and is called an Auger electron [11].
The photoelectric process is the most likely with γ-rays of relatively low energy,
as shown in figure 1. The cross-section of photoelectric absorption is proportional
to a power of the atomic number Z:

σ ∼= constant× Zn

E3.5
γ

(2.14)

where n varies between 4 and 5 with respect to the energy of the incident photon
[10].
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Figure 2: Compton scattering. Figure from [10].

2.5.2. Compton effect

The Compton effect is a process where an incident γ-ray scatters off a free or
outer-shell electron as shown in figure 2.
In the process the recoil electron absorbs some of the energy of the photon which
can be written in terms of the scattering angle θ:

hν ′ = hν

1 + hν
m0c2 (1− cos θ)

(2.15)

where m0c
2 is the rest mass energy of the electron. If the scattering angle is

very small the recoil electron gains very little energy and the scattered photon
has almost the same energy as the incident photon. The other extreme, when the
scattering angle is the maximum θ = π, is known as backscattering. In this case
the electron recoils in the incident photon’s direction, and the maximum possible
energy is transferred to the electron. The differential scattering cross section gives
the differential probability of Compton scattering and is described by the Klein-
Nishina formula:

dσ

dΩ = Zr2
0

(
1

1 + α(1− cos θ)

)2 (1 + cos2 θ

2

)(
1 + α2(1− cos θ)2

(1 + cos2 θ)(1 + α(1− cos θ))

)
(2.16)

where α = hν/m0c
2 and r0 is the classical electron radius [10].

2.5.3. Pair production

Pair production happens near a nucleus, and involves the conversion of an incident
photon into an electron-positron pair. For this process to be possible the incident
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(a) The plot of U(t) for the 32Si/36Cl ra-
tio with 1/R2 where R is the Earth-Sun
distance

(b) Plot of U(t) for the PTB data with the
source 226Ra along with the 1/R2 plot
where R is the Earth-Sun distance

Figure 3: Plots of different sources where Jenkins et al. [2] claim that the radioac-
tive decay rates shows an annual modulation which is correlated with
the Earth-Sun distance. From [2].

γ-ray must have a minimum energy of 2mec
2 = 1.02 MeV which corresponds to

the combined rest energy of the two emitted particles. Almost all energy above
this threshold is given to the electron-positron pair as kinetic energy.

Ee− + Ee+ = hν − 2mec
2 (2.17)

Once the positron has slowed down it annihilates into two photons with an energy
of 511 keV each. The cross-section magnitude is proportional to the square of the
atomic number of the absorber [10].

σ ∝ Z2 (2.18)

2.6. Modulation in decay rates
In 1896 Becquerel discovered radioactivity. A lot of experiments have shown that
the decay rate are not affected by external influences such as temperature, pressure,
magnetic fields or chemical composition [1]. There is no theoretical basis for an
annual modulation of radioactive decay rates.
However, in recent years various publications have claimed that the decay rate is in-
fluenced by the Sun-Earth distance. Jenkins et al. [2] published an article in which
the fluctuations in β decay rates are correlated in time with the distance between
the Earth and the Sun. For their analysis they used data from the Brookhaven
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National Laboratory (BNL) where the half-life of 32Si was measured between 1982
and 1986 [12]. A long-lived comparison standard 36Cl was also measured simul-
taneously in the same detector. The decay rate of 36Cl with a half-life of T1/2 =
3.01 × 105 y was assumed to be constant. By computing the ratio between the
activity of the two sources 32Si/36Cl ≡ A(32Si)/A(36Cl) systematic effects should
have cancelled. The time independent function U(t) ≡ [A(t)/A(0)] exp(+λt) was
calculated to allow the result to be compared with results from experiments with
different sources. Figure 3a shows the plot of the function U(t) along with a plot
of 1/R2 where R is the Earth-Sun distance. They claim that annual modulation is
evident from the plot and that the formal probability that this correlation would
arise from two uncorrelated data sets is 6× 10−18.
Jenkins et al. [2] also analyzed data from the Physikalische-Technische Bundesand-
stalt (PTB) where the half-life of 226Ra was measured. The long-lived comparison
in this case was 152Eu and the experiment took data over 15 years. Also in this
data set they found evidence for annual modulation as shown in figure 3b. The
formal probability that this correlation could arise from two uncorrelated data sets
is 2× 10−246. The relative amplitude of the modulation is 1.5× 10−3 [2].

There are several other papers which claim variations in the decay rate. Parkho-
mov [4] investigated the decay rates of 60Co and 90Sr-90Y over 10 years. They
found annual modulation with an amplitude of 0.3%. Alexeyev et al. [3] collected
data over two years of the 214Po decay. They found an amplitude for annual mod-
ulation which is (8.9± 2.3)× 10−4.

In response to the paper of Jenkins et al. [2], Norman et al. [5] analyzed data they
had collected over 15 years in three different experiments which were designed to
measure the half-lives of 44Ti, 108mAg and 121mSn. 22Na, 133Ba, and 241Am are
used as reference sources to minimize the influence of variations in the detector or
electronics performance. They statistically analyzed the data for a null hypoth-
esis (no annual modulation) and a modulation hypothesis with an amplitude of
0.15%. In all cases the null hypothesis was strongly favored over the modulation
hypothesis. Using these results Norman et al. [5] claimed that there is no evi-
dence for correlations between the rates of decay of 44Ti, 108mAg or 121mSn and the
Earth-Sun distance. They also set limits on the maximum possible amplitude of
modulation which are 0.06% for 22Na/44Ti, 0.024% for 241Am/121mSn and 0.004%
for 133Ba/108mAg. With these results they rejected the theory of modulation from
Jenkins et al. [2].
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Figure 4: A schematic of a single box
for the modulation experi-
ment.

Figure 5: One channel of the experi-
ment, containing a radioac-
tive source between two
NaI(Tl) detectors.

3. Experiment
The modulation experiment is constructed to investigate the stability of radioactive
decay rates with time. All used sources decay via a β decay. The emitted γ-rays
of the de-excited nucleus are measured with a sodium iodide scintillator coupled
to a photomultiplier tube (PMT).

3.1. Experimental setup
Four identical setups are distributed over three different continents to investigate
seasonal influences. These locations are Purdue University in the U.S., Nikhef
in the Netherlands, Centro Brasileiro de Pesquisas Físicas (CBPF) in Brazil and
the University of Zurich in Switzerland. Each isotope used in the experiment is
monitored in at least two locations. The isotopes are 54Mn, 60Co, 137Cs and 44Ti.
Their locations and half lives are shown in table 1.

Source Half Life Ref. Institute
44Ti 59.1(3) y [14] CBPF Nikhef Purdue Zurich

54Mn 312.2(2) d [15] Purdue Zurich
60Co 5.271(4) y [16] CBPF Nikhef Purdue Zurich
137Cs 30.08(9) y [17] CBPF Nikhef

Table 1: Overview of the radioactive isotopes used in the experiment and their
location [13].

A sketch of a single setup box is shown in figure 4. On the lower rack (A) the
detectors and the sources are stored. To keep their temperature stabilized the
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Figure 6: Band structure of a doped crystal in a scintillator [10].

Figure 7: A schematic picture of a photomultiplier tube (PMT). An incident pho-
ton emits photoelectrons at the photocathode. These photoelectrons are
focussed and accelerated by the electric field and multiplied at the dyn-
odes. The amplified electrons are collected at the anode and the signal,
which is proportional to the incident photon energy, is measured [11].

inner box is thermally insulated by a 10 cm thick layer of polyurethane foam (C)
and a heater is used to actively stabilize the temperature. The air cooled top
rack (B) contains all the electronics and data acquisition system. In figure 5 one
channel is shown. Each source is between two cylindrical 3”× 3” NaI(Tl) crystals
coupled to photomultiplier tubes (PMTs). Each detector pair is shielded from its
neighbours by 5 cm of lead. The box contains four pairs of NaI(Tl) detectors, and
one pair is measuring the background. In addition each detector is equipped with
a LED for deadtime measurements and to investigate the efficiency of the whole
measurement [13].

3.2. NaI(Tl) detector with photomultiplier tube
The detectors used in the modulation experiment contain a NaI(Tl) scintillator
crystal. An emitted γ-ray from the radioactive decay of a source can interact with
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the crystal through photoelectric absorption, Compton scattering or pair produc-
tion. The production of electron-hole pairs excite the crystal. Photons in the
visible spectrum, in sodium iodide the most likely wavelength is 415 nm [11], are
emitted in the deexcitation process. The photomultiplier tube (PMT) counts the
scintillation photons, the number of which is proportional to the incident γ-ray’s
energy.

The scintillator used in the modulation experiment is an inorganic sodium iodide
crystal, doped with thallium. In a crystal lattice of an insulator or semiconductor,
electrons only have discrete bands of energy available. As shown in figure 6 the
lower energy band is called valence band and represents electrons that are essen-
tially bound at lattice sites. This band is normally fully occupied. The other band
is the conduction band which is normally empty and separated from the valence
band by an energy known as the band gap, usually about 3 eV to 10 eV [11]. When
a γ-ray interacts with the crystal the electron off which it scatters or is absorbed,
while passing through the crystal, excites electrons from the valence band into the
conduction band. A hole is left in the valence band. The electron in the con-
duction band can move freely through the crystal lattice. Because the return of
an electron into the valence band with the emission of a photon is inefficient the
crystal is doped with an activator in this case, thallium. This activator creates
energy states inside the band gap. When the hole, created by the excited electron,
drifts to the location of an activator it ionizes it. An electron in the conduction
band can drop into an activator energy state and then deexcite into the ground
state of the activator. During the deexcitation a photon in the visible spectrum is
emitted [10].
An incident γ-ray with energy Ekin creates a specific number of photons Nph with
energy hν in the scintillator through the mechanism described above:

Nph = δ · Ekin/hν (3.1)

δ < 1 is the efficiency of the scintillating material. Of these, Nph photons only a
fraction β reaches the photocathode of the PMT because they can be absorbed
before reaching the photocathode [8].

In figure 7 a schematic picture of a PMT is shown. On the photocathode photoelec-
trons are emitted by the photoelectric effect. They are focussed and accelerated
by the electric field to the first dynode. There the electrons are multiplied by the
emission of secondary electrons. This process happens at every dynode until the
secondary electrons from last dynode are collected at the anode and produce a
measurable signal.
The number of photoelectrons produced at the photocathode depends on the quan-
tum efficiency of the PMT. This parameter gives the probability of an emitted
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photoelectron per incident photon at the photocathode and depends on the wave-
length of the incoming photon [11].
For a PMT with n dynodes and a secondary emission coefficient g the current
amplification is

A = gn (3.2)

A single photoelectron can be amplified with a factor of ∼ 107 [18], depending on
the number of stages.

3.3. Data acquisition
Each event is stored individually in the form of the full voltage trace (waveform)
using a custom data acquisition system (DAQ). The analog-to-digital converter
(ADC) used is able to sample up to 16 channels with a 14 bit range and a voltage
range of 2V. A waveform is stored if the following three trigger conditions are
fulfilled:

• The current bin has to be greater than the previous bin

• A specific threshold voltage has been passed which is set as the voltage
corresponding to an energy of ∼ 100 keV

• The previous event should not be within ∼ 7 times the NaI(Tl) decay time
(1.6µs) [13] to minimize the occurrence of pile up events

To monitor the efficiency of the setup each detector is equipped with an LED. The
LED consistently pulses at a rate of ∼ 50 Hz. The waveforms of the detected LED
pulses are flagged and stored exactly like real event for further analysis.

In addition to the waveforms, slow control parameters are also stored. This in-
cludes the temperature, pressure, humidity, magnetic field, high voltage and radon
activity [13].

To be sure that we only analyze properly-recorded events every event gets an error
code in the form of Bits. If this error code is 0 the event is considered good. Error
code 1 is set if the amplitude of the event is sufficiently large that it is saturated.
This means that the peak is higher than the 2V range of the ADC. Error code 2
means that the root mean square (RMS) of the baseline is unusually high, which
can affect the energy reconstruction for that event. If there is a double peak struc-
ture in the waveform consistent with multiple hits error code 4 is set. The bitwise
combination of error codes is possible if more than one apply to an event.
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Source Channel number Peak 1 [kev] Peak 2 [kev] Peak 3 [kev]
60Co 0, 1 1173.2 1332.5 2505.7
54Mn 2, 3 834.8
44Ti 4, 5 511.00 1157.02 1668.02

Background 6, 7 1460

Table 2: Energy of peaks found in the spectra of the different sources in the Zurich
experiment.

3.4. Sources
The sources used in the Zurich detectors are 60Co, 54Mn and 44Ti. They are
arranged in channels numbered from 0 to 7. In table 2 the channel numbers of the
sources are shown. Every source has two channels because the source is between
two detectors.
To analyze the decay rate of a particular source the energy of the emitted γ-rays
has to be known. In figure 8 the decay scheme and an example spectrum is shown.
For each of the sources used in Zurich figure 8a shows that 60Co decays in 99.88%
of cases by β− decay into an excited state of 60Ni. To get from this excited state
into the ground state 60Ni emits two γ-rays with an energy of 1.1732 MeV and
1.3325 MeV. In just 0.12% of the cases 60Co decays by β− decay into a lower
excited state of 60Ni where just one γ-ray with an energy of 1.3325 MeV is emitted
[16]. These energy peaks are shown in the spectrum of 60Co in figure 8b recorded
by modulation experiment in Zurich.
54Mn decays 100% by electron capture into an excited state of 54Cr which emits a
γ-ray of 834.8 keV to reach the ground state [15]. This can be seen in figure 8c.
In figure 8e the decay of 44Ti by electron capture into an excited state of 44Sc is
shown. 44Sc emits two γ-rays at 78.337 keV and 67.875 keV to get into its ground
state before it decays, again by β+ decay, into an excited state of 44Ca. There a
γ-ray with an energy of 1157.02 keV is emitted to get into the ground state [14].
Because of the β+ decay the spectrum in figure 8f contains a peak at 511 keV,
from the annihilation of the emitted positron, in addition to the peaks from the γ
decays.
The spectra of 60Co and 44Ti also each contain a third peak at the sum of the two
other peaks. These peaks come from events where both γ-rays reach the detector
at the same time. Table 2 summarizes the energy of the peaks visible from the
sources used in Zurich. The peak at 1460 keV from 40K contamination in the
background channel is also shown.

A spectrum from a γ-ray detector has several components beside full absorption
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peaks. The edge immediately to the left of the peak, which is best visible in figure
8d, is called the Compton edge. The spectrum body below this Compton edge
is called the Compton continuum. It contains every energy of the recoil electron
from Compton scattering by an angle from 0 to π. The peak around 0.25 Mev
which can be seen on top of this Compton continuum is the so called backscatter
peak. This backscatter peak is caused by the Compton scattering of γ-rays off the
detector shielding material. If Compton scattering happens with an angle greater
than about 120° the scattered photon always has an almost identical energy of
0.25 MeV or less. If the photon with this energy of about 0.25 MeV scatters back
into the detector it causes this peak. Because 54Mn has only one emitted γ the
backscatter peak is clearly visible, but the process happens for all sources [10].
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Left: the decay schemes of (a) 60Co [16], (b) 54Mn [15] and (c) 44Ti
[14]. Right: the spectrum corresponding to each source as seen by the
modulation experiment in Zurich.
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(a) Waveform of an event with error code 1 (b) waveform with error code 0

Figure 9: Waveform with overflow (left) and a normal pulse (right) as seen in a
NaI(Tl) detector.

4. Data Processing
4.1. Processing pipeline
To process data from the raw waveform to decay rates some steps are needed. This
steps are done with a processing script called daqana written by the collaboration.
In some steps of this processing improvements are made or the results are verified.
In the next few subsections the method to optimize the data processing pipeline
to get a good data set which can be analyzed is explained.

The first step is to integrate the waveform to get an uncalibrated spectrum of
events. Also some other information are taken and stored such as to which chan-
nel the event belongs, the amplitude of the peak and of course the time at which
the event happened. Events generated by LED can be distinguished with a flag.
Daqana also assigns an error code to the pulse shape. So good events get error
code 0 and then there are some different error codes for events which causes an
ADC overflow or have a double peak structure. In figure 9a a waveform which
causes an ADC overflow is shown. Figure 9b shows a waveform with error code 0.
The value of the baseline is also saved.

The next step is to get a calibrated spectrum. For this first the calibration co-
efficients has to be determined. In this step only events with error code equal
to zero and the events which are not a test pulse are used. Then for every 30
minutes a histogram is made from the uncalibrated events and the calibration co-
efficients are determined. For this the range in which the first uncalibrated peak
can be found is needed otherwise it would look for the first peak in the whole
spectrum. So if the peak in the given range is found, the calibration coefficients
can be calculated. If there is only one peak the coefficient is just a proportionality
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(a) (b)

Figure 10: Left: H/I scatter plot. Right: H/I scatter plot with cut atH ≥ 1.6 and
the estimated median. This is an example from Channel 1 of run_1.

constant. If there is more than one peak a first order polynomial is used. After
the calibration coefficients are determined every event is then calibrated with the
calibration coefficient and get an integral value corresponding to the energy. Also
the corresponding data from the slow control monitor, which means all the sensor
readings like temperature, humidity etc., is saved with the events.

In the last step it is iterated through all the events in one hour. All events for
every channel are stored in a histogram and a fit is done for every peak. The area
of the fitted peak is then taken as the rate divided by the relative time. Next to
the slow control data the starting time of the measurement, the time in seconds
of the bin center, the rate, the error of the rate, which channel and which peak it
corresponds to, the energy of the peak and the resolution of it is saved. All these
informations are needed to analyze the radioactive decay.

The data acquisition started at 18th of July 2017 and is still taking data. After
almost one year the 54Mn source has to be replaced because it was weak. Also the
voltages on the PMTs are adjusted. To optimize the processing two representative
data sets are used. One data set with the old 54Mn source, which is referred to as
run_1, contains 46 days of data from 18th of August 2017 to 3rd of October 2017.
The second data set with the replaced source and new voltages on the PMTs is
referred to as run_2. It contains 26 days of data from 12th of June 2018 to 8th of
July 2018.
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(a) (b)

Figure 11: Left: The 2D histogram of Integral vs. Height to determine the satu-
ration point of channel 1 run_1 is shown. In the appendix A in figure
A.29 and figure A.30 all histograms from run_1 and run_2 are shown.
Right: The time dependency of the saturation points in channel 1 of
run_1 is shown. In the appendix A in figure A.31 and figure A.32 all
histograms from run_1 and run_2 can be found.

4.2. Saturation
The analog-to-digital converter (ADC) of the experiment has a 2V range, and
every input signal is converted into 14 bit integers. If the input pulse is too high,
has a difference in voltage from baseline that is larger than 2V , then the ADC
cannot fully digitize it, and the event is said to be saturated. An example of this
is shown in figure 9a. The saturation level is given by the ADC 2V range minus
the baseline converted into Volts: saturation_level = 2− baseline · 2/214.
To know where the saturation level is, is important because the peaks in the spectra
of the sources which will be analyzed should not be saturated.
The goal is to determine the saturation point in Integral and find the peaks which
are not saturated. For this the intersection point of the saturation level and the
median of Height/Integral (H/I) is needed. As we can see in figure 10a the values
with low Integral are widely scattered. This will influence the calculation of the
median in just one direction. So only the data points with H ≥ 1.6 are used to cal-
culate the median. This we can see in figure 10b. With this the Integral saturation
point can be calculated with saturation_point = saturation_level/median.
Because of some memory problems of the server these calculations have to be done
for every half an hour individually. So in the end an array with saturation points
is created. To calculate the values shown in figure 11a the mean of the particular
values is used. However, a look is taken at the variation over time. This can be
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Figure 12: The integral spectrum of channel 1 in run_1 with the saturation line
to find saturated peaks is shown.

seen in figure 11b where an example of channel 1 from run_1 is shown.

4.3. Peak determination
To find the peaks which are saturated first the corresponding energy of every peak
has to be known. For this the uncalibrated spectra is drawn as shown in figure
12. The plots from all channels of run_1 are shown in the appendix A in figure
A.33 and for run_2 in figure A.34. Also in these plots one can see the saturation
line which is calculated before. To be sure that the right peaks in the spectra
are used for further analysis the gain of the detector is used to determine which
Integral corresponds to which energy. With the gain which is given in V s/kev the
expected energy for every integral value can be calculated by dividing the integral
value with the gain. Sometimes It was hard to define which peaks are shown in
the spectra. For example in figure 12 actually three peaks should be found but
the trick with the gain helped to be sure that the third peak is saturated and just
the first two are shown.
Peaks are selected given a range in V ns. In table 3 for every channel first the
peaks in keV which can be found in a radioactive decay from the particular source
and then the peaks in V ns which are found in the spectra are shown. Also the
range needed for the calibration file is shown. The peaks which are saturated are
marked with sat.
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Source Channel Run Peak 1 Range 1 [Vns] Peak 2 Range 2 [Vns] Peak 3 Range 3 [Vns]

60Co

1173.2 kev 1332.5 kev 2505.7 kev

0 run_1 208 Vns 183, 222 238 Vns 222, 262 450 Vns 420, 510
run_2 175 Vns 153, 183 199 Vns 183, 214 380 Vns 356, 420

1 run_1 396 Vns 352, 418 448 Vns 418, 486 sat.
run_2 197 Vns 175, 210 224 Vns 210, 244 410 Vns 382, 448

54Mn

834.8 kev

2 run_1 65 Vns 47, 77
run_2 157 Vns 129, 197

3 run_1 173 Vns 139, 201
run_2 163 Vns 133, 191

44Ti

511 kev 1157.02 kev 1668.02 kev

4 run_1 328 Vns 278, 384 sat. sat.
run_2 131 Vns 99, 155 288 Vns 262, 320 430 Vns 388, 458

5 run_1 450 Vns 380, 520 sat. sat.
run_2 165 Vns 135, 187 366 Vns 328, 406 534 Vns 492, 578

Background

1460 kev

6 run_1 167 Vns 139, 181
run_2 113 Vns 99, 119

7 run_1 109 Vns 93, 123
run_2 121 Vns 103, 137

Table 3: Peak energies of every channel with the peaks found in Vns and the range
given to the process for the determination of the calibration coefficients.
60Co has three peaks, two from the deexcitation of 60Ni and the third is
the sum of these if the γ-rays reach the detector at the same time, but in
channel 1 only two are found. This means that the third one is saturated.
54Mn only has one peak. 44Ti has three but in both channel only one is
shown in the spectrum. The Background channels have only one peak.
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(a) Calibration coefficients over time for
channel 1 in run_1. The outlier is
caused from missing files in the data ac-
quisition shown in figure 14

(b) Calibration coefficient over time for
channel 1 in run_2. The plot shows
many of outliers caused from a fitting
porblem in the calibration process

Figure 13: Calibration coefficients over the time. Two examples from run_1 and
run_2 with outliers. Plots from every channel can be found in the
appendix A in figure A.35 for run_1 and in figure A.36 for run_2

4.4. Calibration
With the information from section 4.3 the procedure can be adjusted and the
calibration can be done. Now the range of the first peak is given to the calibration
procedure. In this range the maximum bin is found. To find the other peaks,
if there are more than one, the fact is used that the relative distance from the
peaks in the uncalibrated spectrum is the same as in the calibrated spectrum.
The formula which is used to determine the integral value of the second and third
peak is

valn = V s_peak0 ·
E_peakn
E_peak0

(4.1)

where E_peak0 is the energy of the first peak in the spectrum, E_peakn is the
energy of the peak the procedure is looking for, V s_peak0 is the uncalibrated
integral value of the first peak and valn is then the uncalibrated integral value in
V s of the wanted peak. Around this value a range is defined. Inside this range a
Gaussian is fitted to the peak and the mean is used as the integral value of the
uncalibrated peak.
To determine the calibration coefficient for a source with just one peak a simple
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(a) (b)

Figure 14: Left: a normal spectrum with a fit for the second peak in channel 1
is shown. Right: the spectrum with the fit for the second peak which
causes the outlier in the calibration coefficients is shown.

proportionality is made with c equally the calibration coefficient:

c = E_peak0

V s_peak0
(4.2)

If there is more than one peak a 1st order polynomial E = c0 + c1 · I is used with
E equals to the energy, I equals to the integral and c0 and c1 are the calibration
coefficients. But because there is the peak energy without any error and only an
appropriate error on the integral value of the peak an inverse calibration is done.
This means it uses I = v0 + v1 ·E as 1st order polynomial to fit the graph integral
vs. energy and then just invert the function to get c0 and c1.

c0 = −v0

v1
c1 = 1

v1
(4.3)

After the calibration is run, a cross check is performed. The coefficients vs. time
are plotted because the calibration is done for every 1800 seconds of data. An
example can be seen in figure 13. In figure 13a there is an outlier in the coefficients
of channel 1. To determine why this outlier happened the spectrum with the peak
fit is plotted as shown in figure 14. In 14a is a normal spectrum from channel
1 shown with a fit of the second peak. In 14b the spectrum is shown which is
responsible for the outlier in channel 1. This is because there are just 3427 entries
in the spectrum. After some investigation a failure in the data acquisition is found
which caused some missing files. For run_1 the calibration coefficients from the
other channels contain no more outliers.
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(a) Peak fit failed (b) Fit range is shifted to the right

(c) Good fit

Figure 15: Spectra from the third peak fit in the calibration process for channel
1 in run_2. In (a) the fit failed. After the first improvement the peak
is fitted but with a shift to the right as shown in (b). The second
improvement gives a good peak fit as shown in (c)

4.4.1. Improvements on procedure

In figure 13b a large number of outliers in the distribution of the calibration co-
efficients can be seen. After some investigation of the calibration process it was
found that these outliers were due to the failed fit as shown in figure 15a. The
other peaks are fitted well only the third peak has some problems. This is due to
the fitting procedure. The value of the peak is determined with a scaling of the
first peak. Then a range of five sigma is defined for the fit. The problem was that
the fit does not find the peak. To solve this problem the initial fit parameter is
set to the actual value of the peak. This means that the highest bin in the defined
range is extracted and the x-axis value of this bin is set as initial parameter.
The effect of the improvement can be seen in figure 15b. The peak is fitted but it
is still shifted to the right. The fit starts left from the peak at half hight and ends
on the right side far away from the peak. This causes form the fitting range which
is still defined with the old peak value which was changed. In a second step the
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Figure 16: The calibration coefficients of channel 1 in run_2 after the changes in
the calibration process. The plots from the other channels can be seen
in the appendix A in figure A.37 for run_1 and in figure A.38 for run_2

fit range was also redefined. For this the same definition for the range is taken as
before the first changes and they are redefined with the peak value of the highest
bin.
In figure 15c the fit of the third peak of the same time stamp is shown with the
second improvement. Now the fit is symmetric around the peak and the outliers
in the calibration coefficient plot are gone as shown in figure 16.

Now the calibration process worked fine. The next step is the analysis of the
spectra to find the decay rate.

4.5. Background corrections in analysis procedure
To find the decay rate a Gaussian is fitted to every peak in every channel. To
consider the background a GEANT4 simulation is used. Both are joined and a
probability density function (p.d.f) is constructed. The p.d.f is normalized and
the fraction of the contribution to the p.d.f of every peak can be determined, and
with these the area under the peak. The rate is obtained by dividing this area by
the time interval which is defined as an hour. The error of the rate is calculated
through error propagation where also the error for the background is taken into
account.

After the analysis procedure the decay rates for run_1 are plotted for every channel
and peak. For 54Mn the rates were around 3.5 million which is really high. It was
found that the fit was not working properly as shown in figure 17a. This was
because the background p.d.f was wrong. The reason is not known because the
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(a) (b)

Figure 17: An example from run_1 of channel 2 to show that the fit was not
working on 54Mn. Left: The fit of the analysis method does not work
because of the background template. The peak is not fitted well. Right:
The fit works well after the improvements. Instead of the simulated
background template a uniform distribution is used.

procedure uses the GEANT4 simulation as background template. To make the
fit working a uniform distribution is added as the background. With this change
the fit works well as can be seen in figure 17b where the pink line is the uniform
distribution. With this the rate is in an expected range and the data analysis can
start. The analysis is described in the next section.
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Figure 18: The shape of the χ2 p.d.f with different values of dof . [19]

5. Data Analysis
In this section the data analysis procedure is described. First a statistical frame-
work is implemented and its cross check is described. The analysis was performed
on data from 28th of July 2017 to 11th of June 2018. Unfortunately some disk
space problems appeared in the data processing, hence the data after the replaced
54Mn source could not be processed in an appropriate time.

5.1. Theoretical model
The radioactive decay is an exponential decay which is described by the function
in equation 2.3. To check if there is a modulation in this exponential decay a
modulation term is added to the exponential so that the rate can be parameterized
as follows:

A(t) = A0e
−t/τ · (1 + α · cos(ω · t− φ)) (5.1)

where α is the amplitude of the cosine, ω is the period of the cosine and φ is the
phase. To fit the data with this function, the Python procedure scipy.optimize.curve_fit
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is used. It needs as input the function, the data, the error on the data, an initial
guess and also bounds can be defined for the fitted parameters. It fits the data
with a least squares method which minimizes the χ2. The χ2 is defined as the sum
of the squares of the residuals,

χ2 =
n∑
i=1

(
yi − f(xi)

σi

)2

(5.2)

where yi are the data points, f(xi) is the fitted function, σi is the error on data
point yi and n is the number of data points.
The distribution of the χ2 is fully described by one variable which is the degrees
of freedom (dof). The probability density function (p.d.f) fn of a χ2 distribution
with dof = n is

fn(x) = 1
2n

2 Γ(n2 )
x

n
2−1 exp(−x2 ). (5.3)

The average of the distribution is equal to the dof µ = n and the variance is
V ar(χ2) = 2n. The shape of the distribution for different values of dof is shown
in figure 18. If the dof →∞ the distribution tends to a Normal distribution. The
χ2 can be used as an indicator of the goodness of a fit [19].

5.1.1. Generate data

For a Monte-Carlo simulation data is generated as described in this section. The
generated data is used to check the statistical framework and to find a limit on
the amplitude α in the modulation term in a normal exponential decay.
For every monoenergetic line in the data which will be analyzed 1000 data sets
are generated with initial decay rate, A, set to the value of the very first entry in
the data acquisition of the modulation experiment. In table 4 the values for the
function

f(t) = A · e−t/τ (5.4)

are shown. The values are chosen while taking into account the gaps in the data
acquisition if a run was stopped and the next one started a few hours later. In
channel 3 the high voltage supplier tripped for some hours. This gap is also taken
into account and is modeled in the simulation data.
With these values data is generated with the exponential decay function 5.4. Be-
cause the rates are given in bins of an hour, to calculate every value of the data
set the integral I = (f(an) + f(an+1))/2 is taken where an are the bin edges. The

27



Channel Peak [keV] A τ # Bins

0 1173.2 27.73317 5.27 y 7542
1332.5 23.96626 5.27 y 7542

1 1173.2 29.75619 5.27 y 7542
1332.5 26.58419 5.27 y 7542

2 834.8 3.906610 312.2 d 7542
3 834.8 4.462543 312.2 d 7485
4 511.00 194.6683 59.1 y 7542
5 511.00 169.9193 59.1 y 7542

Table 4: Initial parameters for the Monte-Carlo simulation. A is given per second
and the number of bins are distributed over the data taking time of 7633
hours. This means that the gaps in the data acquisition are simulated.
In channel 3 the high voltage supply tripped and caused a larger gap in
the data acquisition which is taken into account too.

error in I is the square root of it eI =
√
I. A Poisson distribution is equal to

a Gaussian for large sample size. So to randomize the entries a random number
from a Gaussian with mean µ = I and a standard deviation σ = eI is extracted.
This random value r is now the entry for the particular bin and the error on it is
again the square root of it er =

√
r. While doing this process the gaps of the data

acquisition are simulated at the same time as found in the data.
Datasets generated in this way are referred to in the following as ds0.

5.1.2. Cross checks on fitting algorithm

The statistical properties of the fitting algorithm are tested on the generated ds0
datasets by fitting them with the function in equation 5.4. The values of the fitted
parameter are expected to be distributed as a Gaussian around the true value. Also
the χ2 of the fits are determined and compared with the expected distribution. In
figure 19 the fitting result is shown from the 1173.2 keV peak of channel 1. In
figure 19a the p.d.f of the calculated χ2 is shown compared with the theoretical
one. In the figures 19b and 19c the Gaussian distribution of the two parameters
A and τ around the true value of ds0 can be seen.
In addition to this a "check" data set dscheck is generated with 1000 sets of radioac-
tive decay. It is generated with the function in equation 5.1 with α = 0.2 and
φ = 1.5π. This data set is fitted with the same function it was generated and the
parameter distribution is shown in figure 20 where an example of the 1173.2 keV
peak from channel 1 is shown.
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(a) (b) (c)

Figure 19: An example of the fitting results of ds0 with an exponential function
from the 1173.2 keV peak of channel 1. (a) is the chi2 distribution, (b)
the histogram of the fitted parameter A and (c) the histogram of the
fitted parameter τ . The other plots can be seen in the appendix A in
figure A.39.

(a) (b) (c)

(d) (e)

Figure 20: An example of the fitting results of dscheck with the modulation function
of equation 5.1 from the 1173.2 keV peak of channel 1. The histograms
of the fitted parameters (a) chi2 distribution, (b) A, (c) τ , (d) α and (e)
φ are shown. The other plots can be seen in the appendix A in figure
A.40.
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Figure 21: Double peak structure in channel 4 while fitting the modulation func-
tion to ds0.

Channel Peak [keV] Bias

0 1173.2 8.9 · 10−5

1332.5 9.0 · 10−5

1 1173.2 8.5 · 10−5

1332.5 8.6 · 10−5

2 834.8 2.8 · 10−4

3 834.8 2.5 · 10−4

4 511.00 3.3 · 10−5

5 511.00 3.4 · 10−5

Table 5: The bias is the mean of the histogram of α if ds0 is fitted with the mod-
ulation function
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Figure 22: Reduced χ2 distributions of the fit of ds0 and dscheck with αtrue =
αfit. Also the 95 percentile and the median is shown to compare both
distributions. This example is from channel 4. The other plots are
shown in the appendix A in figure A.41

In the vast majority of eases the fitting algorithm was found to perform well. But
a small problem was found when fitting ds0 with the modulation function:

A(t) = A0e
−t/τ · (1 + α · cos(ω · t− φ)) (5.5)

The fitted α is expected to be most likely 0 because the data set is constructed
with a normal exponential decay.
However, if the modulation function of equation 5.5 is fitted to the data set ds0
a double peak structure is given for α as shown in figure 21 for the 511.00 keV
peak of channel 4. Also fitting ds0 with other initial guesses or constraints gave
no better results. The problem is that this shift will bias the limit on α. For the
analysis α is constrained to be positive. The shift on α from zero while fitting ds0
with the modulation function is summarized in table 5.

5.2. Statistical inference
The goal is to test for annual modulation. In case a modulation is not found, an
exclusion limit will be set on the modulation parameter α. To compute exclusion
limit we use the χ2 of the fit as a test statistic. A hypothesis α is considered
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Figure 23: The parabolic shape of the χ2 as a function of α. The parabola function
is determined with the three marked points. The sensitivity is then the
intersection point of the parabola and the χ2 at the 5% P − value.
This is one example of sensitivity estimation of the 1173.2 keV peak
from channel 0.

Figure 24: Histogram of the α values which causes a χ2 which corresponds to the
P − value. The standard deviation which is used as statistical error is
marked with a magenta colored line. This is an example of the 1173.2
keV peak in channel 0. The plots for the other channels and peaks are
shown in the appendix A in figure A.42
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excluded at 95% confidence level if the P − value is 5%. The P − value gives the
probability that the obtained result is compatible with the observation while the
null-hypothesis is true [19]. The underlying assumption is that any modulation
hypothesis with parameter α, if true, will lead to a perfect χ2 distribution for the
test-statistic used.

The first step, is to show that for data sets with a modulation amplitude of a
particular α the χ2 distribution is exactly the same as the χ2 distribution of ds0.
For this the data set dscheck is taken and fitted with the modulation function. But
this time αtrue = αfit is set. This means α is fixed to its true value and just fit
the other parameters. The χ2 distributions of both fitted data sets are shown in
figure 22.
The shown median and P − value are equal and so the assumption that for every
α value the χ2 distributions are the same is made.

The procedure used to set a limit on α is the following:
One needs to find the value of α for which the χ2 computed for the dataset and α
has a P − value of 5%. The data set ds0 is fitted with the modulation function,
but α is fixed to a particular value and the corresponding χ2 is estimated. Because
the χ2 as a function of α has a parabolic shape only three different α values have
to be fitted. With three points the parabola function f(x) = ax2 + bx + c can be
reconstructed. With this function the intersection point of it with the χ2 value
which corresponds to the 5% quantile needs to be found. This is shown in figure
23. After doing this for all the 1000 data sets the histogram is made and the me-
dian is taken as sensitivity. An example of such a histogram is shown in figure 24.
All sensitivity values are shown in table 6. The bias which is described in section
5.1.2 is taken into account and added as a systematic error on the sensitivity.

To cross check the results a data set dssens is generated with a modulation am-
plitude which is equals the estimated sensitivity. If dssens is fitted with only an
exponential function the median of its χ2 distribution should be equal to the 5%
P − value of the χ2 distribution of ds0. As can be seen in figure 25 the median
of the χ2 distribution of dssens is a bit (<2%) off. Due to the fact that one can
obtain a low P −value independently from α, the null hypothesis can be excluded,
a correction can be applied by subtracting the best fit χ2 to the test-statistic. The
method used is simpler and conservative.
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Channel Peak [keV] Sensitivity

0 1173.2 (1.7 ± 0.5STAT ± 0.1SY S) · 10−3

1332.5 (1.7 ± 0.5STAT ± 0.1SY S) · 10−3

1 1173.2 (1.5 ± 0.5STAT ± 0.1SY S) · 10−3

1332.5 (1.6 ± 0.5STAT ± 0.1SY S) · 10−3

2 834.8 (5.1 ± 1.5STAT ± 0.3SY S) · 10−3

3 834.8 (4.8 ± 1.4STAT ± 0.3SY S) · 10−3

4 511.00 (6.0 ± 1.7STAT ± 0.3SY S) · 10−4

5 511.00 (6.1 ± 1.8STAT ± 0.3SY S) · 10−4

Table 6: The sensitivity of every peak in every channel with its statistical and
systematic error.

Figure 25: The χ2 distribution of ds0 and dssens are compared. The median of
dssens should be equal to the P − value of ds0. But it is a bit shifted
(<2%) to the right. This is an example from the 1173.2 keV peak of
channel 0. The other plots can be seen in the appendix A in figure A.43
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Channel Peak [keV] Half-life Theoretical half-life Ref.

0 1173.2 5.31(1) y

5.271(4) y [16]1332.5 5.31(1) y

1 1173.2 5.30(1) y
1332.5 5.26(1) y

2 834.8 325.7(3) d 312.2(2) d [15]
3 834.8 322.0(2) d
4 511.00 64.7(5) y 59.1(3) y [14]
5 511.00 61.9(5) y

Table 7: Half-life of the measured decay rates compared to the theoretical value.

5.3. Finding the modulation limit
With all the statistical background and the improved processing the analysis of
the data, before the replaced 54Mn source, is possible. The data is taken from
28.07.2017 to 11.06.2018, thus almost one year. Figure 26 shows the data rate (for
all the channels) as a function of time. Due to detector instability and processing
artefacts, some of these data present clear non-physical values. Selection criteria
are applied to the data to remove those events. These selection are defined as
follows:
The first step was that if the rate is smaller than 0.2 events per second it is cut
off. If a rate is so small there has to be something wrong with the measurement.
For example, as mentioned before, the tripped high voltage supply in channel 3.
These points are marked with green in the plots of figure 26.
For the next step a function was fitted to the data and the difference of the data
points and the function is taken and divided by the error of the data points. With
these quantities a histogram is made and a Gaussian is fitted to it. Every data
point which is more far away than the mean µ± 3.5σ is marked as outlier. In the
plots of figure 26 they are marked in red.
In the last step a cut is made due to the size of the error. There are some rates
with a really large error bar which is ten times higher than the one from the others.
So a histogram of all errors is made and a cut is performed where the gap of these
values are. These points are marked with black in the plots of figure 26.

After all the outliers are removed as shown in figure 27 the half-life is fitted and
compared with the theoretical values. For this the exponential function of equation
5.4 is fitted to the data. Because the temperature systematically influences the
experimental setup most, the data is corrected with the temperature difference
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(a) Channel 0 peak 1173.2 keV (b) Channel 0 peak 1332.5 keV

(c) Channel 1 peak 1173.2 keV (d) Channel 1 peak 1332.5 keV
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(e) Channel 2 peak 834.8 keV (f) Channel 3 peak 834.8 keV

(g) Channel 4 peak 511.00 keV (h) Channel 5 peak 511.00 keV

Figure 26: For every channel and peak, the outliers are cut off in three steps. The
first is that all rates < 0.2 are cut and marked with green points. Then
all rates where the difference of the function and the point divided by
the error is outside of a 3.5σ confidence interval are marked with red
and are cut off. The last step is to remove all points with an error which
is obviously much higher than it should be. These points are marked
with black.
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Figure 27: The rate in seconds with error bar for the 1173.2 keV peak of channel
0. The plots for the other peaks and channels can be found in the
appendix A in figure A.44

from the median of the monitored temperature. So the function used has an
additional term with the temperature difference.

f(t) = A0 · e−t/τ · (1 + β∆T ) (5.6)

Only the temperature deviation of the mean temperature is interesting not the
actual temperature. The data is fitted with the function of equation 5.6 and the
half-life of the different peaks and channels is calculated. The results are summa-
rized in table 7. The half-life of 60Co are the best results. The half-lives of 54Mn
and 44Ti are incompatible with the theoretical value. This is on one side due to
the fact that only data for almost one year is fitted. This is a really short time
to determine the exactly half-life of 44Ti. On the other side the 54Mn source was
produced in 2013 and with its small half-life it had a really small activity at the
measuring time and thus the source was weak. Because of this it was replaced on
11th of June 2018.

Despite the unsatisfying results for the half-lives, the limits on the amplitude α
are still determined. To find a limit the same procedure as already performed for
the simulation which was discussed in section 5.2 is applied. The data is fitted
with the function
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Channel Peak [keV] Sensitivity Alpha limit

0 1173.2 (1.7 ± 0.5STAT ± 0.1SY S) · 10−3 1.3 · 10−3

1332.5 (1.7 ± 0.5STAT ± 0.1SY S) · 10−3 2.0 · 10−3

1 1173.2 (1.5 ± 0.5STAT ± 0.1SY S) · 10−3 2.0 · 10−3

1332.5 (1.6 ± 0.5STAT ± 0.1SY S) · 10−3 2.7 · 10−3

2 834.8 (5.1 ± 1.5STAT ± 0.3SY S) · 10−3 5.3 · 10−3

3 834.8 (4.8 ± 1.4STAT ± 0.3SY S) · 10−3 5.3 · 10−3

4 511.00 (6.0 ± 1.7STAT ± 0.3SY S) · 10−4 NAN
5 511.00 (6.1 ± 1.8STAT ± 0.3SY S) · 10−4 7.7 · 10−4

Table 8: The sensitivity found with the Monte-Carlo simulation in section 5.2 is
compared with the limits on α found in the data.

f(t) = A0 · e−t/τ · (1 + β∆T ) · (1 + α · cos(ω · t− φ)) (5.7)

where again the data is corrected with the temperature and ω is fixed to one year
because we are interested in yearly modulation. The results are summarized in
table 8. The sensitivity which was calculated with the Monte-Carlo simulation
in section 5.2 and the limits of α found in the data are both shown. In channel
4 the parabola of α had no intersection point with the χ2 of the corresponding
P − value. This means that even the null hypothesis is excluded, this has to be
investigated further.
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Figure 28: The sensitivity shows the expected median amplitude in a data set with
no modulation and is marked with a black dot. With green the 1σ and
with yellow the 2σ standard deviation of the sensitivity is marked. The
blue line is the claimed modulation amplitude from Jenkins et al. [2].
The red crosses show the estimated α-limits in the data of the Zurich
detectors. In channel 4 no limit could be estimated.

6. Results
In figure 28 the sensitivity, the limit on α for the data set and the claimed modu-
lation amplitude value by Jenkins et al. [2] are shown. The limits on most of the
channels are consistent with the expectation, with the exception of the 60Co line
at 1332.5 keV, where a 2σ excess is seen.
The sensitivity of the 60Co source is around the claimed value by Jenkins et al.
[2]. If the data set after the replaced 54Mn source will be included in the analysis
the sensitivity is expected to decrease, and a better comparison can be made.
Channel 2 and 3 have similar results. The limit on α is very consistent with
the sensitivity even if the sensitivity is above the claimed modulation amplitude
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of Jenkins et al. [2]. The replaced 54Mn source should give better results for
comparison.
For channel 4 no α limit is shown because fitting the data with the modulation
function causes no result with an χ2 which lies inside the 95% confidence level of
the χ2 p.d.f . This means that even the null-hypothesis is excluded, thus more
investigation on the model for this channel are needed. In channel 5 the limit on α
is consistent with the expected amplitude. The sensitivity and limit on α is below
the claimed modulation by Jenkins et al. [2] and is of order O(10−4).

If the data after the replaced 54Mn source would be included the half-life fits are
expected to be more consistent with the theory values. Also the sensitivity is
expected to decrease and lie below the claimed amplitude by Jenkins et al. [2].
Then the found limits on α in the data can be compared with the claimed value.
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7. Conclusion
Radioactive decay is a widely assumed to be a spontaneously process which is not
influenced by external conditions. However, in recent years claims of an annual
modulation in long-lived isotopes are made by Jenkins et al. [2]. The modulation
experiment is constructed to re-examine the idea of annual modulation and inves-
tigate the stability of decay rates with time. The experiment contains four setups
located on three different continents to examine seasonal influences.

In this thesis a full data analysis of the modulation experiment is presented. To
achieve this, several problems were solved during this work. For example, the
background simulation of the 54Mn source was not working in the analyzer file. The
solution was to construct a uniform distribution which was used as background.
This solution is not based on a physical meaning. It was done because it would
have been too time consuming to either redo the Monte-Carlo simulation or to
model a background distribution from the background detectors.
Another problem was the disk space and the long time the data processing needed.
Because of this only almost one year of data could be analyzed which is not enough
to get consistent results of the half-life for the 54Mn and 44Ti isotopes. However,
the result of the found limit on the modulation amplitude α is comparable with
the sensitivity found by a Monte-Carlo simulation.

In the data analysis the statistical framework was simplified to an appropriate
level. With a more precise statistical analysis the result will might be more con-
sistent with the theory. Also the LED can be included in the analysis to study the
efficiency of the whole measurement.

The next step on the modulation experiment is to combine the results of the
different detector locations. In a first step, which already started, the data from
the Zurich detectors and Nikhef are combined and a statistical combination of the
result will be performed.
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A. Figures

(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3
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(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.29: 2D Histogram of all channels with the saturation level, the integral
saturation point and the median of run_1
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.30: 2D Histogram of all channels with the saturation level, the integral
saturation point and the median of run_2
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.31: Variation of the saturation points over the time for run_1
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.32: Variation of the saturation points over the time for run_2
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.33: Integral spectrum of every channel with the saturation line to find
saturated peaks for run_1
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.34: Integral spectrum of every channel with the saturation line to find
saturated peaks for run_2
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.35: Calibration coefficients over time for every channel in run_1
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.36: Calibration coefficients over time for every channel in run_2
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.37: Calibration coefficients over time for every channel in run_1 after
the improvements in the calibration process
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(a) Channel 0 (b) Channel 1

(c) Channel 2 (d) Channel 3

(e) Channel 4 (f) Channel 5

(g) Channel 6 (h) Channel 7

Figure A.38: Calibration coefficients over time for every channel in run_2 after
the improvements in the calibration process
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(a) chi2 distribution of the
fit result. Peak 1173.2
keV, Channel 0

(b) Histogram of the fit-
ted parameter A. Peak
1173.2 keV, Channel 0

(c) Histogram of the fit-
ted parameter τ . Peak
1173.2 keV, Channel 0

(d) chi2 distribution of the
fit result. Peak 1332.5
keV, Channel 0

(e) Histogram of the fitted
parameter A. Peak
1332.5 keV, Channel 0

(f) Histogram of the fitted
parameter τ . Peak 1332.5
keV, Channel 0

(g) chi2 distribution of the
fit result. Peak 1173.2
keV, Channel 1

(h) Histogram of the fit-
ted parameter A. Peak
1173.2 keV, Channel 1

(i) Histogram of the fitted
parameter τ . 1173.2 keV,
Channel 1

(j) chi2 distribution of the fit
result. Peak 1332.5 keV,
Channel 1

(k) Histogram of the fitted
parameter A. Peak
1332.5 keV, Channel 1

(l) Histogram of the fitted
parameter τ . Peak 1332.5
keV, Channel 1
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(m) chi2 distribution of the
fit result. Peak 834.8
keV, Channel 2

(n) Histogram of the fitted
parameter A. Peak 834.8
keV, Channel 2

(o) Histogram of the fitted
parameter τ . Peak 834.8
keV, Channel 2

(p) chi2 distribution of the
fit result. Peak 834.8
keV, Channel 3

(q) Histogram of the fitted
parameter A. Peak 834.8
keV, Channel 3

(r) Histogram of the fitted
parameter τ . Peak 834.8
keV, Channel 3

(s) chi2 distribution of the fit
result. Peak 511.00 keV,
Channel 4

(t) Histogram of the fitted
parameter A. Peak
511.00 keV, Channel 4

(u) Histogram of the fit-
ted parameter τ . Peak
511.00 keV, Channel 4

(v) chi2 distribution of the
fit result. Peak 511.00
keV, Channel 5

(w) Histogram of the fit-
ted parameter A. Peak
511.00 keV, Channel 5

(x) Histogram of the fit-
ted parameter τ . Peak
511.00 keV, Channel 5

Figure A.39: Fitting results of ds0 with an exponential function.
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(a) chi2 distribution of the
fit result. Peak 1173.2
keV, Channel 0

(b) Histogram of the fit-
ted parameter A. Peak
1173.2 keV, Channel 0

(c) Histogram of the fit-
ted parameter τ . Peak
1173.2 keV, Channel 0

(d) Histogram of the fit-
ted parameter α. Peak
1173.2 keV, Channel 0

(e) Histogram of the fit-
ted parameter φ. Peak
1173.2 keV, Channel 0

(f) chi2 distribution of the fit
result. Peak 1332.5 keV,
Channel 0

(g) Histogram of the fitted
parameter A. Peak
1332.5 keV, Channel 0

(h) Histogram of the fit-
ted parameter τ . Peak
1332.5 keV, Channel 0

(i) Histogram of the fitted
parameter α. Peak 1332.5
keV, Channel 0

(j) Histogram of the fitted
parameter φ. Peak 1332.5
keV, Channel 0
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(k) chi2 distribution of the
fit result. Peak 1173.2
keV, Channel 1

(l) Histogram of the fitted
parameter A. Peak
1173.2 keV, Channel 1

(m) Histogram of the fit-
ted parameter τ . Peak
1173.2 keV, Channel 1

(n) Histogram of the fit-
ted parameter α. Peak
1173.2 keV, Channel 1

(o) Histogram of the fit-
ted parameter φ. Peak
1173.2 keV, Channel 1

(p) chi2 distribution of the
fit result. Peak 1332.5
keV, Channel 1

(q) Histogram of the fitted
parameter A. Peak
1332.5 keV, Channel 1

(r) Histogram of the fitted
parameter τ . Peak 1332.5
keV, Channel 1

(s) Histogram of the fit-
ted parameter α. Peak
1332.5 keV, Channel 1

(t) Histogram of the fit-
ted parameter φ. Peak
1332.5 keV, Channel 1
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(u) chi2 distribution of the
fit result. Peak 834.8
keV, Channel 2

(v) Histogram of the fitted
parameter A. Peak 834.8
keV, Channel 2

(w) Histogram of the fitted
parameter τ . Peak 834.8
keV, Channel 2

(x) Histogram of the fitted
parameter α. Peak 834.8
keV, Channel 2

(y) Histogram of the fitted
parameter φ. Peak 834.8
keV, Channel 2

(z) chi2 distribution of the fit
result. Peak 834.8 keV,
Channel 3

(aa) Histogram of the fit-
ted parameter A. Peak
834.8 keV, Channel 3

(ab) Histogram of the fit-
ted parameter τ . Peak
834.8 keV, Channel 3

(ac) Histogram of the fit-
ted parameter α. Peak
834.8 keV, Channel 3

(ad) Histogram of the fit-
ted parameter φ. Peak
834.8 keV, Channel 3
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(ae) chi2 distribution of the
fit result. Peak 511.00
keV, Channel 4

(af) Histogram of the fit-
ted parameter A. Peak
511.00 keV, Channel 4

(ag) Histogram of the fit-
ted parameter τ . Peak
511.00 keV, Channel 4

(ah) Histogram of the fit-
ted parameter α. Peak
511.00 keV, Channel 4

(ai) Histogram of the fit-
ted parameter φ. Peak
511.00 keV, Channel 4

(aj) chi2 distribution of the
fit result. Peak 511.00
keV, Channel 5

(ak) Histogram of the fit-
ted parameter A. Peak
511.00 keV, Channel 5

(al) Histogram of the fit-
ted parameter τ . Peak
511.00 keV, Channel 5

(am) Histogram of the fit-
ted parameter α. Peak
511.00 keV, Channel 5

(an) Histogram of the fit-
ted parameter φ. Peak
511.00 keV, Channel 5

Figure A.40: Fitting results of dscheck with the modulation function.
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(a) Peak 1173.2 keV, Channel 0 (b) Peak 1332.5 keV, Channel 0

(c) Peak 1173.2 keV, Channel 1 (d) Peak 1332.5 keV, Channel 1

(e) Peak 834.8 keV, Channel 2 (f) Peak 834.8 keV, Channel 3

(g) Peak 511.00 keV, Channel 4 (h) Peak 511.00 keV, Channel 5

Figure A.41: Reduced χ2 distributions of the fit of ds0 and dscheck with αtrue = αfit.
Also the 95 percentile and the median is shown to compare both
distributions. 67



(a) Peak 1173.2 keV, Channel 0 (b) Peak 1332.5 keV, Channel 0

(c) Peak 1173.2 keV, Channel 1 (d) Peak 1332.5 keV, Channel 1

(e) Peak 834.8 keV, Channel 2 (f) Peak 834.8 keV, Channel 3

(g) Peak 511.00 keV, Channel 4 (h) Peak 511.00 keV, Channel 5

Figure A.42: Histogram of the α values which causes a χ2 which corresponds to
the 5% P − value. Also the standard deviation is marked which is
used as statistical error. 68



(a) Peak 1173.2 keV, Channel 0 (b) Peak 1332.5 keV1, Channel 0

(c) Peak 1173.2 keV, Channel 1 (d) Peak 1332.5 keV, Channel 1

(e) Peak 834.8 keV, Channel 2 (f) Peak 834.8 keV, Channel 3

(g) Peak 511.00 keV, Channel 4 (h) Peak 511.00 keV, Channel 5

Figure A.43: The reduced χ2 distribution of ds0 and dssens are compared. The
median of dssens should be equal to the 5% P − value of ds0. But it
is a bit (<2%) shifted to the right.
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(a) Channel 0 peak 1173.2 keV (b) Channel 0 peak 1332.5 keV

(c) Channel 1 peak 1173.2 keV (d) Channel 1 peak 1332.5 keV
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(e) Channel 2 peak 834.8 keV (f) Channel 3 peak 834.8 keV

(g) Channel 4 peak 511.00 keV (h) Channel 5 peak 511.00 keV

Figure A.44: Rate per second without outliers for every peak and channel. These
data sets are used for further analysis.

71


	Introduction
	Theory
	Radioactive decay
	Beta decay
	Electron capture
	Gamma decay
	Gamma-ray interactions
	Photoelectric absorption
	Compton effect
	Pair production

	Modulation in decay rates

	Experiment
	Experimental setup
	NaI(Tl) detector with photomultiplier tube
	Data acquisition
	Sources

	Data Processing
	Processing pipeline
	Saturation
	Peak determination
	Calibration
	Improvements on procedure

	Background corrections in analysis procedure

	Data Analysis
	Theoretical model
	Generate data
	Cross checks on fitting algorithm

	Statistical inference
	Finding the modulation limit

	Results
	Conclusion
	Figures

