

Integration of XENON into the SuperNova Early Warning System

Ricardo Peres, on behalf of the XENON collaboration Physik-Institut, Universität Zürich

Supernovae, Neutrinos and CEvNS

- Supernovae (SN) are the catastrophic events marking the death of a massive star that exhausted its nuclear fuel.
- In core-collapse SNe, Around 99% of the gravitational binding energy of the remnant is converted to neutrinos with energies of O(10)MeV over just a few seconds. [2]
- SN neutrinos can be detected in various ways.

 Amongst them, coherent elastic neutrino-nucleus scattering (CEvNS) is of particular interest, given its flavour-blind behaviour.

Raw data

Peak

identifier

Peak

properties

Peak

classification

Low-Energy

S2 peak rate

The XENON1T Detector

- Located underground inside the Laboratori Nazionali del Gran Sasso (LNGS) 3600 m.w.e.
- Excels in the search for WIMP scattering and other rare events [3,4,5].

Corrected

areas

SUPERNOVA

ALERT

DATAGRAM

Event

reconstruction

Relevant

low-energy event

properties

SN FLAG OMEGA

Record/report

Position

Save in

record

→ SN FLAG ALPHA

Peak-level processing

Boolean flags

- Cylindrical dual-phase time projection chamber (TPC) with 2t of LXe, instrumented with PMT arrays on the top and bottom.
- 3D position reconstruction and background discrimination with light (S1) and charge (S2) detection.
- The upgrade, XENONnT, with 6t of LXe as active target, will start to be commissioned in 2019.

SNe Observation in LXe DM Experiments

- SN neutrinos deposit up to O(1) keV of energy in xenon targets through CEvNS.
- Low energy events demand low energy threshold. For double-phase TPCs, lower thresholds may be reached by giving up the requirement of a generated S1 signal (known as an S2-Only framework).
- In the timeframe (<10s) of a SN event at 10 kpc the experiment expects O(10) signal events (SN@10kpc) in the TPC, over a low background rate.
- Based on a S2-only analysis with 0.7 keV energy threshold, XENONnT will provide enough sensitivity to detect a 27 $\rm M_{\odot}$ SN burst past the edge of the Milky Way with more than $\rm 5\sigma$ significance [1].
- The result may be improved using the signals from the 700 t water Cherenkov detector used as muon veto for the TPC.

SN Alert Software

- The ability to receive alarms from the SuperNova Early
 Warning System (SNEWS)
 and promptly save all data from a given time period was implemented in XENON1T [7] in the fall of 2017.
- XENON1T synchronized its DAQ
 system with a GPS-based absolute
 timing module [8], which is crucial to
 accurately record the time of external events,
 such as SNe, and coordinate with other experiments.
- XENONnT will feature a triggerless DAQ system [7], followed by an online processing framework using the XENON-developed open-source data processor, "strax" [6].
- In parallel of acting upon alarms sent by SNEWS, the viability of actively contributing to the network with XENONnT is under investigation.

References

- 1. Rafael Lang et al., "Supernova neutrino physics with xenon dark matter detectors: A timely perspective", Phys.Rev. D94 (2016) no.10, 103009
- 2. Kate Scholberg, "Supernova Neutrino Detection", Ann.Rev.Nucl.Part.Sci. 62 (2012) 81-103.
- 3. E. Aprile et al. (XENON Collaboration), "Dark Matter Search Results from a One Ton-Year Exposure of XENON1T", Phys. Rev. Lett. 121, 111302
- 4. E. Aprile et al (XENON Collaboration), "Observation of two-neutrino double electron capture in 124Xe with XENON1T", Nature 568
- (2019) no.7753, 532-535
 5. E. Aprile et al. (XENON Collaboration), "Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T", Phys. Rev.
- Lett. 122, 141301 Published 8 April 2019
 6. https://github.com/AxFoundation/strax/
- 7. E. Aprile et al (XENON Collaboration), "The XENON1T Data Acquisition System", arXiv:1906.00819
- 8. M. De Deo et al, "Accurate GPS-based timestamp facility for Gran Sasso National Laboratory", 2019 JINST 14 P04001

rperes@physik.uzh.ch Zürich, 2019