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Abstract

Objective: Fractionated radiotherapy typically delivers the same dose in each fraction (Uniform
Fractionation). Adaptive Fractionation is a technique proposed by Pérez Haas [1] to exploit inter-fractional
motion by increasing the dose on days when the distance of tumor and dose-limiting OAR is large and
decreasing the dose on days when the distance is small. For favourable patient geometries where distances
are large, Adaptive Fractionation has shown to deliver small residual doses in final or close-to-final fractions.
Developed is an extension of the Adaptive Fractionation model to minimise number of fractions used
for a treatment, to prevent applying such small residual doses in the final or close-to-final fractions for
favourable patient geometries and use the vacant treatment allocation slot for additional patients: On
favourable days the dose is further increased to possibly finish the treatment in earlier fractions and
on unfavourable days dose modification is conformed to standard Adaptive Fractionation utilising the
prescribed maximum number of fractions. The extended concept is evaluated for patients with pancreas,
adrenal glands and prostate tumors previously treated at the MR-Linac in 5 fractions with ablative dose.

Approach: Given daily adapted treatment plans, inter-fractional changes are quantified by sparing
factors δt defined as the OAR-to-tumor dose ratio. The key problem of Adaptive Fractionation is to decide
on the dose to deliver in fraction t, given δt and the dose delivered in previous fractions, but not knowing
future δts. Optimal doses that minimise the expected biologically effective dose in the OAR BED3 and
the number of fractions, while delivering a minimal BED10 tumor dose prescription, are computed using
dynamic programming. Assumed is a normal distribution over δ with mean and variance estimated from
previously observed patient-specific δts for modelling sparing factor distribution. Collected were data of 30
patients from the MR-Linac treatment planning system for pancreas, adrenal glands and prostate cancer.
The algorithm is evaluated retrospectively for two patients with pancreas tumor and one patient with
tumor in the adrenal glands.

Main Results: In two patients with pancreatic cancer reducing number of fractions with Adaptive
Fractionation resulted in a BED3 decrease of 16.7 Gy respectively 2.8 Gy compared to Uniform Fractionation.
The treatment reduced the number of fractions to 2 respectively to 4 number of fractions. In one patient
with cancer in adrenal glands, reducing number of fractions with Adaptive Fractionation led to no reduction
in number of fractions and a BED3 increase of 2.8 Gy compared to Uniform Fractionation, due to an
unfavourable planning sparing factor, that is used for estimating the mean of δ.
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1 Introduction

Radiotherapy aims to use ionising radiation to dam-
age and destroy cancerous tissue. The MR-Linac
generates photons with an energy of up to 6 MeV
by accelerating electrons onto a target, where they
collide and are decelerated. This process results in the
production of a beam of bremsstrahlung from the high
kinetic energy of the electrons [2]. During their inter-
action with matter, photons ionise molecules within
cells. The ionised electrons are responsible for most
of the biological damage caused by radiation. This
is because these electrons can cause further ionisa-
tions in the molecules they collide with, as they move
through the tissue [3].
Ionising radiation can induce lethal cell damage by
forming highly reactive radicals inside the cell nucleus
that chemically break bonds in molecules. Damages
may cause loss of reproducibility or even inflict apop-
tosis in targeted cells. In general both malignant and
benign cells are exposed to radiation in radiotherapy
treatment and thus both experience former effects.
Much of the motivation for improving the technology
of radiation therapy stems from the desire to increase
normal tissue complication sparing. This means main-
taining functional integrity of irradiated normal tissue
and reducing prevalence of normal tissue complication
occurrence. There are two elements to the strategy of
normal tissue sparing. First element is the existence
of a difference in the radiation response of benign and
malignant cells. In treatments this difference allows
preservation of functional integrity in normal tissue
included in the target volume. Difference in this re-
sponse between malignant and benign cells is assumed
to be due to repair kinetics and cell repopulation. To
exploit this differential effect the dose is fractionated,
that is delivered in small daily increments. Second
element of the strategy which is not further discussed
here involves the reduction of the dose delivered to
normal tissues that are spatially separated from the
tumor. [4]
Fractionated therapy is an important rationale for
local therapy. Employing fractionation, normal tissue
can tolerate higher doses allowing the therapeutic
ratio to be increased. One problem of fractionated
therapy is that daily treatment over an extended
period can result in changes to the geometry of non-
stationary organs such as the intestines. Motion of
tumors and organs at risk (OAR) in between frac-
tions greatly impairs dose conformity and is generally
assumed to degrade the quality of treatments. To ac-
count for impaired conformity caused by motion, the
target volume can be extended with a safety margin.
Safety margins in turn worsen the trade-off between
tumor coverage and normal tissue sparing that would
be feasible without motion [5]. To understand the
target volume definition and their extensions one has
to understand how treatment plans for irradiation are
created.

2 Theory

2.1 Treatment Planning

To develop an irradiation plan for radiotherapy, it
is first necessary to identify and segment the tumor
from normal tissue. This is typically done using com-
puted tomography (CT) scans, which provide detailed
anatomical information and electron density informa-
tion that can be used to calculate dose. In some cases,
additional imaging modalities such as magnetic reso-
nance (MR) and positron emission tomography (PET)
may be used to improve the accuracy of tumor local-
isation and differentiation from normal tissue with
similar density. Once the tumor has been identified
and outlined, it is expanded to create specific target
volumes that are nested within one another. [3]
The gross tumor volume (GTV) represents the pri-
mary tumor mass as seen on clinical examination or
imaging. Extending the GTV results in the clinical
target volume (CTV), which includes any additional
microscopic disease. The final extension is the plan-
ning target volume (PTV), which accounts for poten-
tial errors in positioning during treatment or changes
in the size or shape of the tumor or organs. In case
no additional CT or MR scans are taken during the
course of treatment (which can span several weeks),
the PTV margin is essential to account for any uncer-
tainties that may arise due to geometric variations.
In addition to outlining the target volumes, it is also
necessary to identify and outline any organs at risk
(OARs) during treatment planning. OARs are defined
as "those normal tissues which lie adjacent to tumors
and may therefore be included within treated volumes,
with a risk that the radiation may impair their normal
functioning" [3]. These organs may overlap with the
PTV, which can significantly constrain the tumor pre-
scription dose in order to avoid damaging the OAR.
There may also be multiple OARs in proximity to the
target volume, each of which imposes its own dose
constraints.
Once the tumor and OARs have been outlined, an
optimal dose distribution can be calculated. This pro-
cess involves setting constraints and objectives based
on the prescribed tumor dose and OAR dose limits.
Under a given set of beam angles and interaction
model, an optimisation algorithm is used to compute
the optimal achievable dose distribution. [6]

2.2 Image guided radiotherapy

Central to the advances in radiotherapy delivery is
the development of medical imaging technologies that
provide the 3D delineation of the target volumes and
OAR. The development of state-of-the-art imaging
methods have enabled modern radiotherapy to de-
velop into a highly personalised, tailored treatment
[7]. Technologies for image guided radiotherapy in-
clude CT, MRI, and PET imaging, where MR images
offers superior soft-tissue contrast compared to CT [8].
Image functionalities provide additional information,
that can be used to confirm patient positioning, mon-
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itor and mitigate anatomical changes. This enables
conforming the treatment plan to new patient geom-
etry [7]. However, the conformal dose distribution
is only achieved on the reference image which is the
planning image, a snapshot of patient anatomy. Inter-
fractional and intra-factional anatomy changes from
the planning image may deteriorate the dose confor-
mity in actual delivered dose distribution [9]. The use
of more frequent on-line imaging, such as cone beam
computerised tomography [10] and integrated mag-
netic resonance imaging [11], allows to detect these
anatomic changes and aid in correcting or minimising
the effect of changes in geometry. Image guidance is
used to define the target more accurately and helps
minimising the margins of the PTV which give rise to
stereotactic body radiotherapy [12]. In each fraction
through the course of the SBRT treatment at our
MR-Linac, the patient is imaged with MRI. The MR
image is aligned with deformable image registration
to the reference planning CT image. In the presence
of large geometry changes compared to reference it is
decided whether the dose plan needs to be reoptimised
to ensure dose conformity.

2.3 Uniform Fractionation

As mentioned before one strategy of normal tissue
sparing involves fractionation. In uniform fractiona-
tion the prescribed dose is divided into dose fractions
of equal size, which are delivered in multiple sessions.
To enable comparison between different fractionation
schedules the biological effective dose (BED) model
is used. More precisely, BED allows determining iso-
effective dose fractionation schedules. It is regarded
as a measure of the biological dose delivered by a par-
ticular combination of equal dose per fraction D/n
and total dose D in n fractions to a given tissue [13].
It is defined as

B = D

(
1 +

D/n

α/β

)
where α and β are coefficient that stem from the
Track-Event-Model which in low dose regions in ap-
proximated with the BED model. The α/β ratio is
a measure the repair capability : cells with a high
α/β values respond earlier i.e. show reactions such
as proliferative impairment or loss of function earlier.
Thus, two adjacent tissues with different α/β ratio
values, each receiving the same dose and fractiona-
tion, will be associated with different BEDs. This
does not necessarily mean that one tissue sustains
more biological damage than the other. [13]

3 Prior Work

Fractionated therapy typically delivers equal dose
in every fraction to the tumor when treated with
uniform fractionation. Since the plan is fractionated
and treatment spans several days or weeks, inter-
fractional motion arises. This motion is seen as a
handicap to treatments as it can degrade the quality
of dose plans and calls for mitigation strategies such

as adaptive radiotherapy. Rather than viewing inter-
fractional motion as a handicap, it can be seen as an
opportunity: the variation in geometry due to motion
may be exploited to achieve better treatment quality
compared to uniform fractionation.

3.1 Concept

Adaptive Fractionation [14][15][16] is one approach
to exploit inter-fractional motion. In a recently pub-
lished work from Pérez Haas et al. [1] an approach to
adaptive fractionation has been devised and demon-
strated with patient data from an MR-Linac. Adap-
tive Fractionation extends the existing adaptive ther-
apy paradigm to modification of the tumor dose in
each fraction: the dose is increased on favourable
treatment days, i.e. when the distance between tumor
and dose-limiting OAR is relatively large; and the
dose is reduced for unfavourable geometries, i.e. when
the tumor and OAR are closer. Thereby, the ratio
between total dose delivered to the OAR versus total
dose delivered to the tumor may be improved com-
pared to uniform treatments that deliver the same
dose in each fraction [1]. The difficulty comes from
not knowing whether the remaining future fractions
will have favourable or unfavourable patient geome-
tries. The sparing factors are random variables with
an estimated probability distribution but the exact
future values are unknown. In the following the pre-
liminary work is explained to get an understanding
of what has been achieved previously.

3.2 Sparing Factors

For the purpose of adaptive fractionation, treatment
plans and the daily geometric variations are described
in terms of sparing factors δ

δt =
dN
t

dt

where dN
t denotes the dose received by the dose-

limiting OAR in fraction t and dt the dose delivered to
the tumor. Clinical practice of dose prescription and
constraint specification is followed for the definition
of dN

t and dt: The dose to the OAR dN is defined as
the dose exceeded in 1cc of the OAR (D1cc), which
is a commonly used dose parameter for bowel, stom-
ach or duodenum in SBRT treatments. The tumor
dose dt is defined as the dose exceeded in 95% of the
PTV volume (D95%), which is a commonly used dose
parameter for dose prescription and reporting [17][18].
Each patient is thus described via a sequence of six
sparing factors corresponding to the planning MR and
the five treatment fractions. For each tumor every
OAR was tracked, that was deemed potentially dose-
limiting. For applying adaptive fractionation only
patients with not changing dose-limiting OAR were
analysed. Further, assumed is that inter-fractional
motion is random, such that δ is normal distributed
with a patient specific mean µ and standard deviation
σ

δt ∼ N (µ, σ2)
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3.3 Clinical Implementation

From a practical perspective, this approach to adap-
tive fractionation would be implemented by up-scaling
or down-scaling the reoptimised treatment plan for
that fraction. That is, we assume that the adaptive
radiotherapy process consisting of MR imaging, re-
contouring, deformable image registration and plan
reoptimisation is not altered. The only additional
step would be a final up-scaling or down-scaling of
the fluence without changing the shape of the dose
distribution. This corresponds to a renormalisation
of the plan, which is in current practice conducted
within a narrow range that can be extended to im-
plement adaptive fractionation the treatment plan
process.

3.4 Methods

Pérez Haas [1] presented in his paper how the frame-
work of Markov decision process is applied and how
the stochastic optimal control problem is formulated.
For that states, actions, state transitions and reward
functions to describe interaction with the environment
are introduced. Depending on the clinical objective
that should be accomplished, in the master thesis [19]
three optimisation types with different objectives are
presented:

1. To treat a tumor where the desired prescription
dose cannot be reached as the OAR is too close
to the tumor, the goal was set to maximise the
cumulative BED delivered to the tumor subject
to the constraint on the cumulative OAR BED.

2. In a case where tumor and OAR are farther
apart, the prescribed tumor dose can be ob-
tained without risking the overdosage of the
OAR. Therefore, the goal is to minimise the
cumulative BED delivered to the OAR subject
to delivering the prescribed dose to the tumor.

3. Deciding on which algorithm to use at the be-
ginning of a treatment poses a problem, as it
is not known what the average distance will
be. Hence, an objective has been set, where the
goal is to reach the prescribed tumor dose sub-
ject to the constraint on the cumulative OAR
BED. If the prescribed dose can be reached, the
objective is to minimise OAR BED. If the pre-
scribed dose can not be reached, the tumor dose
is maximised.

The paper presented results from the optimal policy
applied real patient data using some assumptions
about the probability distributions. Also described
are optimal policy applied to simulated patient data
to show the difference of accumulated tumor BED to
reference plan.
In this work, the 2. description of OAR BED minimi-
sation will be discussed again with the modifications
for adapting the number of fractions. For that states,
actions, state transitions and reward functions to

describe interaction with the environment are intro-
duced. Additionally, two approaches to update the
model of the environment are presented.

3.5 Arithmetical Implementation

In the paper of Pérez Haas [1] a codebase was built
to solve the optimal policy and made available to
the public. Essentially the code was built around
solving the Bellmann Equations introduced in Eq. 5
and Eq. 6. The codebase architecture design follows a
functional oriented programming design; the program
is constructed by applying and composing functions.
Helper functions sample action space, convert be-
tween BED and physical dose, fit hyperparameters
to patient data and sample probability distributions.
Basic functions define states and reward and calculate
the optimal policy with a tabular search solving the
Bellmann Equation in a backwards recursive manner;
the value function in fraction t is dependent on the
future value vt+1 marginalised over the sparing fac-
tor distribution. The basic functions calculate the
optimal policy for a single fraction and are called by
treatment functions that calculate a complete treat-
ment in retrospective. Treatment functions iterate
through basic functions and feed current states, previ-
ous sparing factors and current sparing factors to the
basic function, while keeping future sparing factors
hidden. State, actions, environment model and value
functions are described by discrete values. Thus, the
policy function is sampled discretely with parameters
defining step sizes. In the master thesis of Pérez Haas
[19] there were developed multiple basic functions that
are different types to calculate the optimal policy.

4 Adapting Number of Fractions

For favourable patient geometries Adaptive Fractiona-
tion strategy has shown to deliver small residual doses
in final or close-to-final fractions. The rationale for
reducing number of fractions in Adaptive Fractiona-
tion is to model the usage of an additional fraction
in terms of BED, such that one can minimise the
number of fractions used for a treatment. The model
aims to prevent applying a strategy, where small resid-
ual doses are delivered in the final or close-to-final
fractions for favourable patient geometries. The con-
cept introduced in this work, is to not only adapt the
dose delivered to the tumor; the number of fractions
used in the treatment is subject to adaptation as well.
The underlying model to adapt number of fractions
is based on the approach discussed in Pérez Haas et
al. [1]. Conceptually adapting number of fractions
is achieved by employing the same paradigm from
adaptive fractionation, but to further increase dose
on favourable treatment days, to possibly shorten to-
tal treatment time. That is increasing the dose on
favourable geometries, such that it might be possible
to finish the treatment in an earlier fraction than
the prescribed maximum number of fractions; and
reduce the dose for unfavourable geometries, such
that the treatment conforms to the dose modification
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presented in [1] where no fractions are omitted for
the treatment. This concept demands constiting a
model, that steers the trade-off between using fewer
number of fractions and optimising dose delivered to
OAR compared to uniform treatments.

4.1 Motivation

Prolonged total treatment time often presents a bur-
den to patient and discomfort. For patients in an
image guided radiotherapy treatment with plan adap-
tation this means lying in treatment position for more
than half an hour, with visiting time extending to
almost an hour in each fraction, when including prepa-
ration for positioning. In many cases patients undergo
additional cancer treatment modalities other than ra-
diotherapy, further weakening individuals and radio-
therapy causing even greater discomfort. If fractions
could be omitted while sustaining the same thera-
peutic ratio to uniform fractionation, treatment time
slots are freed which could be filled by other patients.
In summary shortening total treatment time could
relieve patients of discomfort caused by the treat-
ment session and free treatment allocation slots at
the accelerator providing access to the MR-Linac for
additional patients.

4.2 Methods

Extended BED Model

It is assumed that the standard BED model can be
extended to varying doses per fraction such that at
the end of the treatment the cumulative BED is given
by the sum of the BED values delivered in individual
fractions. Cumulative dose delivered in tumor is thus

BT
t =

t∑
τ=1

(dτ +
d2τ

(α/β)T
) (1)

where dτ denotes the dose delivered to the tumor and
δτ the sparing factor in fraction τ . Consequently, the
cumulative BED delivered to the OAR is

BN
t =

t∑
τ=1

(δτdτ +
δ2τd

2
τ

(α/β)N
) (2)

In this work, the α/β ratios for the OARs and the tu-
mors are the same for all patients and set to (α/β)N =
3 and (α/β)T = 10 [20]. Correspondingly, the cumu-
lative biological effective doses in the OAR and the
tumor will be denoted as BED3 or BN and BED10

BT. Note that the calculation of cumulative BED3

in Eq. (2) assumes that the same 1cc of the dose-
limiting OAR receives the highest dose, which may
not be the case in reality. In this case, Eq. (2) can be
considered a worst-case measure for OAR dose, which
overestimates the cumulative BED3 received by any
part of the OAR. However, due to the impractical-
ity of deformable dose accumulation in the abdomen,
the same approximation is done in current clinical
practice.

MDP Model

To determine the optimal doses dt, we apply the
framework of Markov decision processes (MDP) and
formulate adaptive fractionation as a stochastic opti-
mal control problem. Here, we first describe the MDP
model for a known probability distribution P (δt) and
afterwards discuss how to estimate and update P (δt).
Optimal control problems are described by states, ac-
tions, state transitions and reward functions. In this
application, these are given by:

State: In each fraction, the state of a patient’s
treatment is described by a two-dimensional vector
s = (δ,B) that specifies current sparing factor δ and
the cumulative BED B that has been delivered so far
in previous fractions. Thus, the state of a treatment
in fraction t for a patient with sparing factors {δτ}tτ=1

treated with doses {dτ}t−1
τ=1 is

st =

(
δt,

t−1∑
τ=1

(dτ +
d2τ

(α/β)T
)

)

Action and policy: The actions correspond to the
physical doses dt that are delivered to the tumor in
a fraction. Thus, a policy specifies for each fraction
t and possible state of the treatment, the dose that
should be delivered in this state. Tumor doses are
constrained by a maximum dose per fraction dmax

and a minimum dose per fraction dmin.

State transition: If, in fraction t, the treatment is
in state st = (δt, B

T
t−1) and a dose dt is delivered to

the tumor, the state transitions to

st+1 =

(
δt+1, B

T
t−1 + dt +

d2t
(α/β)T

)
in fraction t+ 1. The BED-component of the future
state is calculated by adding the tumor BED delivered
in fraction t to the previously delivered BED BT

t−1,
which is assumed deterministic (i.e. we don’t consider
uncertainty in dose delivery). The sparing factor in
fraction t+ 1 is random, making the state transition
probabilistic. The probability distribution for the
state transition is simply given by the probability
distribution over the sparing factors, P (δ).

Immediate Reward: In each fraction t, the imme-
diate reward rt is given by the BED delivered to the
OAR in that fraction

rt(d, δ, B
T) = −

(
δtd+

δ2d2

(α/β)N

)
− c(d,BT)

Where c(d,BT) is a general penalty term, which is a
function of the action and accumulated tumor BED
state, in which the future prescribed tumor dose is
not met. Constructed is a penalty with a numeric
value C

c(d,BT) =

{
C if

(
BT + d+ d2

(α/β)T

)
< BT

pres

0 else
(3)
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This reward model introduces iso-rewarding actions:
for a fixed state there exist two actions that yield
the same reward. Assuming the dose d∗ reaches the
prescription dose and yields the reward r∗. There
exists a lower dose d∗∗ with the same reward. The
dose d∗∗ acts as a threshold dose, for finishing the
treatment in the current fraction: doses equal or larger
than the threshold d∗∗ and smaller than d∗ are never
applied. The greater the parameter C the lower this
threshold dose will be to reach the fixed r∗. Parameter
C acts as an inverse scaling factor for this threshold.

C ∝
(
δ(d∗ − d∗∗) +

δ2
(
d∗2 − d∗∗2

)
(α/β)N

)

d∗∗ d∗

r∗

d

−
r(
d
)

r(d)

BED3(d)

BED3(d) + C

Figure 1: Qualitative description of reward function by com-
posing negative immediate reward from BED3 without penalty
C and BED3 with penalty term C.

A characteristic of the specified MDP model is that
the cumulative BED delivered to the OAR is not part
of the state s. It is only integrated in the reward rt as
a penalty. The reason being, that the optimal policy
does not depend on the OAR state, i.e. the optimal
dose to deliver does not depend on the previously
accumulated BED in the OAR. Intuitively it is aimed
to minimise future OAR BED, in each state and
fraction, independently of the previously accumulated
BED in the OAR. However, if the goal was to escalated
tumor dose while delivering a fixed OAR BED, the
cumulative OAR BED would be part of the state.

Environment Model: The model of the environ-
ment provides the probability of arriving in state
st+1 = (δt+1, B

T
t ) with reward rt, starting from state

st and choosing action dt. Arriving at the cumulative
tumor BED BT

t is deterministic, as it is dependent
on the previous delivered tumor BED plus action
dt. Arriving at the sparing factor δt+1 however is
a stochastic process, where δ is assumed to be nor-
mal distributed. Establishing an assumption of the
environment model, completely characterises the dy-
namics of the Markov Process.

Reward Construction

Achieved should be an adaptive fractionation model
that accurately steers the expected number of frac-
tions necessary to attain a prescription tumor BED

for a treatment. To determine the optimal parame-
ter C a discrete optimisation problem is formulated.
To that end a penalty in the form of Eq. (3) with
C = 0, prescription dose BT

pres and expected proba-
bility distribution P (δ) is set. Defining a treatment
for n number of fractions, calculating the Bellmann
Equations with these stipulations and applying the
optimal policy to a set of sparing factors {δτ}nτ=1,
yields terminal cumulative BED BN

n . Repeating this
process by sampling sets of {δτ}nτ=1 and averaging
BN

n yields an estimate of the average terminal accu-
mulated BED in the OAR written as B̄N

n . This is
interpreted as a cost function, seeked to be minimal.
In Fig. A.1 the qualitative example with terminal
cumulative BED’s BN

n can be seen.
To finishing the treatment with prescribed number
of fraction npres the reward function is constructed
with a penalty parameter. The penalty parameter
is given by C and penalises each additional fraction
that is used for the treatment. The cost can thus be
extended by linearly adding C for every fraction n to
B̄N

n which yields the total cost function

Bn = C · n+ B̄N
n

where the numeric value for C can be then evaluated
as minimising an objective function dependent on the
minimum of Bn

C = argmin
c

∣∣∣∣npres − argmin
n

[Bn]

∣∣∣∣
The penalty parameter C can be viewed as a marginal
cost with units BED per fraction. Additional fractions
are used, so long that reduction of BN is larger than C.
Finding the optimal parameter C for a fraction using
npres number of fraction following equation must be
fulfilled

B̄N
npres

− B̄N
npres+1 ≥ C

Fractionation Decision

To translate the problem into a continuous optimisa-
tion problem, the average terminal cumulative BED
B̄N

n will be modeled according to optimal fractiona-
tion decision-making. To minimise cumulative OAR
BED BN

n for a fixed fraction size dτ and constant
sparing factor with respect to the number of fractions
n

min
n

[
BN

n

]
= min

n

[
nδτdτ (1 +

δτdτ
(α/β)N

)

]
subject to tumor dose prescription

BT
n = ndτ (1 +

dτ
(α/β)T

)

yields

BN
n = δ2ndT (n)

[
1

δ
− (α/β)N

(α/β)T

]
+ δ2BT

n

(α/β)N
(α/β)T

Note that the function is continuous, and the second
term is independent on n. Omitting this term and
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switching from subscript n to a continous function,
the BED B̄N

n can be fitted to

BN(n; δ) = δ2ndT (n)

[
1

δ
− (α/β)N

(α/β)T

]
(4)

where dT is the physical dose

dT (n) =

√
n(α/β)T (n(α/β)T + 4BT

pres)− n(α/β)T

2n

Note that now there is no subscript to BN as it is
a continuous function. This allows for a continuous
objective function to be minimised for finding C. In
the continuous case after fitting BN(n; δ), C can be
determined analytically

Cnpres =
dBN(n; δ)

dn

∣∣∣∣
n=npres

In Fig. 2 for npres = 5 prescribed number of fractions
the parameter C5 = 4.36Gy was determined.

2 4 6 8 10 12

120

140

Number of Fractions n

B
N

C
os

t
[G

y] B̄N
n

BN(n, δ = µ)

BN(n, δ = 0.89)

BN(n) + C5 · n

Figure 2: Negative immediate reward or cost BN
n for a gaus-

sian sparing factor distribution µ = 0.9, σ = 0.04, BT
pres = 72.

Sampled are 1000 patients with 5 fractions each that stem from
a gaussian distribution with µ = 0.9, σ = 0.04, BT

pres = 72.
Values fitted with BN(n; δ).

Also plotted in Fig. 2 is the fitting function BN(n; δ =
µ), being the cumulative OAR BED for Uniform frac-
tionation. Cumulative BED is slightly higher com-
pared to BN(n; δ = 0.89) fitted to the Adaptive Frac-
tion results. Results stem from simulated treatments,
where cumulative BED was averaged for 1000 Pa-
tients for each n where δ is the fit parameter. The
fit parameter is lower than the distribution sparing
mean µ = 0.9.

4.3 Dynamic Programming Algorithm

A dynamic programming (DP) algorithm can be used
to compute the optimal policy with the help of a
value function [21]. The value function vt describes
how desirable it is to be in state st in fraction t
and, therefore, it contains the information whether
an action should be taken to reach that state. In this
application, the value for each state represents the
expected cumulative BED that can be delivered to
the tumor in the remaining fractions, starting from
that state and acting according to the optimal policy.
The Bellman equation relates the value function in
fraction t to the optimal policy and the value function

in the subsequent fraction, which for this application
reads

vt(δ,B
T) = max

d

[
rt(d, δ, B

T) + . . .

∑
δ′

P (δ′)vt+1

(
δ′, BT + d+

d2

(α/β)T

)] (5)

and the policy reads

πt(δ,B
T) = argmax

d

[
rt(d, δ, B

T) + . . .

∑
δ′

P (δ′)vt+1

(
δ′, BT + d+

d2

(α/β)T

)] (6)

The value function vt(δ,B
T) is the sum of the imme-

diate reward and the future expected reward, max-
imised with respect to the dose. The immediate re-
ward consists of reward from immediate OAR BED
and weighted reward from not terminating the treat-
ment in the current fraction. The future expected
reward is the future value weighted with the sparing
factor probability. Abstractly speaking, the value
function displays the best possible immediate and
future reward summed, the algorithm can secure in
each state.
In return the policy describes the optimal strategy
to maximise the value function. Value function and
optimal policy can be calculated iteratively in one
backward recursion starting from the last fraction. To
enforce the cumulative tumor BED prescription BT

pres,
a terminal reward of -∞ is assigned to all terminal
states in which the cumulative tumor BED prescrip-
tion is not met after the last fraction. To that end,
the terminal reward corresponding the value function
vF+1 at the end of the treatment after all F fractions
are delivered, is initialised to

vF+1(δF+1, B
T
F ) =

{
0 if BT

F = BT
pres

−∞ else

This initialises the value function and optimal policy
in the last fraction F . Practically speaking as a conse-
quence, optimal policy in the last fraction will simply
deliver the maximum residual tumor BED, to end
up at the prescribed cumulative tumor BED given
in BT

5 . Such a policy exploits above value function
initialisation equation. In case prescription tumor
BED cannot be achieved due to constraints in the
action, the terminal reward can be initialised to a
linear penalty function dependent on the difference
of cumulative BED to prescription

vF+1(δF+1, B
T
F ) = −s ·

∣∣BT
F −BT

pres
∣∣

Where s≫ BT
pres is an arbitrary large number. This

ensures that the policy in the last fraction is to apply
the dose that minimises the difference between cu-
mulative and prescribed BED. Policy artefacts from
not reaching exactly the prescription in the last frac-
tion due to discretisation of the actions can thus be
avoided.
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4.4 Expected Remaining Number of Frac-
tions

It is difficult to interpret the value function with
regard to the weight C, as the value function is com-
posed of OAR BED rewards and reward for termi-
nating treatment. Thus, to make the value function
more interpretable, we calculated expected remaining
number of fractions in the state space. The remaining
number of fractions display the remaining number of
fractions, that are expected in every state with. It
uses the optimal policy that is already solved and the
same assumptions about the probability distribution
from the value function. Note that the optimal policy
πt here is in units of BED.

εt(δ,B
T) = ηt(δ,B

T) + . . .

∑
δ′

P (δ′)εt+1

(
δ′, BT + BED10

[
πt(δ,B

T)
]) (7)

where η is a binary function that specifies, if under the
optimal policy in the current fraction the prescription
dose is achieved or not.

ηt(δ,B
T) =

{
0 if πt(δ,B

T) ≥ BT
pres −BT

1 else
(8)

In similar manner to the value function, the terminal
remaining number of fractions is initialised to

εF+1(δF+1, B
T
F ) = 0

as in the last fraction no additional fractions are used.

4.5 Quantification of Benefit

The treatment plans given by Adaptive Fractionation
is compared benchmarked with the following treat-
ments

1. A reference treatment in which 5× 8 Gy phys-
ical dose (14.4 Gy tumor BED, 72 Gy BT

5 ) is
prescribed to the tumor in each fraction. Hence,
the reference treatment delivers exactly 72 Gy
tumor BED. It is assumed that prescribed tu-
mor BED may be delivered to patients without
compromising OAR BED constraint in the dose-
limiting OAR.

4.6 Code Repository

The model described in this work was implemented
into the existing codebase that can be found in the
public repository [22]. Furthermore, the codebase was
rebuilt the suit a command line interface, speed up
calculation and streamline logic flow. These changes
and extensions are given by

Hardcoded Settings: Probability distribution, states
and actions are discrete. Parameters defining step
sizes, upper- and lower bounds for these variables
were previously hardcoded whereas now they can be

chosen by the user. So the resolution of the optimal
policy can be adapted to a specific problem. The user
can also quickly generate plots of optimal policy, value
function and expected remaining number of fractions.

Interpolation: It is possible that the optimal policy
for reducing number of fraction is discontinuous, as
for some states the remaining dose will be delivered.
Discretisation of the states and actions led to artefacts
(see Fig. A.4) in the discontinuous policy. The solution
was to introduce linearly sampled BED action space
and converting to physical dose. This allows to waive
the use of interpolation. This also presumes that the
stepsize for state and action have to be the same. In
case they are not the same, e.g. the user wants to save
computation time and set a state space lower than
action space, the interpolation is used automatically.

Redundancy: Multiple basic functions exist for dif-
ferent types to calculate the optimal policy. Instead
of basic functions utilising sharing same helper func-
tions and treatment functions the whole workflow was
duplicated for each type. Every type used its own set
of helper-, basic- and treatment functions which were
essentially duplicates of each other. Duplicates of
helper functions were made redundant and a package
was streamlined that shared helper functions amongst
basic functions.

Architecture: The newer streamlined package of-
fers a single treatment function that loops through
the basic functions specified by the user. The user is
presented with options for type of optimisation, type
of probability distribution updating and options for
policy calculation. All these input parameters can be
specified in a dictionary inside a python script or a
json file.

Command Line Interface: To utilise the package
in the command line, an executable is shipped that
is invoked with the parameters in the json file. The
user can specify whether to log output data during
the calculation or plot information, settings of the
action, policy etc. and keys for choosing optimisation
method, objective and constraints.

Parallelisation: Previously in parts of the basic
functions parallel computation for the value function
was introduced. However, large components were
still missing parallelisation. While streamlining the
helper and basic functions, computation of the value
function was parallelised, by introducing computation
that fully supports vectorised matrix multiplication.
Storing the future value function vt+1 within each
step of the iteration, allows to compute the current
value function in parallel over all possible states. Par-
allelisation was also introduced for sampling and the
probability distribution which before used first order
loop. The run-time of the algorithm was improved
by 8− 16 times compared to the previous approach.
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It runs in the order of 10−2 seconds (order of 100

seconds before).

4.7 Results Real Data

For demonstration purposes a sparing factor sequence
from real patients is used to apply the model. A pa-
tient who’s sparing factors are exemplary to demon-
strate the model, was chosen. The requirements are
specified as: The sparing factors are large enough
(between 0.8 to 1.0) that it represents a relevant case
in which clinicians face the risk of compromising tu-
mor BED, but sparing factors show large deviation
to lower sparing factors, such that Adpative Fraction-
ation is a promising strategy to mitigate this risk.
For Adaptive Fractionation to be an advantageous
strategy in this test setup, the sparing factors do not
necessarily need large standard deviation. It is suffi-
cient that only few sparing factors are exceptionally
low compared to the mean, for Adaptive Fractionation
to improve treatment quality. However, in clinical
practice it is not possible to estimate whether one
outling favourable sparing factor will appear through
the course of the treatment, from only knowing the
planning sparing factor. Rather one needs to estimate
the variation of the sparing factor distribution, where
outlying sparing factors are more likely for larger vari-
ation. For simplicity the treatment model assumes a
fixed variation.

Patient Model: The patient model describes the
sparing factor sequence. In this case the sparing factor
data are real from patients exported from the MR-
Linac treatment planning system. In Tab. 1 three
candidates are shown that fulfill above requirements.

Treatment Model: The treatment model is the
prescription for the patient. It is composed of a
defined total number of fractions that can be used
nmax = 5, a constant C steering the desired number
of fractions npres = 4 that should be used, tumor dose
prescription and an assumption of the sparing factor
probability distribution. The variation is chosen in
terms of standard deviation σ = 0.10 and the mean
to be the planning sparing factor µ = δ0. Planned
is a treatment with five fractions with a tumor BED
prescription of 72 Gy which corresponds to a physical
fraction dose of 8 Gy delivered in 5 fractions. For the
parameter C two values are chosen to show how the
optimal policy behaves. First C = 0 with no intention
of reducing number of fractions, and additionally the
optimal C is evaluated according to the section about
optimal reward. The evaluated C4 are 2.8, 2.0, 2.2 for
patients 3, 7, 13 and is applied.

Table 1: Patient candidates for adaptive fractionation. Given
is the sparing factor in each fraction.

Patient t = 0 1 2 3 4 5

3 0.72 0.79 0.61 0.83 0.77 0.78
7 0.64 0.66 0.69 0.86 0.66 0.57
13 0.84 0.86 0.95 0.88 0.92 0.84
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Figure 3: Adaptive fractionated therapy for a 5 fraction
treatment applied to patient 3. Normal distribution is estimated
from planning sparing factor µ = δ0 = 0.72 and fixed σ = 0.1.
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Figure 4: Adaptive fractionated therapy for a 5 fraction
treatment applied to patient 7. Normal distribution is estimated
from the planning sparing factor µ = δ0 = 0.64, σ = 0.1.
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Figure 5: Adaptive fractionated therapy for a 5 fraction treat-
ment applied to patient 13. Normal distribution is estimated
from the planning sparing factor µ = δ0 = 0.84, σ = 0.1.

Patient 3: Applying the treatment model to the real
sparing factor data of patient 3, the cumulative BED
BN

5 for C = 0 results in 75.1 Gy. Comparing this to
Uniform Fractionation, delivering 8 Gy physical dose
to the tumor in each fraction yields 91.8 Gy cumula-
tive BED BN

5 . Thus, Adaptive Fractionation for this
specific patient and treatment model surpasses OAR
sparing by delivering 16.7 Gy less cumulative BED
BN

5 compared to Uniform Fractionation. Applying
Adaptive Fractionation with the optimal parameter
C4 = 2.8 results in the treatment terminating with 2
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Table 2: Comparison of accumulated OAR BED BN
5 for

Uniform Fractionation (UF) and Adaptive Fractionation (AF).
The number of fraction used to complete the tumor prescription
dose of 72 Gy is given by nfrac.

Patient Fractionation BN
5 [Gy] nfrac

3 UF 91.8 5
AF C = 0 75.1 5
AF C = 2.8 75.6 2

7 UF 79.0 5
AF C = 0 76.2 5
AF C = 2.0 79.5 4

13 UF 120.3 5
AF C = 0 123.1 5
AF C = 2.2 123.1 5

fractions, while delivering less cumulative BED BN
5

than Uniform Fractionation and reaching prescribed
tumor dose of 72 Gy. On average, it is expected that
the treatment is finished in 4 fractions, but for patient
3 the treatment is terminated after two fractions while
accumulating 0.5 BED more compared to Adpative
Fractionation C = 0. In Tab. 2 the comparison is
summarised.

Patient 7: Applying the treatment model to the
real sparing factor data of patient 7, the cumulative
BED BN

5 for C = 0 results in 76.2 Gy. Comparing
this to Uniform Fractionation, delivering 8 Gy phys-
ical dose to the tumor in each fraction yields 79.0
Gy cumulative BED BN

5 . Thus, Adaptive Fraction-
ation for this specific patient and treatment model
surpasses OAR sparing by delivering 2.8 Gy less cumu-
lative BED BN

5 compared to Uniform Fractionation.
Applying Adaptive Fractionation with the optimal
parameter C4 = 2.0 results in the treatment termi-
nating with 4 fractions, while delivering 0.5 Gy more
cumulative BED BN

5 than Uniform Fractionation and
reaching prescribed tumor dose of 72 Gy. For patient
after 4 fractions the treatment is terminated while ac-
cumulating 3.3 Gy more BED compared to Adpative
Fractionation C = 0.

Patient 13: For patient 13 the cumulative BED BN
5

for Adaptive Fractionation C = 0 results in 120.3 Gy.
Comparing this to Uniform Fractionation, delivering
8 Gy physical dose to the tumor in each fraction
yields 123.1 Gy cumulative BED BN

5 . Thus, Adaptive
Fractionation delivers 2.8 Gy more cumulative BED
BN

5 compared to Uniform Fractionation. Applying
Adaptive Fractionation with the optimal parameter
C4 = 2.0 gives the same results, while using all 5
fractions.

4.8 Results Synthetic Data

We introduce a synthetic patient is introduced to fur-
ther demonstrate the model on a sequence of sparing
factors. The synthetic patient is a patient not based
on real data, but manually specified data. The sparing
factors of the synthetic patient are chosen such, that

the patient represents a relevant case in which the
prescribed tumor BED may be compromised. In this
section we will look at the accumulated BED results,
when applying the strategies of adaptive fractionation
to the synthetic patient. Hence, an according treat-
ment model is composed, that defines prescription to
the patient. Demonstrations based on the synthetic
patient and treatment model include: calculation of
the optimal policy and retrospective application of
this policy to the synthetic patient.

Patient Model: In this case the patient model de-
scribes a manually chosen sequence of sparing factors
for the synthetic patient. Through the retrospective
treatment observed sparing factors of this synthetic
patient are {δτ}t=5

τ=1 = {µ, µ± σ, µ, µ, µ}. In the sec-
ond fraction a deviation from the mean sparing factor
will appear to demonstrate the applied policy. Note
the first sparing factor in fraction τ = 0 is the plan-
ning sparing factor and not sampled here, as it is
not used. This, the constructed synthetic patient has
sparing factor sequence of 0.75 for all fractions except
in the second fraction δ2 = 0.65.

Treatment Model: The treatment model is planned
with nmax = 5 and 4 desired number of fractions
npres = 4. Planned is the same treatment as with the
real patient data, with a tumor BED prescription of
72 Gy which corresponds to a physical fraction dose
of 8 Gy delivered in 5 fractions. For the parameter
C two values (0, 1.2) are used to demonstrate opti-
mal policy. In addition, the optimal C is evaluated
according to the section about optimal reward. The
evaluated C4 to utilise on average 4 fraction is 3.0.
The sparing factor probability distribution is assumed
to be normal distributed with mean µ = 0.75 and
standard deviation σ = 0.10. A sequence of sparing
factors close to 0.75 in every fraction, corresponds
to the clinical case, where the tumor dose may be
compromised due to the risk of violating OAR dose
constraint.
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Figure 6: Adaptive fractionated therapy for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.1.
Synthetic patient has a sparing factor in the second fraction,
which is a standard deviation lower than the mean.

Applying the treatment model to the synthetic patient,
the cumulative BED BN

5 for C = 0 results in 80.8 Gy.
Comparing this to uniform fractionation (delivering 8
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Gy physical dose to the tumor in each fraction) yields
an immediate OAR BED of 18 Gy for each fraction
with δ = 0.75 and an immediate OAR BED of 14.21
Gy for δ2 = 0.65, resulting in 86.2 Gy (rounded) cu-
mulative BED BN

5 . Thus, Adaptive Fractionation for
this specific patient and treatment model surpasses
OAR sparing by delivering 5.4 Gy less cumulative
BED BN

5 compared to uniform fractionation. Apply-
ing Adaptive Fractionation with C = 1.2 and C = 3.0
results in the treatment terminating with 4 respec-
tively 2 fractions (see Fig. 6) while still delivering less
cumulative BED BN

5 than uniform fractionation and
reaching prescribed tumor dose of 72 Gy. In Tab. 3
the comparison is summarised.

Table 3: Comparison of accumulated OAR BED BN
5 for

Uniform Fractionation (UF) and Adaptive Fractionation (AF).
The number of fraction used to complete the tumor prescription
dose of 72 Gy is given by nfrac. Sparing factors are δt = 0.75
except for δ2 = 0.65

Patient Fractionation BN
5 [Gy] nfrac

Synthetic UF 86.2 5
AF C = 0 80.8 5
AF C = 1.2 82.0 4
AF C = 3.0 83.9 2

Value Function

Presented are the corresponding value functions in
Fig. 7, 8, 9 and 10. To interpret the results of the
value function, the policy and the expected remain-
ing number of fractions for the treatment model are
shown.
Optimal policy for the treatment model with σ = 0.1
and C = 0 applied for the synthetic patient can be
seen in Fig. 11 and Fig. A.3.
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Figure 7: Value function for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.1 and C = 0.

For parameter C = 3.0 the optimal policy is displayed
in Fig. 12 and Fig. A.3. In each fraction there is a
single plateau visible in the policy function. These
plateaux are an area in the state space, that deliver
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Figure 8: Value function in the last fraction for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.1
and arbitrary C = 0.
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Figure 9: Value function for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.1 and C = 3.0.
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Figure 10: Value function in the last fraction for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.1
and arbitrary C = 0 or C = 3.0.

exactly the remaining dose. Landing on such a plateau
in the state space, means the optimal policy is to
deliver the remaining dose to finish the treatment in
the current fraction.
For the case C = 0 and σ = 0.1 in the expected
remaining number of fractions Fig. 14 appears one
very narrow plateau on the bottom, for states close to
the prescribed tumor dose. The plateau is not visible
in the policy. This plateau corresponds to the states
where the optimal policy will finish the treatment in
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Figure 11: Optimal policy for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.1 and C =
0. Policy of the last fraction is not shown as it applies the
remaining dose regardless of the sparing factor.
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Figure 12: Optimal policy for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.1 and C =
3.0. Policy of the last fraction is not shown as it applies the
remaining dose regardless of the sparing factor.

the current fraction. Realistically this plateau will
not be reached if the optimal dose in the previous
fraction is delivered.
In Fig. 14 the case C = 3.0, σ = 0.1 is displayed.
Compared to Fig. 13 the plateau in each fraction spans
through nearly all the accumulated dose states BT.
Comparing the plateaux of the expected remaining
number of fractions to the policy they cover the same
space. In fraction t = 4 the expected remaining
number is binary, as the treatment either finishes in
the current fraction t = 4 or one additional fraction
will be used, such that the treatment is finished in
fraction t = 5. Moving one fraction back to t = 3 a
plateau is visible again. Between the plateau ε = 0
and ε = 2 there is a gradient where ε takes values
between 0, 1. Such a gradient is mor pronounced in
for fraction t = 1 and t = 2.
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Figure 13: Expected remaining number of fractions for a 5
fraction treatment with assumed normal distribution µ = 0.75,
σ = 0.1 and C = 0. Last fraction is not shown as it is zero for
every state.
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Figure 14: Expected remaining number of fractions for a 5
fraction treatment with assumed normal distribution µ = 0.75,
σ = 0.1 and C = 3.0. Last fraction is not shown as it is zero
for every state.

5 Patient Data and Treatment Plans

In the results section, real patient data was used to
evaluate the model. We looked for patients that are
relevant in clinical practice e.g. patients with high
sparing factors where the risk of compromising tumor
dose is high. And additionally, where sparing factor
varies greatly, such that applying Adaptive Fractiona-
tion is beneficial for the patient. The show that there
exist a benefit for the patient in terms of reducing
OAR BED we collected data from patients from three
target sites, to look for prospective candidates evaluat-
ing the model and discuss if either target sites provide
patients where Adaptive Fractionation is beneficial.
Considered are patients with abdominal tumors in
proximity to either bowel, stomach or duodenum
and prostate cancer in proximity to the rectum. For
prostate cases urethra and bladder are ignored. These
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patients received 5-fraction SBRT treatments at the
MR-Linac system (MRIdian, Viewray). All patients
were planned and treated according to institutional
practice. In addition to the simulation MR and CT
scans, daily MR scans were performed for on-line
adaptive radiotherapy. Tumors and OARs in a 2cm
ring around the tumor were recontoured according to
institutional guidelines and daily adaptive treatment
plans were created. In each fraction the dose distri-
butions were reoptimised, to adapt to inter-fractional
changes, without altering the prescription dose.

5.1 Methods

Patient data was collected manually from the treat-
ment planning system to get an overview of the dis-
tance between OAR and tumor volumes in relation
to sparing factor. In total 30 patients were extracted
from the treatment planning system, 10 for each tar-
get. In case of the prostate target 5 patients with CTV
as volume of interest and 5 patients with boost target
volume as volume of interest were collected. Boost
target volumes were collected for patients treated
with simultaneous integrated boost strategy [23] [24].
For each patient also extracted were the following
variables:

Target: 10 patients were extracted for each tumor
that was either pancreas, adrenal glands or prostate
cancer. Depending on the predictor the volume for
the target was defined for either GTV, PTV, CTV or
DIL the volume for prostate boost volume.

OAR: For each patient at least one of the OAR
in proximity was extracted. There were two criteria
which qualified an OAR to be registered. The first
was if the OAR was dose-limiting and the second if the
OAR was in close vicinity: Every OAR in one patient
that was as close to the tumor as the dose-limiting
OAR in at least one fraction, was tracked as well.
Only patients were collected, where the dose-limiting
OAR did not change during the treatment.

Distance: Distance between target and OAR was
the shortest measured distance in all the sagittal,
transversal or coronal plane. In principle no overlap
was allowed between GTV and OAR. However, if
there was an overlap the furthest radial distance of
the overlap was measured.

OAR/Target Dose: For pancreas and adrenal glands
dose to OAR dN and dose to target d were measured
according to the definition in Sec. 3.2. For prostate
the parameter definition was different and can be
found in Tab. 4 alongside pancreas and adrenal glands
parameter definition. The predictors were directly
extracted from the DVH in physical dose calculated
in the treatment planning system.
A table with which operational quantities for each
target were chosen as predictors can be seen in Tab. 4.
The predictors were extracted for each tumor-OAR

pair for 6 treatment plans in each patient, correspond-
ing to the 5 delivered plans and the initial plan based
on the planning MR.

Table 4: Operational quantities collected at the MR-Linac.
Explained are target dose definition and volume. Targets are
PAN (pancreas), ADN (adrenal glands), prostate (PRO) and
BST (prostate boost volume)

Target w dN [Gy] d [Gy]

PAN GTV D1cc D95 PTV
ADN GTV D1cc D95 PTV
PRO CTV D1cc D95 PTV
BST DIL D0.1cc D95 DIL

5.2 Patient Data

Pancreas Patients

Sparing factors dependent on spatial distance between
target-OAR pair are shown in Fig. 15 for pancreas pa-
tients. Sparing factors that were near 1.1 also showed
overlap in GTV and OAR. An example of such over-
lap would be patient 1 for whom sparing factors both
with duodenum and stomach are distributed around
1.0 and distance between 0.0 to −0.3 cm. Note that
for patient 1 the stomach was the dose-limiting OAR.
Information of sparing factors grouped by patients
are shown in Fig. 16. Other notable cases are patient
6 and 8 which show only dose-limiting OAR with al-
most no variation in distance. Patient sparing factors
are always closely clustered together. This close clus-
tering for each patient is also visible in Fig. 17, where
sparing factors are grouped only by patients with-
out spatial distance. Sparing factors in dose-limiting
OAR range from 0.56 to 1.1. Displayed in Fig. 18, is
the temporal course of the sparing factors and spatial
distances. Tendency is that sparing factor is lower if
distance is larger, however not always the case. When
looking at patients 6 and 8 where distances are similar,
the sparing factor ranges from 1.0 to 1.1 for patient 6
and 0.85 to 1.0 for patient 8.
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Figure 15: 10 pancreas patients treated at the MR-Linac.
Sparing factors δ dependent on distance w grouped by OAR.
Multiple OAR were collected per patient and not only the
dose-limiting OAR.
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Figure 16: 10 pancreas patients treated at the MR-Linac.
Sparing factors δ dependent on distance w grouped by patient.
Row shows all collected OAR per patient.
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Figure 17: 10 pancreas patients treated at the MR-Linac.
Sparing factors δ for each patient grouped by dose-limiting
OAR.

Adrenal Glands Patients

Sparing factors dependent on spatial distance between
target-OAR pair are shown in Fig. 19 for adrenal
glands patients. There are no sparing factors that
are larger than 1 and also no overlaps registered in
GTV and OAR. Fig. 20 displays the same picture as
Fig. 16 but this time additionally grouped by patients.
Important to note is that sparing factors range from
0.2 to 1.0 in stomach and 0.05 to 1.0 in bowel. Sparing
factors per patient are closely clustered together but
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Figure 18: 10 pancreas patients treated at the MR-Linac.
Sparing factors δ (shown as triangles) and distance w (shown
as lines) displayed for each fraction grouped by patient. Row
shows dose-limiting OAR.

across the cohort shows a much wider spread of the
variation in sparing factors. Looking at the sparing
factors for each patient and only dose-limiting OAR in
Fig. 21, it is also visible that they are closer clustered
together for each patient compared to Fig. 17. Sparing
factors in dose-limiting OAR range from 0.2 to 1.0.
Displayed in Fig. 18, is the temporal course of the
sparing factors and spatial distances. Tendency is that
sparing factor is lower if distance is larger, however
not always the case. When looking at patients 6 and 8
where distances are similar, the sparing factor ranges
from 1.0 to 1.1 respectively 0.85 to 1.0.

Prostate Patients

Prostate cases are not grouped by OAR but rather by
target volume. Only rectum was registered as OAR.
There is no variation in spatial distance when looking
at prostate CTV in Fig. 23. The volumes always
touched but did not overlap in any fraction. Fig. 24
and Fig. 25 shows sparing factors ranging between
0.97 to 1.06 for prostate CTV and 0.89 to 0.97 for
boost volume which is lower. Sparing factors between
the two target volumes are overall similar in variation,
however Fig. 24 displays larger variation in spatial
distance in boost volume compared to prostate CTV.
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Figure 19: 10 adrenal gland patients treated at the MR-Linac.
Sparing factors δ dependent on distance w grouped by OAR.
Multiple OAR were collected per patient and not only the
dose-limiting OAR.
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Figure 20: 10 adrenal gland patients treated at the MR-Linac.
Sparing factors δ dependent on distance w grouped by patient.
Row shows all collected OAR per patient.

In Fig. 26 it is visible, that there is no variation in
spatial distance for prostate.
The sparing factors of the integrated boost volume
are misleading. Dose to the tumor for large distances
between rectum and boost volume, was not escalated.
Instead, clinicians prescribed and delivered a D95 of
40 Gy physical dose in every fraction. For patients 27
and 28 the distance is very large with distance around
1 respectively 1.5cm. In regard to the sparing factor
the dose could theoretically have been escalated even
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Figure 21: 10 adrenal gland patients treated at the MR-Linac.
Sparing factors δ for each patient grouped by dose-limiting
OAR.
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Figure 22: 10 adrenal gland patients treated at the MR-Linac.
Sparing factors δ (shown as triangles) and distance w shown
(as lines) displayed for each fraction grouped by patient. Row
shows dose-limiting OAR.

further than prescribed D95 of 40 Gy physical dose.

6 Discussion

We investigated whether Adaptive Fractionation may
improve OAR sparing and reduce number of fractions.
Studied were patient cases at risk of compromising
tumor dose prescription, due to high sparing factors.
If Adaptive Fractionation provided a benefit was mea-
sured whether cumulative OAR dose was smaller com-
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Figure 23: 10 prostate patients treated at the MR-Linac.
Sparing factors δ dependent on distance w grouped by target
volume BST (prostate boost volume) and PRO (prostate CTV).
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Figure 24: 10 prostate patients treated at the MR-Linac.
Sparing factors δ dependent on distance w grouped by target
volume BST (prostate boost volume) and PRO (prostate CTV).
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Figure 25: 10 prostate patients treated at the MR-Linac.
Sparing factors for each patient grouped by target volume BST
(prostate boost volume) and PRO (prostate CTV).

pared to Uniform Fractionation and the treatment
used less number of fractions. Two of the three pa-
tients showed a benefit in terms of OAR sparing and
reducing number of fractions. For patient 13 the OAR
BED was higher compared to Uniform Fractionation
while also using 5 number of fractions. This can be
explained with a planning sparing factor of 0.84 that
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Figure 26: 10 prostate patients treated at the MR-Linac.
Sparing factors δ (shown as triangles) and distance w (shown
as lines) displayed for each fraction grouped by target volume
BST (prostate boost volume) and PRO (prostate CTV)

is not representative of the sparing factor distribution.
All sparing factors that appear from fraction 1 to 4
are larger than the expected mean of µ, such that the
algorithm hesitates applying large fraction sizes until
the last fraction. In the last fraction a sparing factor
appears that is marginally smaller than the expected
mean.
Prostate patient’s sparing factors are not suitable for
Adaptive Fractionation, as there is little variation
in the sparing factors. Sparing factors from boost
volume are not misleading, as clinicians delivered a
fixed prescribed dose of D90 of 40 Gy regardless of
distance to rectum.

7 Conclusion

The Adaptive Fractionation paradigm exploiting day-
to-day variations in the distance of the tumor from
the dose-limiting OAR was successfully extended to
reducing number of fractions. Based on this study
considering 5-fraction SBRT treatments of two pan-
creas tumor patients in proximity to bowel and one
adrenal glands tumor in proximity to stomach, it is
concluded that the extension brings a benefit to the
pancreas patients in terms of OAR dose sparing and
reducing number of fractions. However, no other pa-
tients show a similar amount of interfraction motion
and OAR-to-tumor proximity to substantially bene-
fit from Adaptive Fraction with reduced number of
fractions. For the adrenal glands patient Adaptive
Fractionation for reducing number of fractions did
not bring a benefit to the patient. There is very
small amount of inter-fractional motion for prostate
patients in proximity to rectum for either CTV or
integrated boost volume for Adaptive Fractionation
to be beneficial.
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Appendix

A Other Notable Results

Described and illustrated are the other treatment
model regarding policy, value function and expected
remaining number of fractions.

Treatment Model

For the parameter C multiple values are chosen to
show how the optimal policy behaves. The sparing
factor probability distribution is assumed to be nor-
mal distributed with mean µ = 0.75 and standard
deviation σ = {0.001, 0.05, 0.10, 0.15}. A sequence of
sparing factors close to 0.75 in every fraction, corre-
sponds to the clinically interesting case, where the
tumor dose may be compromised due to the risk of
violating OAR dose constraint. Provided enough vari-
ation in such a case Adaptive Fractionation could
bring a benefit to patients, by reducing cumulative
dose to OAR.

Policy

The optimal policy πt(δ,B
T) for a 5 fraction treat-

ment with normal distribution µ = 0.75 and very low
standard variation of σ = 0.001 is given in Fig. A.1
and Fig. A.3. The probability distribution P (δ) is
fixed: i.e. the optimal policy for the entire treatment
is solved without updating the probability distribution
with progressing treatment.
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Figure A.1: Optimal policy for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.001 and C =
0. Policy of the last fraction is not shown as it applies the
remaining dose regardless of the sparing factor.

For the same expected probability distribution but
increasing C gives the policy seen in Fig. A.2 and A.3.
A feature of this policy is the appearance of plateaux
and thus a discontinuous policy function.

Expected Remaining Number of Fractions

Since the policy is known for every state the expected
remaining number of fractions can be calculated for
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Figure A.2: Optimal policy for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.001 and C =
1.9. Policy of the last fraction is not shown as it applies the
remaining dose regardless of the sparing factor.
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Figure A.3: Optimal policy in the last fraction for an arbitrary
5 fraction treatment. Policy in the last fraction applies the
remaining dose regardless of the sparing factor.
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Figure A.4: Optimal policy for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.1 and C = 1.2,
polluted with artefacts due to interpolation.

every fraction. In Fig. A.7 the remaining number of
fractions are shown to the policy in Fig. A.2 shown
before. The bottom plateau in the policy correspond
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Figure A.5: Value function for a 5 fraction treatment with
assumed normal distribution µ = 0.75, σ = 0.001 and C = 1.9.
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Figure A.6: Value function in the last fraction for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ =
0.001 and arbitrary C.

to the states where the treatment is will be finished in
the current fraction. One plateau above correspond
to all states where it is expected to finish treatment
the next fraction. The further along in the treatment,
the fewer fractions are remaining and thus plateaux
disappear. The number of plateaux in a fraction is
equal to the number of fractions remaining including
the current fraction.
Described and illustrated are the treatment models
applied to a synthetic patient with varying observed
sparing factors chosen for demonstration.

Constant Sparing Factor

If a synthetic patient shows no deviation at all with
sparing factors appearing at µ = 0.75. A uniformly
fractionated treatment plan yields the limiting 90 Gy
cumulative OAR BED BN

5 for a tumor prescription
dose of 72 Gy. Assuming an Adaptive Fractiona-
tion treatment model with a low variation in sparing
factors, such that practically there is no variation
expected at all and a constant C = 0 (see Fig. A.8),
the policy conforms to uniform fractionation. Increas-
ing C yields uniform fractionation policy using fewer
fractions and resulting in higher BN

5 .
Increasing the expected variation in sparing factors
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Figure A.7: Expected remaining number of fractions for a 5
fraction treatment with assumed normal distribution µ = 0.75,
σ = 0.001 and C = 1.9. Last fraction is not shown as it is zero
for every state.
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Figure A.8: Adaptive fractionated therapy for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ =
0.001. Sparing factor is the same for every fraction including
planning.

to a standard deviation of σ = 0.05 seen in Fig. A.9
for otherwise equal treatment model, yields higher
cumulative BED BN

5 compared to a σ = 0.001. For
C = 0 less dose is applied in the first three fractions
compared to the treatment model with σ = 0.001,
as a variation in favour of lower sparing factors is
expected. As no lower sparing factors appear the
dose is steadily increased. Looking at the treatment
model with C = 4.4 the treatment is finished after 4
fractions with a cumulative BED BN

5 3.5 Gy higher
compared to uniform fractionation.
Increasing the expected variation in sparing factors
even further to a standard deviation of σ = 0.1 and
σ = 0.15 seen in Fig. A.10 and Fig. A.11 for otherwise
equal treatment model for C = 4.4 and C = 5.0
parameters only one fraction is omitted.
For a patient model with zero variation in sparing fac-
tor and treatment model with large expected variation
the optimal policy yields a suboptimal dose delivery
reflected by the higher cumulative BED BN

5 compared
to a treatment model that assumes low variation.
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Figure A.9: Adaptive fractionated therapy for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.05.
Sparing factor is the same for every fraction including planning.
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Figure A.10: Adaptive fractionated therapy for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.1.
Sparing factor is the same for every fraction including planning.
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Figure A.11: Adaptive fractionated therapy for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.15.
Sparing factor is the same for every fraction including planning.

Deviation from the Sparing Factor

Applying a treatment model with an expected stan-
dard deviation σ = 0.1 to a patient model with a
sparing factor sequence of 0.75 for all fractions ex-
cept in the second fraction δ2 = 0.85, the cumulative
BED BN

5 compared to a patient model with no varia-
tion is lower. The uniform fractionation (delivering
8 Gy physical dose to the tumor in each fraction)
yields an immediate OAR BED of 18 Gy for each frac-
tion with sparing factor 0.75 and an immediate OAR
BED of 22.21 Gy for δ2 = 0.85, resulting in 94.21
Gy. Adaptive Fractionation for 5 fraction treatment

(C = 0) surpasses OAR sparing by delivering 1.81
Gy less cumulative BED BN

5 compared to uniform
fractionation.
Adaptive Fractionation with a treatment model of
C = 1.2 and C = 3 do not finish the treatment earlier
than 5 fractions (see Fig. A.12) and deliver the same
cumulative BED BN

5 as the treatment model with
C = 0. Nevertheless, the cumulative BED BN

5 is
still lower than uniform fractionation while reaching
prescribed tumor dose of 72 Gy. The optimal policy
does not allow increasing dose to omit fractions, due
to the exceptional high sparing factor of 0.85. In
Tab. 5 the comparison is summarised.
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Figure A.12: Adaptive fractionated therapy for a 5 fraction
treatment with assumed normal distribution µ = 0.75, σ = 0.1.
Sparing factor in the second fraction is a standard deviation
higher from the mean.

Table 5: Comparison of accumulated OAR BED BN
5 for

Uniform Fractionation (UF) and Adaptive Fractionation (AF).
The number of fraction used to complete the tumor prescription
dose of 72 Gy is given by nfrac. Sparing factors are δt = 0.75
except for δ2 = 0.85

Fractionation BN
5 [Gy] nfrac

UF 94.2 5
AF C = 0 92.4 5
AF C = 1.2 92.3 5
AF C = 1.3 92.3 5

B Probability Updating

The DP algorithm relies on a description of the envi-
ronment to compute an optimal policy, in this case
the probability distribution of the sparing factor P (δ),
which we assume to be a Gaussian distribution trun-
cated at 0, with patient-specific parameters for mean
and standard deviation. At the start of a treatment,
only two sparing factors are available for that patient,
from the planning scan and the first fraction. In each
fraction, an additional sparing factor is measured,
which can be used to calculate updated estimates µt

and σt for mean and standard deviation, respectively.
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Maximum a Posteriori Estimation

In each fraction t, the maximum likelihood estimator
of the mean of the sparing factor distribution is

µt =
1

t+ 1

t∑
τ=0

δτ (9)

where δ0 denotes the sparing factor from the planning
MR. The estimator for the standard deviation, given
the patient-specific sparing factors up to fraction t,
follows a chi-squared distribution, and the maximum
likelihood estimator is

σpat
t =

√√√√ 1

t+ 1

t∑
τ=0

(δτ − µt)
2 (10)

However, the standard deviation may be severely
under- or overestimated if calculated from only two
samples at the very beginning of the treatment. There-
fore, we assume a population based prior for the stan-
dard deviation and compute the maximum a posterior
estimator of σt via Bayesian inference. As the sparing
factors are assumed to follow a normal distribution
with unknown variance, a gamma distribution is cho-
sen as prior to estimate the standard deviation σ,

f(σ; k, θ) =
1

Γ(k)θk
σk−1 exp

(−σ
θ

)
(11)

with shape k and scale θ the hyperparameters. The
maximum a posterior estimator for the standard de-
viation in fraction t is then

σt = argmax
σ

[
σk−1

σt−1 exp
(−σ

θ

)
exp

(
−(σpat

t )
2

2σ2

t

)]
(12)

Using Eq. (9) and Eq. (12), the probability distribu-
tion P (δ;µt, σt) is updated with every newly acquired
sparing factor and used in the Bellman Eq. (5) and
Eq. (6) to recompute the optimal policy before each
fraction.

Posterior Predictive Distribution

To predict the distribution of an unobserved sparing
factor, a full Bayesian approach is employed. The
approach estimates a posterior predictive distribu-
tion by marginalising the posterior over the standard
deviation.

P (δ; δ̃) =

∫
p(δ;µ, σ)f(σ; δ̃)dσ

The likelihood is defined as

p (δ;µ, σ) =
(
2πσ2

)−t/2
exp

{
− 1

2σ2

t∑
τ=1

(δτ − µ)
2

}

and the constructed conjugate prior is an inverse-
gamma distribution:

f(σ2; k, θ) =
θk

Γ(k)
(1/σ2)k+1 exp

(−θ
σ2

)
(13)

It should be noted that shape k and scale θ too are
hyperparameters, as the underlying model parameter
is σ. Updating the posterior hyperparameters kt and
θt in fraction t with the given sparing factors (includ-
ing the sparing factor from the planning treatment
plan) δ̃ = {δτ}tτ=0 yields

kt = k +
t

2
(14)

θt = θ +
1

2

t∑
τ=0

(δτ − µ)2 (15)

Resulting as the posterior predictive distribution will
be a student t-distribution

tν(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

) (1 + x2

ν

)−(ν+1)/2

where the subscript ν refers to the degrees of freedom.
The above probability density function is in the stan-
dardised form. With parameters µ and σ it can be
shifted and scaled. Specifically

tν(y;µ, σ) =
tν
(
x = y−µ

σ

)
σ

Applied to the posterior predictive distribution yields

P (δ; δ̃) = t2kt
(δ;µ = µt, σ =

√
θt/kt) (16)

Using Eq. (13), (14) and (15), the probability distribu-
tion in Eq. (16) is updated with every newly acquired
sparing factor and used in the Bellman Eq. (5) and (6)
to recompute the optimal policy before each fraction.
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C Pseudocode

Algorithm 1 Number of fraction minimisation
Ensure: T ≤ t ≤ F ▷ T is the fraction for which optimal policy shall be found

for t = F to T do ▷ starting from the last loop through fractions
if BT

t ≥ BT
pres then

break
else if t = F then

Bres ← BT
pres −BT ▷ residual BED to reach prescription dose

dres ← d | BED10(d) = Bres ▷ respective physical dose to residual BED
vt
(
δ,BT

)
← −BED3 (dres , δ) ▷ penalty from corresponding OAR dose

πt

(
δ,BT

)
← dres ▷ optimal policy is residual dose

else
Vt+1

(
d,BT

)
=
∑

δ′ P (δ′) · vt+1

(
δ′, BT +BED10(d)

)
▷ marginalised future value function

rt
(
d,BT

)
= −BED3(d, δ)− c(d,BT) ▷ c is penalty for not reaching prescription

vt
(
δ,BT

)
← maxd

[
rt(d,B

T) + Vt+1(d,B
T)
]

▷ Bellmann equation
πt

(
δ,BT

)
← argmaxd

[
rt(d,B

T) + Vt+1(d,B
T)
]

D Patient Data
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