

Dark matter searches with dual-phase xenon TPCs

Chiara Capelli (Universität Zürich)

Technische Universität Dresden November 28th 2024

Universität Zürich^{UZH}

Cosmological observations

- 1933 F. Zwicky: observation of the velocity dispersion of galaxies in the Coma cluster
 - Mass 400 larger than expected from the visible mass \bullet
 - Define the "Dunkel Materie" \bullet
- center \rightarrow Later confirmed by gravitational lensing and X-rays spectroscopy

Chiara Capelli

• 1978 V. Rubin et al.: dependency of the rotation curves of stars on the distance form the galactic

Cosmological observations

- Colliding galaxy clusters:
 - Hot gas and baryonic matter in X-rays
 - Where most of the mass is concentrated, \bullet from gravitational lensing

Chiara Capelli

Dresden - November 28th, 2024

- Anisotropies in the cosmic microwave background (CMB):
 - Density distribution during recombination time* \bullet
 - Fluctuation order 10⁻⁵ matches with presence of DM \bullet
 - DM density x5 higher than baryonic matter \bullet

*charged electrons and nuclei became bound, ~370'000 yr after Big Bang

Dark matter

- DM constitute ~84% of the matter in the Universe
- Non baryonic
- Electrically neutral
- Neither absorbing nor emitting light
- Interact gravitationally
- Can DM interact through weak force?

Dresden - November 28th, 2024

Concrete

Chiara Capelli

Dark matter models

- Halo model: isothermal sphere at the center of the galaxy with density $\rho(r) \propto r^{-2}$
- Sun moving around the Galactic center and Earth moving around the Sun → Expected annual modulation of DM

Chiara Capelli

Freeze-out and WIMP miracle

Chiara Capelli

Relativistic particles in thermal equilibrium

Cooling down some particles become nonrelativistic and their number density reduces

• Time evolution to reach equilibrium:

- Annihilation cross section and particle flux \bullet
- Universe expansion \bullet

When universe expansion is dominant annihilation stops \rightarrow freeze-out

Considering the annihilation cross section of the weak interaction, the relic density is $\Omega = 0.3$

Observed value for DM is $\Omega_{DM} = 0.26$

Detection techniques

Observation of annihilation products

Chiara Capelli

Production at colliders

Detection by scattering of WIMP off target nucleus \rightarrow nuclear recoil signature

Astrophysical inputs:

- Local DM density near the Sun: $\rho_0 \simeq 0.3$ GeV cm⁻³
- WIMP velocity distribution f(v) assumed to follow Maxwell-Boltzman distribution \rightarrow depends on the circular velocity around the galactic center: $v(r_{sun}) \simeq 220$ km/s
- Escape velocity: $v_{esc} \simeq 544$ km/s

Detector physics:

- Target material: atomic mass m_N and total mass M_T
- Energy threshold v_{min} and detection efficiency $\epsilon(E_{nr})$

Chiara Capelli

Dresden - November 28th, 2024

$$v \bullet f\left(\overrightarrow{v}\right) \frac{d\sigma_{\chi,N}}{dE_{nr}} dv$$

Particle physics: DM-nucleon scattering cross section $\sigma_{\chi,N}$ Assumed low momentum transfer $\frac{d\sigma_{\chi,N}}{dE_{nr}} = \frac{m_N}{2v^2\mu^2} \left[\sigma_0^{SI} F_{SI}^2(E_{nr}) + \sigma_0^{SD} F_{SD}^2(E_{nr}) \right]$ Spin-independent scattering usually assumed: $\sigma_0^{SI} \propto A^2$ \bullet

CRYOGENIC BOLOMETERS WITH CHARGE READOUT

SuperCDMS **EDELWEISS**

GERMANIUM DETECTORS

CDEX CoGeNT

SENSEI

Current scenario

Chiara Capelli

The first line of background mitigation

- cosmic rays
- Selection of ultra pure materials
- Material cleaning and handling in controlled environment (cleanroom)
- Material radioessay for contaminant tracing
- Active vetoes

Chiara Capelli

Several underground laboratories around the world - sometimes in mines \rightarrow rock to shield from

Dresden - November 28th, 2024

11

Dual-phase xenon TPC

Chiara Capelli

- Measure scintillation light (S1) and ionisation signal (S2)
- 3D position reconstruction:
 - *x-y* from photosensor arrays
 - *z* from delay time between S1 and S2
- Electronic and nuclear recoil discrimination from S1/S2 ratio

Dual-phase xenon TPC

Chiara Capelli

- Measure scintillation light (S1) and ionisation signal (S2)
- 3D position reconstruction:
 - *x-y* from photosensor arrays
 - *z* from delay time between S1 and S2
- Electronic and nuclear recoil discrimination from S1/S2 ratio

The XENON collaboration

XENON10 XENON100 XENON1T 160 kg LXe 3200 kg LXe 25 kg LXe 0.2 [t d keV]⁻¹ 600 [t d keV]⁻¹ 5.3 [t d keV]⁻¹

Chiara Capelli

Dresden - November 28th, 2024

XENONnT 8500 kg LXe 0.04 [t d keV]⁻¹

13

2020

LZ and PandaX-4T

- LZ (LUX-ZEPPELIN):
 - US-UK lead, located at SURF
 - ~10 tonnes of LXe, ~7 tonnes active
 - Part of the XLZD collaboration

Chiara Capelli

- PandaX-4T:
 - China lead, located at CJPL
 - ~6 tonnes of LXe, ~4 tonnes active
 - Upgrade to PandaX-XT

Analysis in a nutshell

- Processing pipeline for peak and event reconstruction and classification \rightarrow Each event is an interaction in the active volume of the TPC with one main S1 and S2
- Signals position reconstruction corrected for field distortions
- S1 corrected for light collection efficiency
- S2 corrected for electron mean free path + electron extraction efficiency + amplification gain
- Data quality and selections: veto tagging, fiducialization, single scatter, PMTs pattern,....
- Detector response modelling
- Background modelling
- Inference

Dresden - November 28th, 2024

Background contributions

- ER Background
 - Dominated by radon background
 - Sub-dominant ⁸⁵Kr background \bullet
- Surface Background
 - ²¹⁰Pb plate-out at the PTFE walls leading to ²¹⁰Po α-decays with electron loss
 - Suppressed by fiducial volume cut \bullet
- Accidental Coincidences
 - Random pairing of isolated S1 and S2 signals lacksquare
 - Suppression using a gradient BDT cut based on S2 shape, R ulletand Z information
- NR Background
 - Radiogenic neutron rate constrained by NV tagging lacksquare
 - CEvNS constrained from solar ⁸B neutrino flux

WIMP spectrum derived by folding the theoretical rate with the NR response model

WIMP latest results

- LZ latest data-release set most stringent limit on SI-WIMP cross section
- XENONnT latest releases in 2023 new results coming soon!
 - Lowest ER background rate measured in DM detector: (15.8±1.3) events/(t yr keV) \bullet
- Several DM channels on both NR and ER channels: SD-WIMP, axions, ALPs, bosons dark matter, ...

Chiara Capelli

CEvNS: coherent elastic neutrino nucleus scattering

- and PandaX-4T at 2.64σ
- First $CE_{\nu}NS$ measurement with Xe
- Low energy deposit: >90% recoils below 2.1 keV \rightarrow Lowering PMT source in XENONnT
- Analysis with S2-only signals in PandaX-4T
- neutrino fog

Chiara Capelli

Double weak decays in xenon

- Since XENON1T work on extending energy reconstruction to the MeV region (from keV region of WIMP search)
- 2ν ECEC of ¹²⁴Xe measured directly for the first time in XENON1T

 $T_{1/2} = (1.1 \pm 0.2_{\text{stat}} \pm 0.1_{\text{sys}}) \times 10^{22} \text{ yr}$

- Several other double weak decays under study:
 - 0ν ECEC, $2\nu/0\nu$ EC β +, $2\nu/0\nu\beta$ + β + of 124 Xe lacksquare
 - $2\nu/0\nu\beta\beta$ of ¹³⁶Xe lacksquare
- $0\nu\beta\beta$ sensitivity not yet competitive with dedicated experiments but will be in next-generation experiment (XLZD)

Nature 568 (2019) 7753, 532-535 Eur.Phys.J.C 80 (2020) 8, 785 Phys.Rev.C 106 (2022) 2, 024328

Chiara Capelli

DARWIN and XLZD

- DARWIN collaboration:
 - R&D on next generation dual-phase TPC
 - ~200 members from 35 institutions around the World
- XLZD: XENON-LZ-DARWIN
 - WIMP search down to the neutrino fog
 - Merging the collaborations to strengthen knowledge and resources

Chiara Capelli

Science channels

Dark Matter

WIMPs Sub-GeV Inelastic Axion-like particles Planck mass Dark photons

<u>Supernovae</u>

Early alert Supernova neutrinos Multi-messenger astrophysics

Chiara Capelli

1111111111111111

Neutrino nature Neutrinoless double beta decay Neutrino magnetic moment Double electron capture

<u>Sun</u>

pp neutrinos Solar metallicity ⁷Be, ⁸B, hep

Science channels

Dark Matter

WIMPs Sub-GeV Inelastic Axion-like particles Planck mass Dark photons

<u>Supernovae</u>

Early alert Supernova neutrinos Multi-messenger astrophysics

Chiara Capelli

- Search for medium to high WIMP masses
- Conservative scenario for ~200 tonnes X year exposure:
 - 90% exclusion sensitivity for SI cross section dow to 2×10^{-49} cm² at 40 GeV mass
 - 3σ discovery at SI cross section 7×10⁻⁴⁹ cm² at 40 GeV mass
- Reach the limit of the neutrino fog with ~1000 tonnes X year exposure
 - 3σ discovery at SI cross section 3×10^{-49} cm² at 40 GeV mass

- Search for medium to high WIMP masses
- Conservative scenario for ~200 tonnes X year exposure:
 - 90% exclusion sensitivity for SI cross section dow to 2×10^{-49} cm² at 40 GeV mass
 - 3σ discovery at SI cross section 7×10^{-49} cm² ulletat 40 GeV mass
- Reach the limit of the neutrino fog with ~1000 tonnes X year exposure
 - 3σ discovery at SI cross section 3×10^{-49} cm² at 40 GeV mass

XLZD detector baseline

- ~3 m diameter x ~3 m height
- 78 t/60 t LXe mass/active target \rightarrow could be increased to 80 t active mass
- Two arrays of photosensors \rightarrow baseline design with ~2400 3" PMTs
- Double-walled low-background Ti cryostat + LXe "skin" around the TPC
- Drift field of 240-290 V/cm and extraction field of 6-8 kV/cm for optimal discrimination between ER and NR
- Passive and active muon and neutron shielding with gadolinium to enhance neutron capture cross-section
- Possible locations: LNGS, Boulby, SURF

Challenges

- High-voltage delivery:
 - Currently drift of ~23 V/cm in XENONnT \bullet and ~193 V/cm in LZ
 - Electrodes design and construction ${\color{black}\bullet}$
 - Electric field homogeneity \bullet
- Liquid xenon purity
- **Background mitigation**
- Light collection efficiency
- Photosensors performance

Pancake at Uni Freiburg

- Testing of grids:
 - Wire sagging ullet
 - Hotspots / electron emission lacksquare
 - Large scale cooling lacksquare
- 5t stainless steel cryostat with 380 kg of xenon
- Flat floor design and possibility of using open top vessel
- Successful 3 months commissioning
- Next step: instrumentation with photosensors, test of electrodes and HV

Chiara Capelli

Xenoscope at UZH

- Vertical demonstrator with goals:
 - Electron drift over 2.6 m \bullet
 - Electron cloud diffusion
 - Custom HV lacksquare
 - Xenon optical properties •
- ~400 kg of xenon mass
- Phase 1: purity monitor \rightarrow completed
- Phase 2: modular TPC \rightarrow just commissioned

JINST 16, P08052 (2021) Eur. Phys. J. C 83, 717 (2023) arXiv: 2411.08022

Xenoscope at UZH

- Vertical demonstrator with goals:
 - Electron drift over 2.6 m
 - Electron cloud diffusion
 - Custom HV •
 - Xenon optical properties
- ~400 kg of xenon mass
- Phase 1: purity monitor \rightarrow completed
- Phase 2: modular TPC \rightarrow just commissioned

JINST 16, P08052 (2021) Eur. Phys. J. C 83, 717 (2023) arXiv: 2411.08022

Chiara Capelli

Xenoscope at UZH

Chiara Capelli

JINST 16, P08052 (2021) Eur. Phys. J. C 83, 717 (2023) arXiv: 2411.08022

- Dual-phase TPC: \bullet
 - 173 shaping rings 16 cm diameter
 - Top SiPM array lacksquare
 - HV up to 50 kV
 - Levelling system with levelmeters and weir

Xenoscope at UZH

Chiara Capelli

JINST 16, P08052 (2021) Eur. Phys. J. C 83, 717 (2023) arXiv: 2411.08022

- Dual-phase TPC: \bullet
 - 173 shaping rings 16 cm diameter
 - Top SiPM array lacksquare
 - HV up to 50 kV
 - Levelling system with levelmeters and weir

S1-S2 signals in dual-phase TPC mode! Amplitude [PE/ns] — Sum waveform 🔀 Rec. pos. TPC edge 60 Muon coin trigger 100 40 104 75 20 50 25 y [mm] 0 В 10³ С -25 D -50 Tile G -75 10² -100-50 50 100 -1000 x [mm] 1.0 2.0 3.0 4.0 5.0 Time [µs]

Background mitigation

- ⁸⁵Kr distillation \rightarrow goal of 0.1 ppt ^{nat}Kr already achieved < 0.026 ppt
- ²²²Rn distillation column \rightarrow goal of 0.1 μ Bq/ kg (achieved 0.8 µBq/kg) below ER from solar pp neutrinos
- Coating techniques against radon emanation (electrochemical deposition of Cu)
- Fast recirculation in liquid to reduce impurities, with radon-free filters and pumps
- Radio-pure materials with low Rn-emanation
- Software radon-background reduction techniques

Eur. Phys. J. C (2017) 77:275

Eur. Phys. J. C (2022) 82:1104 3.8 m

- Photosensors:
 - Radiopurity improvement on 3" PMTs (used in XENONnT/LZ) \bullet
 - Testing of Square 2" PMTs \rightarrow lower buoyancy and sub-ns rise time
 - Testing of 12x12 mm² MPPC of VUV4 SiPMs \rightarrow low-radioactivity, lacksquarecheap but higher dark count rate
 - Other photosensors under study (digital SiPM, hybrid sensors,...)
- HV and grids design, production, quality testing and repair of electrodes:
 - Stretching, sagging and flatness of meshes
 - Diagnostic of defects and reparation with laser welding
 - Electrode surface treatment and coating
 - Study electron and photon emission

Conclusions

- Dual-phase xenon TPCs set most stringent constraints on WIMP dark matter searches
- Next generation detector will reach the neutrino fog - directionality needed afterwards
- Active community working on R&Ds to develop the required technology
- Very low background and large mass allow to investigate many other physics channels

Thank you for your attention

Chiara Capelli

