PHYSIK-INSTITUT DER UNIVERSITAT ZURICH
IN CONJUNCTION WITH ETH ZURICH

General Relativity

AUTUMN SEMESTER 2019

Prof. Philippe Jetzer

Original version by Arnaud Borde

Revision: Antoine Klein, Raymond Angélil, Cédric Huwyler, Simone Balmelli, Yannick Boetzel, Michael Ebersold

Last revision of this version: December 19, 2019






Sources of inspiration for this course include

S. Carroll, Spacetime and Geometry, Pearson, 2003

S. Weinberg, Gravitation and Cosmology, Wiley, 1972

N. Straumann, General Relativity with applications to Astrophysics, Springer Verlag, 2004
C. Misner, K. Thorne and J. Wheeler, Gravitation, Freeman, 1973

R. Wald, General Relativity, Chicago University Press, 1984

T. Fliessbach, Allgemeine Relativititstheorie, Spektrum Verlag, 1995

B. Schutz, A first course in General Relativity, Cambridge, 1985

R. Sachs and H. Wu, General Relativity for mathematicians, Springer Verlag, 1977

J. Hartle, Gravity, An introduction to Einstein’s General Relativity, Addison Wesley, 2002
H. Stephani, General Relativity, Cambridge University Press, 1990

M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments, Oxford University
Press, 2007

A. Zee, Einstein Gravity in a Nutshell, Princeton University Press, 2013

M. Guidry, Modern General Relativity, Cambridge University Press, 2019

As well as the lecture notes of

Sean Carroll (http://arxiv.org/abs/gr-qc/9712019)
Matthias Blau (http://www.blau.itp.unibe.ch/Lecturenotes.html)

Gian Michele Graf


http://arxiv.org/abs/gr-qc/9712019
http://www.blau.itp.unibe.ch/Lecturenotes.html

CONTENTS

Contents
l_Introduction| 6
n Newton’s theory of gravitation| 6
12 Goals of general relativity| 7
(I Special Relativity| 9
3 Lorentz transformations| 9
8.1 Galilean invariancel . . . . . . . . L e e 9
8.2  Lorentz transformationsl . . . . . . . . . .. 10
13-3 Proper time| . . . . . ..o 12
A Reolativish hanics 13
4.1 Equations of motion|. . . . . . .. .. L Lo L 13
4.2 Energy and momentum| . . . . . . ... 13
4.3 Equivalence between mass and energy|. . . . . . ... ... 14
[5 Tensors in Minkowski space| 14
|6 Electrodynamics| 17
i Accelerated reference systems in special relativity| 18
(I Towards General Relativity| 20
18 The equivalence principle| 20
BI — About themasses . . . . . . . . . . e 20
8.2  About the forcesl. . . . . . . . . 20
18.3 Riemann space|. . . . . . ... Lo 22
19 Physics in a gravitational field| 25
9.1 Equations of motion|. . . . . . .. ... Lo L 25
19.2 Christoftel symbols| . . . . . .. ... 26
03 Newtonian imitl . . . . . . . . . . . o 27
0T Tilation 28
[10.1  Proper time] . . . . . . . . e e 28
02 Redshifl . . . . o v o o e e e e 28
110.3  Photon in a gravitational field| . . . . . .. ... ... ... .. 00 0. 29




CONTENTS

G rcal d ons

I11.1  Curvature of space| . . . . . . . . .. ...

(IV " Differential Geometry|

12 Diff bl Tolds

112.1  Tangent vectors and tangent spaces| . . . . . . . ... ... ... ...

112.2  The tangent map| . . . . . . . . . . .. ...

13 Vector and tensor fields|

I13.1  Flows and generating vector fields| . . . . . .. ... .. ... .. ...

(4 Tic derivativd

5 Diff Al T |

5.2 Stokes theoreml . . . . . . . . . . . ...
115.3  The inner product of a p-form| . . . . . . .. ... .. oL

16 A ons. C : orivats F ficld

116.1  Parallel transport along a curve| . . . . . .. .. ... Lo

116.2  Round trips by parallel transport| . . . . ... ... ... ... ....

116.4  Local coordinate expressions for covariant derivativel. . . . . . . . ..

117  Curvature and torsion of an affine connection, Bianchi identities|

|17.1  Bianchi identities for the special case of zero torsion|. . . . . . . . ..

T & : ons

[V General Relativity|

119 Physical laws with gravitation|

119.2  Electrodynamics| . . . . . . . ... Lo

119.3  Energy-momentum tensor| . . . . . ... ... ... ...

120 Einstein’s field equations|

120.1  The cosmological constant| . . . . . .. ... ... ... ... .....

Bl The Ei T e ol

30

........ 30

32

32

........ 33
........ 36

37

........ 38

40

42

........ 43
........ 46
........ 46

48

........ 50
........ 52
........ 54
........ 95

57

........ 99

60

64

64

........ 64
........ 64
........ 65

66

........ 68

68



CONTENTS

122 Static isotropic metric| 71
22.1  Form of the metricl . . . . . . . . . . L 71
22.2 Robertson expansion| . . . . . . .. L oL L 71
122.3  Christoftel symbols and Ricci tensor for the standard form| . . . . . .. ... .. .. 72
224 Schwarzschild metrid . . . . . . . . ... L 73
123 General equations of motion| 74
23.1  Trajectory| . . . . . . o e e 76
|[V1 Applications of General Relativity| 80
124 Light deflection| 80
125 Perihelion precession| 83
25.1  Quadrupole moment of the Sun| . . . . .. ... ... o oo 86
126 Lie derivative of the metric and Killing vectors| 87
127  Maximally symmetric spaces| 88
128 Friedmann equations| 91
Cravitat I | 95
29.1  Linearized Field Equations| . . . . . . . .. .. ... ... ... L. 96
29.2  Electromagnetic Waves| . . . . . . . . . . e 99
29.3  The Case of Gravity|. . . . . . . . . o . . o o 99
29.4  Quadrupole Radiation| . . . . . .. .. .. .. L 102




1 NEWTON’S THEORY OF GRAVITATION

Part 1

Introduction

1 Newton’s theory of gravitation

In his book Principia in 1687, Isaac Newton laid the foundations of classical mechanics and made a

first step in unifying the laws of physics.

The trajectories of N point masses, attracted to each other via gravity, are the solutions to the equation

of motion
427, N memy (7 — 7))
— = -G L A i=1...N 1.1
mi Z 7 i : (1.1)
Jj=1
i

with 7;(¢) being the position of point mass m; at time ¢. Newton’s constant of gravitation is determined

experimentally to be
G = 6.6743 £0.0007 x 107 m® kg ' 572 (1.2)

The scalar gravitational potential ¢(7) is given by

=/

N T

3,./
Z G 1.
= F /d |r—F (1.3)

where it has been assumed that the mass is smeared out in a small volume d3r. The mass is given by

dm = p(7")d3r, p(¥’) being the mass density. For point-like particles we have p(7’) ~ m ;0@ (7' — 7).

The gradient of the gravitational potential can then be used to produce the equation of motion:

mg = —mV (7). (1.4)

According to (1.3), the field ¢(7) is determined through the mass of the other particles. The corre-
sponding field equation derived from (1.3) is given byE|

AG(F) = 47Gp(F) (1.5)

The so called Poisson equation (1.5) is a linear partial differential equation of 2" order. The source of
the field is the mass density. Equations (1.4 and (1.5)) show the same structure as the field equation

of electrostatics:

Age () = —4mpe(7), (1.6)
and the non-relativistic equation of motion for charged particles
d27 .
m@ = —qV(be(T). (17)

Here, p. is the charge density, ¢. is the electrostatic potential and ¢ represents the charge which acts

as coupling constant in (1.7). m and ¢ are independent characteristics of the considered body. In

AL = —4ns®) (7 — )

|77



2 GOALS OF GENERAL RELATIVITY

analogy one could consider the “gravitational mass” (right side) as a charge, not to be confused with
the “inertial mass” (left side). Experimentally, one finds to very high accuracy (~ 10713) that they
are the same. As a consequence, all bodies fall at a rate independent of their mass (Galileo Galilei).
This appears to be just a chance in Newton’s theory, whereas in GR it will be an important starting
point.

For many applications, and are good enough. It must however be clear that these
equations cannot be always valid. In particular implies an instantaneous action at a distance,
what is in contradiction with the predictions of special relativity. We therefore have to suspect that

Newton’s theory of gravitation is only a special case of a more general theory.

2 Goals of general relativity

In order to get rid of instantaneous interactions, we can try to perform a relativistic generalization of
Newton’s theory (eqs. (1.4) and (1.5)), similar to the transition from electrostatics (egs. (1.6) and

(1.7)) to electrodynamics.

The Laplace operator A is completed such as to get the D’Alembert operator (wave equation)

1 02
c2 Ot2

Changes in p, travel with the speed of light to another point in space. If we consider inertial coordinate

A=0= (2.1)

frames in relative motion to each other it is clear that the charge density has to be related to a
current density. In other words, charge density and current density transform into each other. In

electrodynamics we use the current density j* (o =0,1,2,3):

Pe - (p€c7 Pe'Ui) = jaa (22)

where the v' are the cartesian components of the velocity ¥ (i = 1,2,3). An analogous generalization
can be performed for the potential:

b — (pe, AY) = A°. (2.3)
The relativistic field equation is then

A¢p. = —4mp, — OAY = 4%]’“. (2.4)
In the static case, the 0-component reduces to the equation on the left.

Equation is equivalent to Maxwell’s equations (in addition one has to choose a suitable gauge
condition). Since electrostatics and Newton’s theory have the same mathematical structure, one may
want to generalize it the same way. So in one could introduce the change A — O. Similarly one
generalizes the mass density. But there are differences with electrodynamics. The first difference is

that the charge ¢ of a particle is independent on how the particle moves; this is not the case for the

mo

_.
Vi-3

As an examplce, consider a hydrogen atom with a proton (rest mass m,,, charge +e) and an electron

mass: m —

(rest mass m., charge —e). Both have a finite velocity within the atom. The total charge of the atom



2 GOALS OF GENERAL RELATIVITY

is ¢ = ¢ + g, = 0, but for the total mass we get my # m, + m. (binding energy). Formally this
means that charge is a Lorentz scalar (does not depend on the frame in which the measurement is
performed). Therefore we can assign a charge to an elementary particle, and not only a “charge at
rest”, whereas for the mass we must specify the rest mass.

Since charge is a Lorentz scalar, the charge density (p. = g—g) transforms like the 0-component
of a Lorentz vector (% gets a factor v = \/ﬁ due to length contraction). The mass density

(p = %’}) transforms instead like the 00-component of a Lorentz tensor, which we denote as the

energy-momentum tensor T,5. This follows from the fact that the energy (mass is energy E = mc?)

is the 0-component of a 4-vector (energy-momentum vector p®) and transforms as such. Thus, instead

of (2.2), we shall have

2 i

& cv

p= (70 PV Y ~es =123 (2.5)
pcvt  pv'v?

This implies that we have to generalize the gravitational potential ¢ to a quantity depending on 2

indices which we shall call the metric tensor ¢®?. Hence we get
A¢ = 4nGp = Og™P ~ GTP. (2.6)

In GR one finds for a weak gravitational field (linearized case), e.g. used for the description of
gravitational waves.

Due to the equivalence between mass and energy, the energy carried by the gravitational field is
also mass and thus also a source of the gravitational field itself. This leads to non-linearities. One can
note that photons do not have a charge and thus Maxwell’s equations can be linear.

To summarize:

1. GR is the relativistic generalization of Newton’s theory. Several similarities between GR and

electrodynamics exist.
2. GR requires tensorial equations (rather than vectorial as in electrodynamics).

3. There are non-linearities which will lead to non-linear field equations.



3 LORENTZ TRANSFORMATIONS

Part 11

Special Relativity

3 Lorentz transformations

A reference system with a well defined choice of coordinates is called a coordinate system. Inertial
reference systems (IS) are (from a “practical” point of view) systems which move with constant speed
with respect to distant (thus fixed) stars in the sky. Newton’s equations of motion are valid in IS. Non-
IS are reference systems which are accelerated with respect to an IS. In this chapter we will establish

how to transform coordinates between different inertial systems.

3.1 Galilean invariance

Galilei stated that “all IS are equivalent”, i.e. all physical laws are valid in any IS: the physical laws
are covariant under transformations from an IS to another IS’ Covariant means here form invariant.
The equations should have the same form in all IS.

With the coordinates z° (i = 1,2,3) and t, an event in an IS can be defined. In another IS’, the
same event has different coordinates z/* and ¢/. A general Galilean transformation can then be written

as:

2" = o't 4 't + d, (3.1)
t'=t+r, (3.2)
where
o % v and a' are cartesian components of vectors

e U = v'€; where €; is a unit vector

we use the summation rule over repeated indices: a’zz* = Y a’pa®
k

latin indices run on 1,2,3

greek indices run on 0,1,2,3

U is the relative velocity between IS and IS’
e @ is a constant vector (translation)

o'}, is the relative rotation of coordinates systems, o = (a'}) is defined by

aip(@n =6 or adl =1 ie. at=al (3.3)
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The condition aa® = I ensures that the line element
ds? = da? 4 dy? 4 dz? (3.4)

remains invariant. « can be defined by giving 3 Euler angles. Egs. (3.1) and (3.2)) define a 10

(a=3,v=3,7=1and o = 3) parametric group of transformations, the so-called Galilean

group.

The laws of mechanics are left invariant under transformations and . But Maxwell’s equations
are not invariant under Galilean transformations, since they contain the speed of light ¢. This led
Einstein to formulate a new relativity principle (special relativity, SR): All physical laws, including
Mazwell’s equations, are valid in any inertial system. This leads us to Lorentz transformations (instead

of Galilean), thus the law of mechanics have to be modified.

3.2 Lorentz transformations

We start by introducing 4-dimensional vectors, glueing time and space together to a spacetime. The

Minkowski coordinates are defined by
DL =ct, at=zx =y =2 (3.5)

x® is a vector in a 4-dimension space (or 4-vector). An event is given by 2 in an IS and by 2/ in an

IS’. Homogeneity of space and time imply that the transformation from z® to z'® has to be linear:
x’a = Aaﬁlﬁ + ao‘, (36)

where a® is a space and time translation. The relative rotations and boosts are described by the 4 x 4
matrix A. Linear means in this context that the coefficients A%g and a® do not depend on z®. In
order to preserve the speed of light appearing in Maxwell’s equations as a constant, the AF have to be

such that the square of the line element
ds? = napdz®da? = 2dt* — di® (3.7)

remains unchanged, with the Minkowski metric

1 0 0 0

s = |0 000 (3.8)
00 -1 0
00 0 -1

Because of ds? = ds’? < c2dr? = ¢2d7'?, the proper time is an invariant under Lorentz transformations.
2 2 2 4.2 -

Indeed for light dr? = dt? — W = 0. Thus, ¢ = |4|” and ¢ = ‘i—f . Applying a Lorentz

((iif/l ‘ This has the important consequence that the speed of light ¢ is

the same in all coordinate systems (what we intended by the definition of (3.7)).

transformation results in ¢ = ‘

10



3 LORENTZ TRANSFORMATIONS

A 4-dimensionial space together with this metric is called a Minkowski space. Inserting (3.6 into the

invariant condition ds? = ds’? gives

ds"? = napda’™ dz'8

= 170(5A‘X7dgc"’A'35dx‘S
= n,5de7dz’ = ds?. (3.9)
Then we get
A AP snas =105 or ATnA =1 (3.10)
Rotations are special subcases incorporated in A: z'® = A%gxf with A% = o', and A% = 1,

Aty = AY%; = 0. The entire group of Lorentz transformations (LT) is the so called Poincaré group (and
has 10 parameters). The case a® # 0 corresponds to the Poincaré group or inhomogeneous Lorentz
group, while the subcase a® = 0 can be described by the homogeneous Lorentz group. Translations and
rotations are subgroups of Galilean and Lorentz groups.

Consider now a Lorentz ’boost’ in the direction of the z-axis: /2 = 22, 2’3 = 23. v denotes the

relative velocity difference between IS and the boosted IS’ Then

A% A% 0 O
Atg Ay 0 O
A = 3.11
1o 0o 10 (3.11)
0 0 01
Evaluating eq. (3.10):

(7,8) = (0,0) (A%)? — (Alg)? =1 (3.12a)
=(1,1) (A%)% = (A'y)? = —1 (3.12b)
= (0,1) or (1,0) A%A% —ATgAY =0 (3.12¢)

The solution to this system is
A% AY% _ cosh¥ —sinh ¥ . (3.13)
Ay A4 —sinh ¥ cosh &
For the origin of IS’ we have 2/ = 0 = Algcet + Aljvt. This way we find
A10 v
tanh¥V = ——— = — 14
anh ¥ = — 15 =2, (3.14)
and as a function of velocity:
1
Ay=AY=y= —, (3.15a)
2
1=
A0y = ALy = —=YLC (3.15b)
1— 22

11



3 LORENTZ TRANSFORMATIONS

A Lorentz transformation (called a boost) along the z-axis can then be written explicitly as

xr — vt

o= 2% (3.16a)
1— 22
02

Y =y, (3.16b)

Z =z, (3.16¢)
t _ v

o = 2 Te (3.16d)
1)2
-z

which is valid only for |v| < ¢. For |v| < ¢, (3.16)) recovers the special (no rotation) Galilean transfor-

mation ¥’ =z —vt, ¥y =y, 2/ = z and t’ = t. The parameter
v
¥ = arctanh — (3.17)
c
is called the rapidity. From this we find for the addition of parallel velocities:

U =0+ 7T,

. V1 + Vg
Sl

2

(3.18)

3.3 Proper time

The time coordinate t in IS is the time shown by clocks at rest in IS. We next determine the proper
time 7 shown by a clock which moves with velocity (¢). Consider a given moment to an IS’, which
moves with respect to IS with a constant velocity ¥p(¢p). During an infinitesimal time interval d¢’ the

clock can be considered at rest in IS’, thus:

dT:dt':\/p”jdt (3.19)
3 dt. .

Indeed (3.16) with x = vot gives ¢’ = % =ty/1— Z—§ and thus (3.19).

v
1— 9
2

At the next time t + dt, we consider an IS” with velocity ¢y = ¥(typ + dt) and so on. Summing up

all infinitesimal proper times dr gives the proper time interval:

By o

This is the time interval measured by an observer moving at a speed v (t) between ¢; and t2 (as given

by a clock at rest in IS). This effect is called time dilation.

12



4 RELATIVISTIC MECHANICS

4 Relativistic mechanics

Let us now perform the relativistic generalization of Newton’s equation of motion for a point particle.

4.1 Equations of motion

The velocity ¥ can be generalized to a 4-velocity vector u®:

. dat dx®
b= Y= — 4.1
YT Y T (1)
Since dr = %, dr is invariant. With dz’® = Agdxﬂ it follows that u® transforms like dz®:
o A% B
u'* = A%gu (4.2)

All quantities which transforms this way are Lorentz vectors or form-vectors. The generalized equation

of motion is then d
UOC
— = fo 4.3
mS = (4.3)

Both % and f< are Lorentz vectors, therefore, (4.3]) is a Lorentz vector equation: if we perform a

£ . . .
Lorentz transformation, we get md(‘l‘T = f'* Eq. (4.3) is covariant under Lorentz transformations

and for v < ¢ it reduces to Newton’s equations. (left hand side becomes m (O7 ‘é—f ) and the right hand

side ( 1o, f_> = (O,I? )) The Minkowski force f'® is determined in any IS through a corresponding

—1/2
LT: f'® = A“sfP. For example ¥ = —vé&; with vy = (1 - %) , leads to [0 = Lfl, 't =~K*t,

C

f? = K? and f"® = K3. For a general direction of velocity (—%) we get:

7K Lo LT
f/O:'Y c f/:K+(7_1)U 02

.Nl

(4.4)

4.2 Energy and momentum

The 4-momentum p* = mu® = m‘i(f—: is a Lorentz vector. With (3.19) we get

(e%

b= \/T_c\/ini :<f’ﬁ>' (45)

c2 c?

This yields the relativistic

energy : E=—=vymc (4.6a)
122
(&
momentum : p= L2 = ym¥ 255 5= md. (4.6b)
122

With (4.4)), the 0-component of (4.3)) becomes (in the case v < ¢)

dE .
[ U -
dt ~~—
power given
to the particle

13



5 TENSORS IN MINKOWSKI SPACE

This justifies to call the quantity E = ymc? an energy. From ds? = ¢2dr? = nagdmadxﬁ it follows
nagpo‘pﬁ = m2c? and thus
E? = m?c* + 2p?, (4.8)

the relativistic energy-momentum relation. The limit cases are

2
mc2—|—2p—m v < corp <K me?

E=+vm?2ct+c?p? =~ (4.9)
cp vwcorp>>m02
with p = |p]. For particles with no rest mass (photons): F = ¢p (exact relation).
4.3 Equivalence between mass and energy
One can divide the energy into the rest energy
FEy = mc? (4.10)

and the kinetic energy Ej;, = E — Eg = E — mc?. The quantities defined in (4.6)) are conserved when
more particles are involved. Due to the equivalence between energy and mass, the mass or the mass

density becomes a source of the gravitational field.

5 Tensors in Minkowski space

Let us discuss the transformation properties of physical quantities under a Lorentz transformation.

We have already seen how a 4-vector is transformed:
Ve o V' = A VE. (5.1)

This is a so-called contravariant 4-vector (indices are up). The coordinate system transforms according
to X — X' = A% XP. A covariant 4-vector is defined through

Vo = naﬂvﬁ- (52)

Let us now define the matrix n®? as the inverse matrix to Nas:

115, = 05, (5.3)
In our case
1 0 0 0
0 -1 0
B — s = 5.4
e e (5-4)
0o 0 0 -1
With (5.3]) we can express (5.2) equally as
Ve =n*Pyg. (5.5)

14



5 TENSORS IN MINKOWSKI SPACE

The transformation of a covariant vector is then given by
Voc = naﬁvlﬁ = nuﬂAﬁ'yV’y = naﬁAﬁ'yn’ﬂ;Vé = ]\604‘/67 (56)
with
A = nashPn? (5.7)

(one can use Ao’ instead of AP but one should be very careful in writings since Ao’ # AP,). Thanks

to (3.10]), we find
AV A% = 0o N A5 = 17 Nep = 67 (5.8)

And similarly, we get A? (XJ_XO‘7 = 6‘37. In matrix notation, we have AA = AA =T and thus A = A~1.

To summarize the transformations of 4-vectors:
e A contravariant vector transforms with A
e A covariant vector transforms with A=! = A
The scalar product of two vectors V® and U? is defined by
VU, = VoU® = 0*PV,Us = 0osVoU” (5.9)

and is invariant under Lorentz transformations: V/*U! = A®3A°  VPU; = VAUj.

65
B
. . B . B -
The operator 3% transforms like a covariant vector: 83% = g;,a %. Since ggf/a = Aﬁa = ML,Q =
ABO@%. We will now use the notations 9, = % (covariant vector) and 9% = ag (contravariant
. 2 .
vector). The D’Alembert operator can be written as 0 = 90%9, = n*P0,05 = L0 _ Aandis a
B c? Ot

Lorentz scalar.

A quantity is a rank r contravariant tensor if its components transform like the coordinates x®:
Tl = N g N g TP (5.10)
Tensors of rank 0 are scalars, tensors of rank 1 are vectors. For “mixed” tensors we have for example:
o A€ Ap
Ty = A% A g A" T,

The following operations can be used to form new tensors:

1. Linear combinations of tensors with the same upper and lower indices: T%g = aR%g 4+ bS“g

2. Direct products of tensors: TV (works with mixed indices)

3. Contractions of tensors: T3 or T*?Vj (lowers a tensor by 2 in rank)

4. Differentiation of a tensor field: 8,77 (the derivative 0, of any tensor is a tensor with one
additional lower index a: 9,T%" = R,” ")

5. Going from a covariant to a contravariant component of a tensor is defined like in (5.2)) and (5.5)

(lowering and raising indices with 7Y%, 1,4).

15



5 TENSORS IN MINKOWSKI SPACE

One must be aware that
e the order of the upper and lower indices is important,
e A%g is not a tensor.

n can be considered as a tensor: 7 = n®# = Nag is the Minkowski tensor.

Ty RS Ty xS
n;ﬁ:A‘yaA sThs = A’YoeA BA#’YAV(SUIW = Nap

7 appears in the line element (ds? = nagdxo‘dxﬂ ) and is thus the metric tensor in Minkowski space.

We also have n®z = n*7n,5 = 6% = 13, and thus the Kronecker symbol is also a tensor.

We define the totally antisymmetric tensor or (Levi-Civita tensor) as

+1 (o, B,7,0) is an even permutation of (0,1,2,3)
P = (ar, B,7,9) is an odd permutation of (0,1,2,3) (5.11)
0 otherwise
Without proof we have: (det (A) = 1)
elaﬁ'y& — 604,375’
€apys = Uaa'7765’77*/7/7755/60/5/7,5/ = —e2P9,

The functions S(z), V(z), T*...with x = (2°, 2!, 22, 2?) are a scalar field, a vector field, or a tensor

field ... respectively if:

Also the argument has to be transformed, thus z’ has to be understood as z'® = A® /31’5.

16



6 ELECTRODYNAMICS

6 Electrodynamics

Maxwell’s equations relate the fields E(7,t), B(7,t), the charge density p.(7,t) and the current density
J )

divE = 4dmp, divB =0
inhomogeneous . homogeneous ~ (6.1)
¢ B 4 Ly 10FE ¢ 10B
rot B=—7+ -—— rot B = ———
I T a c Ot
The continuity equation
div i+ pe =0 — 9aj® =0 (6.2)
with 7% = (cpe,]) follows from the conservation of charge, which for an isolated system implies

Oy /jo d3r = 0. 0,5 is a Lorentz scalar. We can define the field strength tensor which is given

by the antisymmetric matrix

0O -E, —E, —E.
E, 0 -B. B,

Fob = (6.3)
E, B, 0 -B,;
E., -B, B, 0
Using this tensor we can rewrite the inhomogeneous Maxwell equations
4

0 F°F =2 8 (6.4)

~—— C ~~

4—vector 4—vector

and also the homogeneous ones:

PP F.5 = 0. (6.5)

Both equations are covariant under a Lorentz transformation. Eq. (6.5) allows to represent F'*? as a

“curl” of a 4-vector A%:
FoP = 9 AP — 98 A2, (6.6)

We can then reformulate Maxwell’s equations for A% = (¢, A*). From it follows that the gauge
transformation
A% — A% 400 (6.7)

of the 4-vector A% leaves F*# unchanged, where ©(z) is an arbitrary scalar field. The Lorenz gauge

0o AY = 0 leads to the decoupling of the inhomogeneous Maxwell’s equation ([6.4) to
4
gA« = 2 je. (6.8)
c

The generalized equation of motion for a particle with charge ¢ is

du® ¢
= 1pob 6.9
" dr c ue (6.9)
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7 ACCELERATED REFERENCE SYSTEMS IN SPECIAL RELATIVITY

—

d T
The spatial components give the expression of the Lorentz force dit) =q (E +-A B) with p'= ymv.
c

The energy-momentum tensor for the electromagnetic field is

TE = o

1
g (F%FW + 4na5F75FV5> (6.10)

The 00-component represents the energy density of the field 790 = uepm = g= (EQ + 52) and the
. . Y
0Oi-components the Poynting vector S? = ¢TI = i (E A B) . In terms of these tensors, Maxwell’s

1
equations are 9,70 = —EFB'YjV. T8 is symmetric and conserved: 9,72 = 0. Setting 8 = 0

leads to energy conservation whereas 9,72 = 0 leads to conservation of the k' component of the

m
momentum. One should note that 9,727 = 0 is valid only if there is no external force, otherwise we
can write 0,792 = f? where f? is the external force density. Such an external force can often be

included in the energy-momentum tensor.

7 Accelerated reference systems in special relativity

Non inertial systems can be considered in the context of special relativity. However, then the physical
laws no longer have their simple covariant form. In e.g. a rotating coordinate system, additional terms
will appear in the equations of motion (centrifugal terms, Coriolis force, etc.).

Let us look at a coordinate system KS’ (with coordinates ’#) which rotates with constant angular

speed with respect to an inertial system IS (z®):
x = ' cos(wt') — y' sin(wt’),

y = ' sin(wt’) + ¢’ cos(wt’),

and assume that w?(2’2 + y"?) < . Then we insert (7.1) into the line element ds (in the known IS

form):
ds? = 770(5d113“d30’8 = Adt? — d2? — dy? — d2?
= [ —w? (2" 4+ y?)] dt"* + 2wy/d2’dt’ — 2wa'dy'dt’ — da’® — dy* — dz"
= guvda’da”. (7.2)

The resulting line element is more complicated. For arbitrary coordinates z’#, ds? is a quadratic form
of the coordinate differentials da'#. Consider a general coordinate transformation from z* (in IS) to
™ (in KS):

& = xa(x/) _ x“(x’07x/17x’2,x'3)7 (73)
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7 ACCELERATED REFERENCE SYSTEMS IN SPECIAL RELATIVITY

then we get for the line element

a B
ds? = Napdz®da’ = naﬁ% 2; dz'*daz™ = g, (z")dz""da" (7.4)
with 5
Ox® Ox
G (2') = NeB 5 i G (7.5)

The quantity g, is the metric tensor of the KS’ system. It is symmetric (g,, = g,,,) and depends on
z'. Tt is called metric because it defines distances between points in coordinate systems.
In an accelerated reference system we get inertial forces. In the rotating frame we expect to

experience the centrifugal force A , which can be written in terms of a centrifugal potential ¢:
w? = -
¢= 77(:5’2 +y?) and Z=-mV¢. (7.6)

This enables us to see that goo from (7.2)) is

2¢
The centrifugal potential appears in the metric tensor. We will see later that the first derivatives of
the metric tensor are related to the forces in the relativistic equations of motion. To get the meaning
of ¢ in KS’ we evaluate (7.2) at a point with do’ = dy’ =dz' =0:

dSalock 2¢ v?
dfzi‘:c‘” =¢gﬁdt’:,/1+§dt': 1-= (7.8)

———

correspond to clocks
time computed in
an inertial system

T represents the time of a clock at rest in KS’.

In an inertial system we have g,, = 7, and the clock moves with speed v =wp (p = \/W)
With we see that both expressions in are the same.

The coefficients of the metric tensor g,, (z") are functions of the coordinates. Such a dependence

will also arise when one uses curved coordinates. Consider for example cylindrical coordinates:

0 =ct=2" 2t=p, 2?=0, P==z
This results in the line element
ds? = ?dt? — da? — dy® — d2? = Adt? — dp? — p*df? — d2? = g, (2)daMda'. (7.9)
Here g,,, is diagonal:
1
G = ! , : (7.10)

The fact that the metric tensor depends on the coordinates can be either due to the fact that the

considered coordinate system is accelerated or that we are using non-cartesian coordinates.
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8 THE EQUIVALENCE PRINCIPLE

Part 111

Towards (General Relativity

8 The equivalence principle

The principle of equivalence of gravitation and inertia tells us how an arbitrary physical system re-
sponds to an external gravitational field (with the help of tensor analysis). The physical basis of

general relativity is the equivalence principle as formulated by Einstein:
1. Inertial and gravitational mass are equal
2. Gravitational forces are equivalent to inertial forces

3. In a local inertial frame, we experience the known laws of special relativity without gravitation

8.1 About the masses

The inertial mass m; is the quantity appearing in Newton’s law F = m,; @ which acts against accelera-
tion by external forces. In contrast, the gravitational mass mg is the proportionality constant relating

the gravitational force between mass points to each other. For a particle moving in a homogeneous

gravitational ﬁeld, we have the equation mtfz’ = —mgg, whose solution is
z = —=—4g “+vot + 20)- .
2 my 0 0

ms
me

all bodies. Another experiment is to consider the period T of a pendulum (in the small amplitude
1)2 —mal
2m T my g?

is independent on the material of the pendulum to a precision of about 1072, E6tvos (~1890), using

Galilei stated that “all bodies fall at the same rate in a gravitational field”, i.e. is the same for

approximation): (

where [ is the length of the pendulum. Newton verified that this period

torsion balance, got a precision of about 5 x 1072, Today’s precision is about 107! ~ 10712, this is
way we can make the assumption mg = m; on safe grounds.

Due to the equivalence between energy and mass (E = mc?), all forms of energy contribute to
mass, and due to the first point of the equivalence principle, to the inertial and to the gravitational

masses.

8.2 About the forces

As long as gravitational and inertial masses are equal, then gravitational forces are equivalent to inertial
forces: going to a well-chosen accelerated reference frame, one can get rid of the gravitational field. As

an example take the equation of motion in the homogeneous gravitational field at Earth’s surface:

d?r R
mt@ = msg (8.2)
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8 THE EQUIVALENCE PRINCIPLE

This expression is valid for a reference system which is at rest on Earth’s surface (~ to a good

approximation an IS). Then we perform the following transformation to an accelerated KS system:
1

F=7+ §§t’2, t=t, (8.3)

and we assume gt < ¢. The origin of KS #/ = 0 moves in IS with 7(¢) = %g’tQ. Then, inserting 1)

into (8.2 results in

d2 —/ 1 =, /2 -
mi s (7 + §gt = Mg

d2,,:»/ .
= my T (ms —my) g. (8.4)

If mgs = my, the resulting equation in KS is the one of a free moving particle % = 0; the gravitational
force vanishes. As another example in a “free falling elevator” the “observer” does not feel any gravity.
Einstein generalized this finding postulating that (this is the Einstein equivalence principle) “in a
free falling accelerated reference system all physical processes run as if there is no gravitational field”.
Notice that the “mechanical” finding is now expanded to all types of physical processes (at all times
and places). Moreover also non-homogeneous gravitational fields are allowed. The equality of inertial
and gravitational mass is also called the weak equivalence principle (or universality of the free fall).
As an example of a freely falling system, consider a satellite in orbit around Earth (assuming that
the laboratory on the satellite is not rotating). Thus the equivalence principle states that in such a
system all physical processes run as if there would be no gravitational field. The processes run as in an
inertial system: the local IS. However, the local IS is not an inertial system, indeed the laboratory on
the satellite is accelerated compared to the reference system of the fixed distant stars. The equivalence

principle implies that in a local IS the rules of special relativity apply.

e For an observer on the satellite laboratory all physical processes follow special relativity and

there are neither gravitational nor inertial forces.

e For an observer on Earth, the laboratory moves in a gravitational field and moreover inertial

forces are present, since it is accelerated.

The motion of the satellite laboratory, i.e. its free falling trajectory, is such that the gravitational
forces and inertial forces just compensate each other (cf (8.4])). The compensation of the forces is
exactly valid only for the center of mass of the satellite laboratory. Thus the equivalence principle

applies only to a very small or local satellite laboratory ("how small” depends on the situation).

The equivalence principle can also be formulated as follows:

“At every space-time point in an arbitrary gravitational field, it is possible to choose a
locally inertial coordinate system such that, within a sufficiently small region around the
point in question, the laws of nature take the same form as in non-accelerated Cartesian

coordinate systems in the absence of gravitation.’ﬂ

2Notice the analogy with the axiom Gauss took as a basis of non-Euclidean geometry: he assumed that at any point

on a curved surface we may erect a locally Cartesian coordinate system in which distances obey the law of Pythagoras.
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8 THE EQUIVALENCE PRINCIPLE

The equivalence principle allows us to set up the relativistic laws including gravitation; indeed one can

just perform a coordinate transformation to another KS:

special relativity laws coordinate relativistic laws
without with
gravitation transformation gravitation

The coordinate transformation includes the relative acceleration between the laboratory system and
KS which corresponds to the gravitational field. Thus from the equivalence principle we can derive the
relativistic laws in a gravitational field. However, it does not fix the field equations for g, (x) since
those equations have no analogue in special relativity.

From a geometrical point of view the coordinate dependence of the metric tensor g,,(z) means
that space is curved. In this sense the field equations describe the connection between curvature of

space and the sources of the gravitational field in a quantitative way.

8.3 Riemann space

We denote with £ the Minkowski coordinates in the local IS (e.g. the satellite laboratory). From the

equivalence principle, the special relativity laws apply. In particular, we have for the line element
ds® = n,pde@de’. (8.5)

Going from the local IS to a KS with coordinates z* is given by a coordinate transformation £* =
(20, 2t 22, 23). Inserting this into (8.5]) results in

o0&~ 9¢P

ds? = ap o
5T b G n v

datda” = g (z)dztdz”, (8.6)

_, 0 ogf
= Nlap oxt dxv

and thus g, (x) . A space with such a path element of the form is called a Riemann
space.

The coordinate transformation (expressed via g,,,) also describes the relative acceleration between
KS and the local IS. Since at two different points of the local IS the accelerations are (in general)
different, there is no global transformation in the form that can be brought to the Minkowski
form . We shall see that g, are the relativistic gravitational potentials, whereas their derivatives

determine the gravitational forces.
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8 THE EQUIVALENCE PRINCIPLE

4 e I

N /

Figure 1: An experimenter and his two stones freely floating somewhere in outer space, i.e. in the

absence of forces.

Figure 2: Constant acceleration upwards mimics the effect of a gravitational field: experimenter and

stones drop to the bottom of the box.
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8 THE EQUIVALENCE PRINCIPLE
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Figure 5: The experimenter and his stones in a

Figure 3: The effect of a constant gravitational non-uniform gravitational field: the stones will ap-

field: indistinguishable for our experimenter from proach each other slightly as they fall to the bot-

that of a constant acceleration as in figure tom of the clevator

O - =
o | o | |
N
e A S —

/\\

Figure 6: The experimenter and stones freely

Figure 4: Free fall in a gravitational field has the falling in a non-uniform gravitational field: the ex-

same effect as no gravitational field (figure : ex- Derimenter floats, so do the stones, but they move

perimenter and stones float. closer together, indicating the presence of some

external forces.
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9 PHYSICS IN A GRAVITATIONAL FIELD

9 Physics in a gravitational field

9.1 Equations of motion

According to the equivalence principle, in a local IS the laws of special relativity hold. For a mass
point on which no forces act we have
d2€a
dr?
where the proper time 7 is defined through ds? = 7,5d¢*d¢” = c2dr2. We can also define the 4-velocity
as u® = %. Solutions of are straight lines

=0, (9.1)

£ = a®1 + b*. (9.2)

Light (or a photon) moves in the local IS on straight lines. However, for photons 7 cannot be identified
with the proper time since on the light cone ds = c¢dr7 = 0. Thus we denote by A a parameter of the
trajectory of photons:
d2§o¢
d\?
Let us now consider a global coordinate system KS with 2# and metric g,,, (x). At all points 2*, one can

=0. (9.3)

locally bring ds? into the form ds? = nagdfadfﬂ . Thus at all points P there exists a transformation
¥(z) = €9(2, 21, 22, 1) between £ and z#. The transformation varies from point to point. Consider

a small region around point P. Inserting the coordinate transformation into the line element, we get

23 85
Ml P ok Oz
—_—

=guv (x) metric tensor

ds® = napde@de’ = daztda. (9.4)

We write (9.1)) in the form

R P s T
o Azt dr ) Oz dr2  9xkdxv dr dr’

multiply it by 2 aga ~ and make use of gii gg: =" 2 and get the following

dr2

u- This way we can solve for

equation of motion in a gravitational field

d2z" da* dx¥

dr2 o dr dr’ (9:5)
with Dur e

pe 028 0% (9.6)

m T g Quhdz
The I'};,, are called the Christoffel symbols and represent a pseudo force or fictive gravitational field
(like centrifugal or Coriolis forces) that arises whenever one describes inertial motion in non-inertial

coordinates. Eq. (9.5)) is a second order differential equation for the functions x*(7) which describe
e}

du
the trajectory of a partlcle in KS with g, (z). Eq. . can also be written as m— = fY u* = me

Comparing with one mfers that the right hand side of (9.5) describes the grav1tat10nal forces.
Due to (| . the Velo(:1ty ~ has to satisfy the condition

dzt da”

=G g (for m # 0) (9.7)

25



9 PHYSICS IN A GRAVITATIONAL FIELD

(assume dr # 0 and m # 0). Due to only 3 of the 4 components of % are independent (this
is also the case for the 4-velocity in special relativity). For photons (m = 0) one finds instead, using

(19.3), a completely analogous equation for the trajectory:

d2zr dz* dz¥
=T — 9.8
d\2 B2 odX dA (98)
and since dr = ds = 0, one has instead of (9.7)):
dz* dz¥
O—QMVKK (form—O)

9.2 Christoffel symbols

The Christoffel symbols can be expressed in terms of the first derivatives of g,,. Consider with (9.4):

ag,uu +ag)\u 78910\ o a2£a 855 +aﬁ 82
orr " ozr 0xr 1P | 9zrdr> 0z | O Oxv O

1

L | e 0 o 2
Ml Oz Oz Oz Oz OxH

2

| e e o o
Ml Oxv OxA 0x oxv | -

L 2 1
Using 1.3 = 1ga this becomes
0%¢> 9¢h
=2, , .
108 G v (9:9)
On the other hand
Jvo FZA
o 0608 a7 D%¢P
Jvotux = Nab v Guo okP dxkdx
————
Y
B aga 8255
= 1B G Grnd
1 agm/ ag)\u agu)\
= — — . .].
2 {b%)‘ Ozt Oxv (9.10)

We introduce the inverse matrix g"” such that g"”g,, = 6",. Therefore we can solve with respect to

the Christoffel symbols:

K 1 KRV 8‘9,“/ ag)\u 89#)\
nA 9 [&r)‘ T P T e | (9-11)
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9 PHYSICS IN A GRAVITATIONAL FIELD

Note that the I'’s are symmetric in the lower indices I';;,, = I'},,. The gravitational forces on the right
hand side of are given by derivatives of g,,,. Comparing with the equation of motion of a particle
in a electromagnetic field shows that the Fﬁy correspond to the field F*? | whereas the 9w correspond
to the potentials A¢.

9.3 Newtonian limit

Let us assume that v® < ¢ and the fields are weak and static (i.e. not time dependent). Thus
% < %. Inserting this into ([9.5)) leads to

d2x” . dat dx” Vfil-%/liiéy r dz®\?
o = T g ~ -If (dr) . (9.12)
For static fields we get from :
X g7 dgoo ,
I'te = 3 i (i=1,2,3) (9.13)

(the other terms contain partial derivative with respect to x° which are zero by staticity). We write
the metric tensor as g, = Ny + hyw. For weak fields we have |hy, | = |9y — 1| < 1. In this case the
coordinates (ct,z’) are “almost” Minkowski coordinates. Inserting the expansion for g,, into (9.13)

(taking only linear terms in h) gives

00 <07 2 9zt 51 (9 )

Then, let us compute (9.12) for k =0, kK = j:

choice
d?t dt ~
2= 0= Fr constant “="1, (9.15a)
A2/ @ hgo (dt)
— == . 9.15b
dr? 2 OxJ (dT) ( )
12
Taking (27) = 7, we can write
O ool (9.16)
42 - 2 00 ) .
I . . 47
which is to be compared with the Newtonian case Fvoi —V¢(7). Therefore:
. . 2¢(r
goo(7) = 1+ hoo(7) = 1 + A7) (9.17)

2
Notice that the Newtonian limit (9.16]) gives no clue on the other components of h,,. The quantity
2¢

=% is a measure of the strength of the gravitational field. Consider a spherically symmetric mass
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10 TIME DILATION

distribution. Then

20(R
¢(2 ) ~14x107° at Earth surface,
c
~4x107° on the Sun (and similar stars),
~3x1074 on a white dwarf,
~3x1071 on a neutron star — GR required.

10 Time dilation

We study a clock in a static gravitational field and the phenomenon of gravitational redshift.

10.1 Proper time

The proper time 7 of the clock is defined through the 4-dimensional line element as

cloc 1
dr = 7(15 lock = — ( gw,(.r)dx“d.r”) 5 (101)

c c clock

x = (a*) are the coordinates of the clock. The time shown by the clock depends on both the gravita-

tional field and of its motion (the gravitational field being described by g,..).

Special cases:

1. Moving clock in an IS without gravity :

2
dr = /1 - St
C

2. Clock at rest in a gravitational field (dz? = 0)

(gp.l/ = ny,y, dxl == ’Uidt, dxo = Cdt)

dr = v/ 900 dt.
For a weak static field, one has with (9.17):

2¢(r)

c2

dr =1/1+ dt  (|¢| < ). (10.2)

The fact that ¢ is negative implies that a clock in a gravitational field goes more slowly than a

clock outside the gravitational field.

10.2 Redshift

Let us now consider objects which emit or absorb light with a given frequency. Consider only a static

gravitational field (g,, does not depend on time). A source in 7“4 (at rest) emits a monochromatic

28



10 TIME DILATION

electromagnetic wave at a frequency v4. An observer at g, also at rest, measures a frequency vp.

At source: dra = v/goo(7a)dt 4
At observer: drp = \/goo(7p)dtp

As a time interval we consider the time between two following peaks departing from A or arriving

(10.3)

at B. In this case dT4 and d7p correspond to the period of the electromagnetic waves at A and B,

respectively, and therefore
1

1
drgy = —, drg = —. (10.4)
129\ vp
Going from A to B needs the same time At for the first and the second peak of the electromagnetic
wave. Consequently, they will arrive with a time delay which is equal to the one with which they were

emitted, thus dt4 = dtg. With (10.3]) and (10.4) we get:

. A
va _ 90‘)(%3), with 2= 24 _1=28_1 (10.5)
vB goo(7a) VB Aa

The quantity z is the gravitational redshift:

9oo(7s)
2= B, 10.6
goo(7a) ( )
For weak fields with gog = 1 + i—‘f we have
o= WD) 00 (14 < 2), (10.7)

such a redshift is observed by measuring spectral lines from stars. As an example take solar light with

[07)
P(rp) — ¢(ra) d(ra)  GMg

-6
c? c? 2Rg ’

with Mg ~ 2x103% kg and R &~ 7 x 108 m. For a white dwarf we find z ~ 10~ and for a neutron star
z ~ 107!. In general there are 3 effects which can lead to a modification in the frequency of spectral

lines:
1. Doppler shift due to the motion of the source (or of the observer)
2. Gravitational redshift due to the gravitational field at the source (or at the observer)

3. Cosmological redshift due to the expansion of the Universe (metric tensor is time dependent)

10.3 Photon in a gravitational field

Consider a photon with energy F. = hw = 27hv, travelling upwards in the homogeneous gravity field
of the Earth, covering a distance of h = hg — ha (h small). The corresponding redshift is

va __ o) —96(ra) _ glhs —ha) _ gh (10.8)

z= ik
VB c? c? c?’
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11 GEOMETRICAL CONSIDERATIONS

resulting in a frequency change Av = vp — v (Va4 > vp, vp = v) and thus

Av gh
The photon changes its energy by AE, = —% gh (like a particle with mass % = m,). This effect has

A [
been measured in 1965 (through the Mossbauer effect) as AV P =1.00£0.01 (1% accuracy)
Vth

11 Geometrical considerations

In general, the coordinate dependence of g,,,, () means that spacetime, defined through the line element
ds?, is curved. The trajectories in a gravitational field are the geodesic lines in the corresponding

spacetime.

11.1 Curvature of space

The line element in an N-dimensional Riemann space with coordinates z = (x!,... , ) is given as
ds? = gdatda” (u,v=1,...,N).
Let us just consider a two dimensional space x = (2!, 2?) with
ds? = giidetdz! + 2g12datda? + goodada?. (11.1)
Examples:
e Plane with Cartesian coordinates (x!,2%) = (z,y):
ds? = da? + dy?, (11.2)
or with polar coordinates (z!,2%) = (p, ¢):
ds? = dp? + pde? (11.3)
e Surface of a sphere with angular coordinates (z!,22) = (0, ¢):
ds® = a® (d6? + sin® 0d¢?) (11.4)

The line element ([11.2)) can, via a coordinate transformation, be brought into the form ((11.3)). However,
there is no coordinate transformation which brings (11.4]) into (11.2]). Thus:

e The metric tensor determines the properties of the space, among which is also the curvature.

e The form of the metric tensor is not uniquely determined by the space, in other words it depends

on the choice of coordinates.

3Pound, R. V. and Snider, J. L., Effect of Gravity on Gamma Radiation, Physical Review, 140
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11 GEOMETRICAL CONSIDERATIONS

The curvature of the space is determined via the metric tensor (and it does not depend on the coordinate
choice)ﬂ If g; = const then the space is not curved. In an Euclidian space, one can introduce Cartesian
coordinates g;x = d;x. For a curved space g; # const (does not always imply that space is curved).
For instance by measuring the angles of a triangle and checking if their sum amounts to 180 degrees

or differs, one can infer if the space is curved or not (for instance by being on the surface of a sphere).

4Beside the curvature discussed here, there is also an exterior curvature. We only consider intrinsic curvatures here.
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12 DIFFERENTIABLE MANIFOLDS

Part IV

Differential Geometry

12 Differentiable manifolds

A manifold is a topological space that locally looks like the Euclidean R™ space with its usual topology.
A simple example of a curved space is the S? sphere: one can setup local coordinates (6, ¢) which map
S? onto a plane R? (a chart). Collections of charts are called atlases. There is no one-to-one map of

S? onto R?; we need several charts to cover S2.

Definition: Given a (topological) space M, a chart on M is a one-to-one map ¢ from an open subset
U C M to an open subset ¢(U) C R™, i.e. a map ¢ : M — R™. A chart is often called a coordinate
system. A set of charts with domain U, is called an atlas of M, if YUy = M, {¢a|a € I}.

«

Definition: dim M =n

Definition: Two charts ¢1, ¢ are C*®-related if both the maps ¢5 o d)fl s o1(UL NUs) — o (U NUs)
and its inverse are C*>. ¢9 0 qﬁl_l is the so-called transition function between the two coordinate charts.
A collection of C* related charts such that every point of M lies in the domain of at least one chart

forms an atlas (C*: derivatives of all orders exist and are continuous).

The collection of all such C*°-related charts forms a mazimal atlas. If M is a space and A its maximal
atlas, the set (M, A) is a (C*°)-differentiable manifold. (If for each ¢ in the atlas the map ¢ : U — R"

has the same n, then the manifold has dimension n.)

Important notions:

e A differentiable function f : M — R belongs to the algebra F = C*°(M), sum and product of

such functions are again in F = C>*(M).

e F, is the algebra of C*°-functions defined in any neighbourhood of p € M (f = g means f(q) =
9(q) in some neighbourhood of p).

e A differentiable curve is a differentiable map v : R — M.

e Differentiable maps F : M — M’ are differentiable if ¢o 0 F o ¢; ' is a differentiable map for all
suitable charts ¢; of M and ¢o of M'.

The notions have to be understood by means of a chart, e.g. f : M — R is differentiable if x —
f(p(x)) = f(x) is differentiable. This is independent of the chart representing a neighbourhood of p.
—~—

eEM
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(Chart ¢;) C R™ (Chart ¢5) C R™

Figure 7: Manifold, charts and transition function.

12.1 Tangent vectors and tangent spaces

At every point p of a differentiable manifold M one can introduce a linear space, called tangent space
Tp(M). A tensor field is a (smooth) map which assigns to each point p € M a tensor of a given type
on T,(M).

Definition: a C*°-curve in a manifold M is a map 7 of the open interval I = (a,b) C R — M such
that for any chart ¢, ¢poy: I — R™ is a C* map.
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Let f : M — R be a smooth function on M. Consider the map fo~y:I — R, t— f(y(t)). This has

a well-defined derivative: the rate of change of f along the curve. Consider fo¢™! o ¢ovy and
— ——

R">R I—R"
7;1—>f(1;1) t—a’ (y(t))
=~ (=)
use the chain rule: A
d D dai(y()
— = . ) —— 12.1
FUom =Y (pmfa)) 0 (12.1)

i=1

d
Thus, given a curve y(t) and a function f, we can obtain a qualitatively new object th( fo 7)]
t=to
the rate of change of f along the curve v(t) at ¢ = to.

Definition: The tangent vector , to a curve y(t) at a point p is a map from the set of real functions
f defined in a neighbourhood of p to R defined by

i d o o] =emt, =50 (12.2

p

Given a chart ¢ with coordinates z*, the components of 4, with respect to the chart are
7 . d 7
(@*0m)*) = |42 ()] - (12.3)
P
The set of tangent vectors at p is the tangent space T,,(M) at p.
Theorem: If the dimension of M is n, then T,,(M) is a vector space of dimension n (without proof).

We set v(0) = p (t =0), X, =4y, and X, f = 4,(f). Eq. (12.3) determines X, (z*), the components
of X, with respect to a given basis:

X,f =[fo°(0)
=[fogp topon]"(0)

n
=1

-y <£ .. ,m) (%, (a") -

(12.4)

0 od,
S (f 067l (@ o))

This way we see that

%= 3 (5 ( ai) (12,5

Ox*
respect to the given basis (X,(z") = X} or X").

and so the <5) span T,(M). From (12.5) we see that X,(z') are the components of X, with
P
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12 DIFFERENTIABLE MANIFOLDS

Suppose that f, g are real functions on M and fg : M — R is defined as fg(p) = f(p)g(p). If
Xp € Tp(M), then (Leibniz rule)

Xp(f9) = (Xpf)g(p) + f(p)(Xpg)- (12.6)

Notation: (X f)(p) = X, f, p € M.

Basis of T,(M): T, = Tp(M) has dimension n. In any basis (e, ...,e,) we have X = X'’e;. Changes
of basis are given by

& = ¢i"ex, X' =¢" X5 (12.7)
The transformations ¢ik and ¢?; are inverse transposed of each other. In particular, e; = % is called
coordinate basis (with respect to a chart). Upon change of chart  — Z,

oxk . ozt
k 7
o - O = e

Definition: The cotangent space T, (or dual space T, of T,) consists of covectors w € T, which are

p7
linear one-forms w: X — w(X) =<w, X >e R (w: T, — R).

In particular for functions f, df : X = X f is an element of T);. The elements df = f; dz’ = (aaf) da?

form a linear space of dimension n, therefore all of T};.

We can define a dual basis (e!,... e") of Ty w= w;e'. In particular the dual basis of a basis
(e1,...,en)of Tpisgivenby < ¢/, X >= X' or < €’, XJe; >= X/ < e’ e; > = X'. Thusw; =< w,e; >.
——

Upon changing the basis, the w; transform like the e; and the e’ like the X (see (12.7)). In particular
we have for the coordinate basis e; = 2, €' = da’ (< e',e; >=< da’, 52 >= §';). The change of

basis is:

0 ot o o
0zt 0xt oxk T Ozk
ox!

dz' = o—pda® = ¢y da’

(Similar to co- and contravariant vectors.)

Tensors on T), are multilinear forms on T}; and T}, i.e. a tensor T of type (;) (for short T' € ®1T,):
T(w,X,Y) is a trilinear form on T); x T}, x T},. The tensor product is defined between tensors of any
type, i.e. T(w,X,Y)=R(w,X)S(Y): T=R®S. In components:
T(w, X,Y)=T( ej er) w; XIYF (12.9)
———— N——

ET{’]‘k ei(w)ej(X)ek(Y)

hence T = T" k€ ® e? ® e*. Any tensor of any type can therefore be obtained as a linear combination

of tensor products X ® w ® w’ with X € T}, w,w’ € T;;. A change of basis can be performed similarly
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12 DIFFERENTIABLE MANIFOLDS

to the ones for vectors and covectors:
[ = T, o 05" 01 (12.10)

Trace: any bilinear form b € T ® T}, determines a linear form [ € (7}, ® T,7)* such that I(X ® w) =
b(X,w). In particular tr T is a linear form on tensors T of type (i), defined by tr(X @ w) =< w, X >.
In components with respect to a dual pair of bases we have: trT = T<,. Similarly Tijk — S, =Tl

defines for instance a map from tensors of type @) to tensors of type ((1))

12.2 The tangent map

Definition: Let ¢ be a differentiable map: M — M and let p € M, p = (p). Then ¢ induces a linear
map (“push-forward”):
ot Ty(M) — Tﬁ(M)a

which we can describe in two ways:

(a) For any f € F5(M) (F: space of all smooth functions on M (or M), that is C*° map f : M — R):

(e X)f = X (fogp)

(b) Let v be a representative of X (X = 4,, see (12.2) and (12.3)). Then let ¥ = ¢ oy be a
)

representative of ¢, X. This agrees with (a) since %f(ﬁ/(t))‘t:o = L(fop)(v(t) ’t:O'

With respect to bases (e1, ... ,e,) of T, and (€1, ..., &,) of T5(M), this reads X = 0. X: X* = (p.)", X"

with (¢.)*, =< €', p«ex > or in case of coordinate bases: (p.)') = pos
x

Definition: The adjoint map (or “pull-back”) ¢* of ¢, is defined as ¢* : T; — T, W+ ¢*w (= w in
Ty) with < p*w, X >=< @, p.X >. The same result is obtained from the definition

o df = d(foyp), feFM). (12.10a)
In components, w = ¢*@ reads wy, = @; (s’

Consider (local) diffeomorphisms, i.e. maps ¢ such that ¢! exists in a neighbourhood of p. Note that

dim M = dim M and det (g%) # 0. Then ¢, and ¢*, as defined above, are invertible and may be

extended to tensors of arbitrary types.

Example: tensor of type (})
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13 VECTOR AND TENSOR FIELDS

Here, ¢, and ¢* are the inverse of each other and we have

Px(T® S) = (puT) @ (px95),

(12.11)
tr(@*T) = P« (tr T)v
and similarly for ¢*. In components T = ¢, T reads
. o7t P
T = Taﬁaxxa a—; (in a coordinate basis). (12.12)

This is formally the same as for transformation (12.10) when changing basis.

13 Vector and tensor fields

Definition: If to every point p of a differentiable manifold M a tangent vector X, € T,,(M) is assigned,
then we call the map X: p — X, a vector field on M.

Given a coordinate system ' and associated basis (%)p for each T,,(M), X, has components X;') with
X, = X! (3% )p and X = X, (2") (see (12.5)). Eq. (12.8) shows how X/ transform under coordinate
transformations. The quantity X f is called the derivative of f with respect to the vector field X. The

following rules apply:

X(f+9)=Xf+ Xy, 15
13.1

X(fg)=(Xf)g+ f(Xg) (Leibnitz rule).

The vector fields on M form a linear space on which the following operations are defined as well:

X—=fX (multiplication by f € F),

X, Y~ [X,)Y]=XY-YX (commutator).

[X,Y], unlike XY, satisfies the Leibniz rule (13.1)). The components of the commutator of two vector
fields X, Y relative to a local coordinate basis can be obtained by its action on x’. Thus using
X = Xiazi and Y = Y’“% we get

(X, Y) = (XY —YX)a/

o _

i vk
Yo' =Y Dk

Yk§I, =Y

bed :X’“ik(Yj) =Xky7,
Or N

ayJ
axk

= XY/ VX = XY —YRXT

In a local coordinate basis, the bracket [0, ;] clearly vanishes since X* = 1 and Y* = 1, thus Xf“j =0
and Y? =0.
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13 VECTOR AND TENSOR FIELDS

The Jacobi identity holds:
(X, [V Z]] + [Y,[Z, X]] + [Z, [X, Y]] = 0. (13.2)

Definition: Let T),(M)’, be the set of all tensors of rank (r, s) defined on T},(M) (contravariant of rank
r, covariant of rank s). If we assign to every p € M a tensor t, € T,,(M)7, then the map ¢t : p — ¢,
defines a tensor field of type (2)

Algebraic operations on tensor fields are defined point-wise; for instance the sum of two tensor fields
is defined by (t+ 5), = t, + 5, where t,5 € T,,(M)}. Tensor products and contractions of tensor fields
are defined analogously. Multiplication by a function f € F(M) is given by (ft), = f(p)t,. In a

neighbourhood U of p, having coordinates (z!,...,2") a tensor field can be expanded in the form
t= i 0 o .92 e (A2’ ®...®da’*). (13.3)
— Oz Ox'r

components of t relative
to the coordinate system

@2

If the coordinates are transformed to (z!,...,z") the components of ¢ transform according to

o™ AT dxl Oxts

Eil...ir :tklkrl 1 e e .
teds 5ok Oxkr Ozt o0xJs

Ji---Js =

(13.4)

(We shall consider C'* tensor fields). Covariant tensors of order 1 are also called one-forms. The set
of tensor fields of type (%) is denoted by 7. (M).

Definition: A pseudo-Riemannian metric on a differentiable manifold M is a tensor field g € 75°(M)
having the properties:

(i) 9(X,Y) =g, X) for all X,V

(ii) For every p € M, g, is a non-degenerate (# 0) bilinear form on T,(M). This means that
gp(X,Y) =0 for all X € T,(M) if and only if Y = 0.

The tensor field g € 7(M) is a (proper) Riemannian metric if g, is positive definite at every point p.

Definition: A (pseudo-)Riemannian manifold is a differentiable manifold M, together with a (pseudo-)

Riemannian metric g.

13.1 Flows and generating vector fields

A flow is a 1-parametric group of diffeomorphisms: ¢; : M — M, s,t € R with ¢; 0 s = p115. In
particular ¢y = id. Moreover, the orbits (or integral curves) of any point p € M, t — ¢.(p) = ()

shall be differentiable. A flow determines a vector field X by means of

d
Xf= g (foen)| (13.5)
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13 VECTOR AND TENSOR FIELDS

ie. X, = %'y(t)’tzo = 4(0) (see (12.2)) and (12.3)). #(0) is the tangent vector to 7 at the point

p =7(0). At the point v(¢) we have then

d d

V() = qyee(p) = o (s 0 01) (p) T X (p)

i.e. () solves the ordinary differential equation:

V() = X5, 7(0) =p.

(13.6)

The generating vector field determines the flow uniquely. Not always does ((13.6)) admit global solutions

(i.e. for all t € R), however for most purposes, “local flows” are good enough.
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14 LIE DERIVATIVE

14 Lie derivative

The derivative of a vector field V' rests on the comparison of V,, and V,, at nearby points p,p’. Since
Vp € T}, and V) € T}y belong to different spaces their difference can be taken only after V,, has been
transported to V,. This can be achieved by means of the tangent map ¢. (Lie transport). The Lie
derivative Lx R of a tensor field R in direction of a vector field X is defined by

d .
LxR= 5%]% , (14.1)
t=0
d
or more explicitly (LxR), = agofR%(p) Here ¢, is the (local) flow generated by X, where
t=0

i Ry, (p) is a tensor on T}, depending on t.

Ropi(p)

d ., 1,
LxR=gol| = lim - (pi R — R)

t = i(p) = 7(t); Xp = £7(t)|i=0 = ¥(0)

(p* is the inverse of @, )

Figure 8: Illustration of the Lie derivative

In order to express Lx in components we write o; in a chart: ¢ :  — Z(t), and linearize it for small
t: 7t =2t +tX(x) + O(t?), ' = ' — tX(z) + O(?), thus 8(12’?8: = —g;fgt = X'y att=0.

As an example, let R be of type (}) By (12.12) we have (apIR)ij(x) = R%3(x) gg; gi:j. Taking
(according to (14.1)) a derivative with respect to ¢ at t = 0 yields

(LxR)'; = R'jp X" = R X' o + R's X" (14.2)
o o .. 0z" 02" 9z° i vk
(ﬁrst term: @R ﬁ(l’) W arfa@ o =R j,kX )
AN ¢ %

Raﬁ,k(f) Xk

40



14 LIE DERIVATIVE

Properties of Lx:
(a) Lx is a linear map from tensor fields to tensor fields of the same type.
(b) Lx(trT) = tr(LxT)
() Lx(T®S)=(LxT)®S+T® (LxS)
(d) Lxf=Xf (f€FM))
(e) LxY =[X,Y] (Y vector field)

(proof: (a) follows from (14.1)), (b) and (c) from (12.11)), (d) from (I3.5), whereas (e) is more involved).

Further properties of Ly: if XY are vector fields and A € R, then
(i) Lx+y = Lx + Ly, Lxx =ALx

(i) Lix,y)=[Lx,Ly]=LxoLy —LyolLx

“Proof” of (ii): Apply it to f € F(M),
[Lx,Ly]f=LxoLlyf—LyoLxf=Lx(Yf)-Ly(Xf)=XY[f-YXf=[X,Y]f=Lxyf
Next apply it on a vector field Z:

(Lx,Ly]Z = [X,[Y,Z]] - [Y,[X,Z]] = [X,Y],Z]=LixyZ
(e) idontiny

For higher rank tensors the derivation follows from the use of (c).
If [X,Y] =0 then LxLy = Ly Lx and for ¢ and v, which are the flows generated by X and Y, one

finds: @5 09y = 1Pt 0 ¢s.
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15 DIFFERENTIAL FORMS

15 Differential forms
Definition: A p-form Q is a totally antisymmetric tensor field of type (g)
Q(X,T(l)7 N ,Xﬂ-(p)> = (sign W)Q(Xl, N 7Xp)

for any permutation 7 of {1,...,p} (7 € S, (group of permutations)) with sign 7 being its parity. For

p > dim M, = 0. Any tensor field of type (2) can be antisymmetrized by means of the operation A:
1 .
(AT)(X1, .., Xp) = = Y (sign )T (Xr(1)s - » X)) (15.1)
" TES,

with A2 = A. The exterior product of a p;-form Q' with a py-form Q2 is the (p; + po)-form:

(p1 + p2)!

Q'AQ2 =
p1!pa!

A @ 0?) (15.2)

Properties:
e N'ANQE= (1) Q2 A Q!

|
¢ QUAQZADY = (@ A0 AQF = PLEP2 IR g1 g2 o
p1!p2! ps!

The components in a local basis (e!,...,e") of 1-forms are
Q= Qu...i,,eil ®...Qe" = AN
= QilmipA(eil ®...Q eip)
n n 1
= Z cee Z Qilmipfezl A...Ne"
4 . p!
11=1 ip=1

= Z Qilmipeil AN A eip (153)

1<y <...<ip<n

A covariant tensor of rank p, which is antisymmetric under exchange of any pair of indices (i.e. is a

p-form), in n dimensions has (;) = (n_”il),p! independent components.

Examples:

e For 1-forms A, B (vector fields) we have

(A AN B)zk = A;Br, — ApB; = (—1)(B AN A)zk

e For a 2-form A and a 1-form B

(AN B)ig = Ai Bl + A B; + A1 B, (15.4)
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15 DIFFERENTIAL FORMS

since

(1 +2)!
ANB = 112!

3!
112!

A(A® B)

1 ., )
(AikBl)ge’ AeF A el

1 )
i(Aik:Bl)el AN eF A el
11

§§(A1;kBl + cyclic permutations)e’ A e A ¢!

1 .
= (A;B; + cyclic permutations)gel Aef el
Thus by comparing with (15.3) we get (15.4)).

15.1 Exterior derivative of a differential form

The derivative df of a O-form f € F is the 1-form df(X) = X f: the argument X (vector) acts as

a derivation. In a local coordinate basis: df = dei. The exterior derivative is performed by an
x

operator d applied to forms, converting p-forms to (p + 1)-forms. The derivative dQ2 of a 1-form 2 is
given by

dQ(Xy, Xo) = X1Q(Xz) — Xo0Q(X0) — Q([X1, Xa)). (15.5)

This expression is verified as follows:

X10(Xy) = X1 (Q, Xo) = X o (UX5) = X[ X5 + X[, X5,
N—— €T

N

1-form

XoQU(X1) = X5Qp XT + X5Q: X1 .,

Q[X1, X)) = (2, X1 X2 — XoX1) = U(X1 Xo — XoXi)' = @ (XTXS, — X5X1 ),

then
dQ(X1, Xo) = (i — Qi) X X5
This is manifestly a 2-form (the coefficient also fits the expectations: % (11T11!)! = 1). One can easily
verify that
dQ(f X1, X2) = fdQ(X1, X2). (15.6)

For QA f = fQ (as f is a O0-form), the product rule

AQAF) =dQA f — QAdf
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15 DIFFERENTIAL FORMS

applies, as one can verify

d(QA f)(X1, X2) i X1(fQ)(Xz2) = Xo(fQ)(X1) — (f2)([X1, Xa2)),

(15.5)

and

9 ; 0 ; Of
X1 (fQ)(X2) = X18 (fUX5) = fX1% (0 X3) +X1@QkX§-
FX19Q(X2) df(X1)Q(X2)
So
d(f A Q) (X, Xa) = fdQ(X7, Xo) + Q(X2)df(X1) — Q(X1)df(X2). (15.7)

dQAf —QAdf

Moreover we have d?f = 0, since

d*f(X1, Xa) X1df(X2) — Xodf(X1) — df([X1, Xo])

= X1 Xof —XoXif —[X1,Xa]f=0.

(15.8)

The generalization of the definition to a p-form Q gives

p+1
AQX1, . Xpr1) = D> (D)7 XXy, X X )
i=1

p+1
DML X)L X Ky K, Xpi), (15.9)

i<j

where " means omission, e.g. (X1, Xs, X3) = (X1, X3).

One can show that the following properties hold:

(a
(b

) d is a linear map from p-forms to p + 1-forms,

) d(QPAQ?) =d A Q2+ (—1)P1QF A dO?,
(c) d2=0,i.e. d(dQ) =0,

) d

(d) df(X) = X[ (f € F),
By means of (a)-(d) we have an alternative definition of d. By eq. (15.3) we have with respect to a

coordinate basis

1 ) )
Q= ﬁQil,‘,ide“ A...Adz', and hence (15.10a)
1 . .
v p! p
ddzir =0
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15 DIFFERENTIAL FORMS

Components:
pdQ = Qi iy a0 dz®o Adz™ AL Adatr
= —Qipin...ip,in dz® A ... Adatr
= (—1)in0..vgk__'ip’ikdmi° A Ada'r (k=0,...,p)
11 <
_ k . i i
= 2= plp+1 Z(_l) Qig iy, 2O AN da! (15.11)
—— k=0
o (AD)ig.ip
Examples:
e p=1:
(dQ)ix = Qi — Qi (15.12)
e p=2
(dQ)ir = Qg + Qeri + ik (15.13)

Consider a map ¢ : M — M and ¢* : T (M) — T7(M); then
p*od=dogp". (15.14)

A “proof” is found by using ((15.10)), (12.11) and property (b). It suffices to verify (15.14)) on 0-forms
and 1-forms. For O-forms f, (15.14) is identical to (12.10a). For 1-forms which are differentials df,

due to (c) we have

(p*od)(df)=0  (&*f=0),

(don)(df) =d(e"odf) = d(d(f o)) =d*(fop) =0.

(¢ odf)
=d(foyp)

Setting ¢ = ¢; (the flow generated by X) and forming (14.1) (LxR = %apr’t:O), one obtains the

infinitesimal version of (|15.14)):
Lxod=doLx. (15.15)

Definition: A p-form w with
e w=dnis exact
o dw =0 is closed

An exact p-form is always closed (d?n = 0), but the converse is not generally true (Poincaré lemma

gives conditions under which the converse is Valid)ﬂ |E|

51 is not unique since gauge transformations n + 1 + dp, with p any (p — 1)-form, leave dn unchanged.
6This is a generalization of the results of three-dimensional vector analysis: rot grad f = 0 and div rot kE=0.
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The integral of an n-form:

o'
M is orientable within an atlas of “positively oriented” charts, if det ( 3 j) > 0 for any change of
x

coordinates. For an n-form w (n = dim M):

1. ,
W= Wi i, —'dx“ Ao ANdE' =wyp g, dzt AL A2 (15.16)
n: N——

w(z)

is determined by the single component w(x); under a change of coordinates w(x) transforms like

o i Ox™ Ox'n oz’
W(@") =Wl.n = Wiy, ozl T o W(m) det (&Tj) . (15.17)
totally

antisymmetric

The integral of a n-form is defined as follows:

/w = /dx1 codzmw(zt 2™ (if the support of w is contained in a chart U).
M u

This integral is independent of the choice of coordinates, since in different coordinates

/dat:1 dzw(z) = /da’sl c.dz"w(z) |det (g;) and (|15.17) applies.

Let D be a region in a n dimensional differentiable manifold M. The boundary 0D consists of those

15.2 Stokes theorem

p € D whose image z in some chart satisfies e.g. ! = 0. One can show that D is a closed (n — 1)
dimension submanifold of M. If M is orientable then 9D is also orientable. D shall have a smooth

boundary and be such that D is compact. Then for every (n — 1)-form w we have

D/dw :lw (15.18)

15.3 The inner product of a p-form

Definition: Let X be a vector field on M. For any p-form {2 we define the inner product as
(ixg)(Xl,...,prl)EQ(X,Xl,...,prl) (1519)

(and zero if p = 0).

Properties:

7 Actually, it is often impossible to cover the whole manifold with a single set of coordinates. In the general case it is
necessary to introduce different sets of coordinates in different overlapping patches of the manifold, with the constraint
that in the overlap between the patch with coordinate z* and another patch with coordinate Z?, the % can be expressed
in a smooth one-to-one way as functions of #* and vice-versa (orientable manifold).

8The integral over a p-form over the overlap between two patches (x* and #*) can be evaluated using either coordinate

system, provided det (g—;;) > 0.
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(a) ix is a linear map from p-forms to (p — 1)-forms,

(b) ix (21 AQ2) = (ixQ) A Q2 + (~1)P1QL A (ix02),

(d) ixdf = Xf = (df. X) with f € F(M),
() Ly =ixod+doiy.
Proof of (e): for 0-forms f we have
Lxf=X[,
ix odf—l—g/oi%ﬁ:ixdf:Xf,
and for 1-forms df

Lxdf d(Lx f) = d(X ),
Lxod=doLx

ix o;l_dgf—i—doixdf:d(Xf).

Application: Gauss theorem

Let X be a vector field. Then d(ixn) is an n-form with dim M = n. 7 is an n-form, and if n, # 0 Vp €
M, then 7 is a “volume form”. A function div,) X € F is defined through

(divy, X)n = d(ixn) = Lxnf] (15.20)

We can apply Stokes theorem since d(ixn) is an n-form and thus ixn an (n — 1)-form:

/d(ixn) = /(divn X)n= /ixn. (15.21)

D D oD

The standard volume form 7 is given by 7 = /|g|dz* A ... A da™.

9dn =0, thus Ly =ix od+doiy applied on n gives Lxn = ix o df + d(ixn).
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Expression for div, X in local coordinates:

Let n = a(z)dz' A...Ada", X = X?2

of the Lie derivative):

5.7~ Lhen since (div, X)n = Lxn, we have (using property (c)

LXn:(Xa)dxl/\.../\dx"—l—aZdwl/\.../\d(Xxi)/\.../\dx".
i=1

Since d(Xxi):d(Xk%x) dXi(z) = X ;da2?, but da' A...Adad AL Ada™ # Oonlyif j=i
—

3
(otherwise we have two identical dz?) we find

Lxn= Xa dxlA...Adx”—«—aZXi’idxl/\.‘./\dx"

) i=1
Xi2a i
dx?

= (X'a,; + aX”7Z-)E17

=div, X = (aX (\/ gl X’) for the “standard” . (15.22)

\F
16 Affine connections: Covariant derivative of a vector field

Definition: An affine (linear) connection or covariant differentiation on a manifold M is a mapping
V which assigns to every pair X,Y of C* vector fields on M another C* vector field VxY with the

following properties:

(1) VxY is bilinear in X and Y,
(i3) if f € F(M), then
VixY = fVxY,
Vx(fY) = fVxY + X(f)Y.
(16.1)
Lemma: Let X and Y be vector fields. If X vanishes at the point p on M, then VxY also vanishes at
D.

Proof: Let U be a coordinate neighbourhood of p. On U we have the representation X = &2, Tt s
¢ e F(U) with €'(p) = 0. Then (VxY), = Vo YV = £(p )V 2 Y], =0.
dx? N~ ozt

=0
Since VxY produces again a vector field, the result of the covariant differentiation can only be a linear

combination of again the basis in the current chart. This leads us to the following statement:
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Definition: One sets, relative to a chart (X1,..., X™) for U C M:

O\ . 0

The n? functions Ffj € F(U) are called Christoffel symbols (or connection coefficients) of the connection
V in a given chart 1]

The Christoffel symbols are not tensors:

_ _ k
va<a>=ca=rcaxa (16.3)

97 \ b ab e b gz dak

If we use (|16.1)):

v, (2 v, . 927 0\ _ ox' %pki+3 927\ 0
ser \ 9zb ) — Y (8%=5%) \ 9zt oxi ) T 9z |9zt Y ork T 9xi \ 9zb ) 9a

_wiow 0 0t 0
T 9z 9zt YU oxk T 9zedzb drd

Comparison with

Ortn, _owl 0w, | 0
dzc T gre gzt U fredzd
ox' 9z 0z¢ _, ~ 01° O%a”

it o e 16.4
0z 0zl Ok~ Y Oxk Ozeozb (16.4)

e
=I5, =

The second term is not compatible with being a tensor.

If for every chart there exist n® functions Ffj which transform according to (16.4)) under a change
of coordinates, then one can show that there exists a unique affine connection V on M which satisfies
(116.3).

Definition: for every vector field X we can introduce the tensor VX € T\L(M) defined by
VXY,w) = {(w,VyX), (16.5)

where w is a one-form. VX is called the covariant derivative of X.

In a chart (z1,...,7,), let X = £°0; and VX = fi;jdmj ® 0; (< dat,0; >= 5,@):

¢, =VX(0;,da") = (da', Vo, X) = (da’,&" ;0 + E"T5,.05) = &, + Ti&" (16.6)

10For a pseudo-Riemannian manifold, the corresponding connection coefficients are given by or (9.11)).
HMsemicolon shall denote the covariant derivative (“normal derivative” + additional terms, that vanish in (cartesian)

Euclidean or Minkowski space)

49



16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

16.1 Parallel transport along a curve

Definition: let v : I — M be a curve in M with velocity field #(t), and let X be a vector field on some
open neighbourhood of y(I). X is said to be autoparallel along ~ if

V.X =0. (16.7)

The vector V4 X is sometimes denoted as % or % (covariant derivative along «). In terms of

coordinates, we have X = £10;, 4 = ddi;a (see (12.3 - With - and (| - we get
VX = Vi, (6"0k)

B dz?

z(fkak)
d:v k
[g T30 + 0,60

dx

[éfF Oy, + 0%y

:{dék kdm

U +7T U :|ak, (16.8)

dat ok der )
T This shows that V5X only depends on the values of X along «. In

t
terms of coordinates we get for (16.7)

ek o
&
a i

(16.9)

For a curve 7 and any two point 7(s) and (¢) consider the mapping

Tes + Ty(s) (M) = Ty 1y (M),

)

which transforms a vector v(s) at y(s) into the parallel transported vector v(¢) at «(¢). The mapping
Ty,s is the parallel transport along «y from ~y(s) to y(t). We have 75 s = 1 and 7,5 0 75y = Ty y.
We can now give a geometrical interpretation of the covariant derivative that will be generalized

to tensors. Let X be a vector field along ~, then

VsX(r(0) = 45 B 71,5 X (7(5)), (16.10)

Proof: Let’s work in a given chart. By construction, v(t) = 7 sv(s) with v(s) € Ty(5)(M) and due to
(16.8) it satisifies: 0¢ + F};jjtkvj = 0. If we write (1 5v(s))* = (Tt,s)ijvj(s) = vi(t) (with 75 = (75¢) 7!
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Figure 9: Hlustration of parallel transport.

and 75, = 1), we get

) d )
P = 5|0
d o
=Sl [ o)
t=s
d i\
~ (5| )i
t=s
= —T},; 2"/ (s).
d i ik
= |, ()’ = T (16.11)
Since ¢ s = (T5¢) 1, %L:t (Tt,s)ij =— %|t25 (Tt7s)ij = F};jik. Then
d ; d oo d _
— X e — J) XI+ —| X'
i), X0 = (G| me) @4 ] Xt
S P e10))
% k i
=Dt XA X |

which is again (16.8) (X = £'9; and the second term gives de’ ).

dt
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Definition: If VxY = 0, then Y is said to be parallel transported with respect to X.

Geometrical interpretation of parallel transport: Consider the differential d4’ = A’ ;d2zd = A¥(z +

dz) — A%(z). In order that the difference of two vectors be a vector, we have to consider them at the
same position. The transport has to be chosen such that for cartesian coordinates there is no change

in transporting it. The covariant derivative exactly achieves this.

Definition: Let X be a vector field such that VxX = 0. Then the integral curves of X are called

geodesics.

In local coordinates z' the curve is given by (using (I2:3) and (I3:6)) the requirement Sa(t) =
X#(z(t)). Inserting this into (16.8) and using djf; = dd—)il, we get

i+ a7 = 0. (16.12)
For a vector parallel transported along a geodesic, its length and angle with the geodesic does not
change.
16.2 Round trips by parallel transport
Consider and denote £ = v?, thus
o' = —T}, M7 (16.13)

Let v : [0,1] = M be a closed path, wih v(0) = p = v(1). Displace a vector vy € T),(M) parallel along
7 and obtain the field v(t) = 7¢0v0 € T,y+)(M). We assume that the closed path is sufficiently small
(such that we can work in the image of some chart), thus we can expand I'% ](x) around the point

x(0) = z¢ on the curve:

i i 9 i
ki () = Ty (o) + (2 — zf) %ij(m) + .- (16.14)
=z
Thus (16.13)) is to first order in (z* — zf):
t t t
/@i dt = v'(t) —vf = / by v ik dt ~ —T},; (o)} /xk dt,
0 0 vl 0
——
xk (t)—ak
taking only the first term in the expansion of I'. And hence,
v (t) = vh — T (o) (2" (t) — xf)v + -+ (16.15)
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Figure 10: Illustration of the path dependence of parallel transport on a curved space: vector 1 at N
can be parallel transported along the geodesic N-S to C, giving rise to vector 2. Alternatively, it can
be first transported along the geodesic N-S to E (vector 3) and then along E-W to C to give the vector

4. Clearly these two are different. The angle o between them reflects the curvature of the two-sphere.

By plugging (16.14) and (16.15) into (16.13), we obtain an equation valid to second order:
1 1

/v dt = —/ vl dt (16.16)
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Multiplying out and discarding terms of third order or higher in z* — &, we get:
1 5 1
v'(1) ~ vh — T} (wo)vy /j:k dt — [W 1 (70) —FZ (xo } o / — xb)i" dt.
0 0
——
z*(1)—z"*(0)
=0

Since we are considering a closed path (f Tdt =x (1) — xk(()) = 0),

1
S . ) .
A = 01(1) = 0'(0) = [ 5Tk w0) = Do) an) | f [ a7* .
0

with
1 1 4 1 1
j{m”m dt = ]{d— 2Pk dt—j{jcpxkdt:—fdcpmk dt,
0 0 0
| —
=0

antisymmetric in (p, k). Then

1
i L0 i 9 i
Av' = —2 {895/’ ki~ Tl = 55 Doy + Tl ]( )v{)/xpx dt,
0

Oxk P
R;kp
. 1
Av' = ingp(xo)vé/x”gc dt. (16.17)
0
We shall see that R;k 0 is the curvature tensor.
7 0 i 0 l z i
ikp = o kFPJ ) +F ijI‘pl (16.18)

Thus an arbitrary vector v* will not change when parallel transported around an arbitrary small closed

curve at g if and only if R; ), Vanishes at xo.

16.3 Covariant derivatives of tensor fields
The parallel transport is extended to tensors by means of the requirements:

Ts’t(T ® S) S (Ts,tT) ® (TS’tS),
Ts,t tI‘(T) = tI‘(’TSﬂgT‘)7

TstC=¢C (c e R).
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

For e.g. a covariant vector w, (75 s w, Ts ¢ X}W(S) = (w, X>'y(t) and for a tensor of type (}) Tt T(Tspw, Ts 1 X) =

T(w, X). In components:

(Ts,tT)ik == Taﬂ(Ts,t)ia(Ts,t)kﬁ (1619)
(7;* is inverse transpose of 7%}). The covariant derivative Vy (X vector field, T' tensor field) associated
to 7 is d
(VXT)p = &ToytTfy(t) 5 (1620)
t=0

with (¢) any curve with v(0) = p and 4(0) = X,, (generalization of (16.10))).

Properties of the covariant derivative:

(a) Vx is a linear map from tensor fields to tensor fields of the same type (7),

(b) Vxf =X,
(c) Vx(trT) = tr(VxT),
(d) Vx(T®S)=(VxT)®S+T ® (VxS).
This follows from the properties of 7, ;. For a 1-form w we have:
(Vxw)(Y)=tr(Vxw®Y)

=tr(Vx(w®Y)) —trlw® VxY)

=Vxtrw®Y)—w(VxY)

=Xw(Y) —w(VxY). (16.21)

General differentiation rule for a tensor field of type G)

[(VxT)(w,Y) = XT(w,Y) = T(Vxw,Y) - T(w, VxY)]| (16.22)

Due to (a)-(d), the operation Vx is completely determined by its action on vector fields Y, which are

the affine connections (see (|16.1)) and (16.2))).

16.4 Local coordinate expressions for covariant derivative

Let T € T(U) be a tensor of rank (p,q) with local coordinates (z',...,2™) valid in a region &. We
have T“"'ipjl,,,jq 05, ®...00;, ® dz @ ... ®dale and X = X¥9y. Let us use

XTivwin, o = Xhpinein (16.23)

and write ((16.2):
Vx(0;) = X"Vp,0; = X*T,0, . (16.24)
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Moreover,

(Vxda?)(0) TZ2D X (de?,8,) — (da?, V5 0))
H‘/—/
87
0

e
= —X',
or Vxda! = —X'Jdz'. (16.25)

Using (16.23)), (16.24) and (16.25]) for w’ = dz?, Y; = 0; we obtain the following expression for V xT":

E O P o PR T iy plin..dy, ip ri.dp—1l
T Gk =T 50 ek F 0 T Phredq T oo DT "5 g,

1!

i Ti1...iplj2qu R Fgch Til...ipjlquill. (1626)

Examples:
e Contravariant and covariant vector fields:
fi;k; = gi,k + T
Nie = Mie — Dl

e Kronecker tensor:
i
4 gk =0,

e Tensor (})
Ty, =Ty, + LT, —TL T,
The covariant derivative of a tensor is again a tensor. Consider the covariant derivative of the metric
Guv:

m
Juvix = 8;)‘ - Fiugpu - Fiygp;w (1627)

Inserting into this the expressions of 1"’;\# given by (9.11)) leads us to

1629

This is not surprising since g, vanishes in locally inertial coordinates and being a tensor it is then

zero in all systems.

Covariance principle: Write the appropriate special relativistic equations that hold in the absence of

gravitation, replace 15 by ga, and replace all derivatives with covariant derivatives (, — ;). The resulting

equations will be generally covariant and true in the presence of gravitational fields.
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17 CURVATURE AND TORSION OF AN AFFINE CONNECTION, BIANCHI IDENTITIES

17 Curvature and torsion of an affine connection, Bianchi iden-
tities
Let an affine connection be given on M, let X, Y, Z be vector fields.
Definition:
T(X,Y)=VxY —-VyX — [X,Y] (17.1)
R(X,Y)=VxVy —VyVx —Vix v (17.2)

T(X,Y) is antisymmetric and f-linear in X, Y and then defines a tensor of type (;) through:

(W, X,Y) = (w,T(X,Y)) is thus a (}) tensor field called the torsion tensor.

f-linearity:
T(fX,gY)=fgT(X.Y)  f.g.€ F(M).

In local coordinates, the components of the torsion tensor are given by:
Tkij = <dxk7T(8’naj)> = <dxk7v8i6j _vajai - [8laa]]>
S—— N——
=Tt o =0
_ 1k k
=TIy -Th (17.3)

(using that <d;1:k7 8l> = ¢%,). In particular, we have T%;; = 0 < Ffj = Ffl

R(X,Y) = —R(Y, X) is antisymmetric in X,Y. The vector field R(X,Y)Z is f-linear in X, Y, Z:
(R(fX,9Y)hZ = fghR(X,Y)Z; f,g,h € F(M)). R determines a tensor of type (;) the Riemann

tensor or curvature tensor.
(W, Z,X,Y) = (w, R(X,Y)Z) = R jjqw; 22 X*Y"

In components with respect to local coordinates:

R'jpy = (da’, R(0k, 0,)0;) = (da’, (Vo, Vo, — Vo, Vo, )0; |7
= (da', Vs, (I};05) — Vo, (T},0s))

= Ffj,k - FZ]‘J + Ty bs — ki i (17.4)

ls*

12Notice that V[ak 8l]aj =0.

=0
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17 CURVATURE AND TORSION OF AN AFFINE CONNECTION, BIANCHI IDENTITIES

Eq. (17.4) is exactly the the same as defined in (16.18). It is antisymmetric in the last two indices:
Rijp = —Rjy.

Definition: The Ricci tensor is the following contraction of the curvature tensor:

le = Rijil = F%j,z‘ - F::j,l + Flsj is - Ffj ls (17-5)

The scalar curvature is the trace of the Ricci tensor:

R=¢YR; =R, (17.6)

Example: For a pseudo-Riemannian manifold the connection coefficients are given by (9.11). Consider

a two-sphere (which is a pseudo Riemannian manifold) with the metric ds? = a?(d§? + sin? 6de?),

then:
1 0 1 (1 0
2 0p _
=a , = — .
0 (0 Sin2 9) ! a? (0 sin12 0)

I‘Z)(ﬁ = —sinfcosf,

The non-zero I' are:

Ffiﬁ = Fge = cot 6.
The Riemann tensor is given by
Riw = 50?% - 3¢>Fg¢ + FgAF;\se - FZAFé\;s
= (sin? @ — cos? ) — 0+ 0 — (—sinf cosh) cot 0
=sin? 6.
The Ricci tensor has the following components:

Rys = Ryy + RO, = sin? 0,
N——

=0
Rgg =1,
qug = R¢9 =0.

The Ricci scalar is

R= 9" Roo+ 9¢*° Ry +9"" Rog +9”° Reo
NP ~— N ~—
ai2 ! a? siln2 ] Sin2 0 0 0
1 2
= — 4+ ———sin“0
a2 a2sin’d
_ 2
=5
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17 CURVATURE AND TORSION OF AN AFFINE CONNECTION, BIANCHI IDENTITIES

The Ricci scalar is constant over this two-sphere and positive, thus the sphere is “positively curved”.

e

17.1 Bianchi identities for the special case of zero torsion

X, Y and Z are vector fields, then

R(X,Y)Z + cyclic=0 (1st Bianchi identity), (17.7)

(VxR)(Y,Z) + cyclic =0 (2nd Bianchi identity). (17.8)

Proof of the 1st identity: Torsion = 0 = VxY — Vy X = [X,Y]. Then

(VxVy =VyVx)Z+ (VzVx —VxVz)Y
+(VyVz = VzVy)X —Vixy1Z = Viz x1Y — Vy, 721X
=Vx(VyZ —VzY) = Viy,z1X + cyclic
= [X,]Y, Z]] + cyclic
=0 due to the Jacobi identity .

(See textbooks for proof of the 2nd Bianchi identity.)

I3For a position independent metric (e.g. Cartesian coordinates) the Riemann tensor (and thus the scalar curvature)
vanishes as the I' vanish.

0

1
MFor a plane with polar coordinates we get a position dependent metric < 2> : ds? = dr? 4 r2d#? and thus the
r

I" do not vanish. However the curvature vanishes.
15The curvature does not depend on the choice of coordinates.
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18 RIEMANNIAN CONNECTIONS

18 Riemannian connections

Metric: Let M be equipped with a pseudo-Riemannian metric: a symmetric, non-degenerate tensor
field: g(X,Y) = (X,Y) of type (g)
o Non-degenerate means that, for any point p € M, X,Y € T),, one has g,(X,Y)=0VY € T, =
X =0.
e In components, (X,Y) = g X'Y*, g = gri (symmetric) and det g;;, # 0.
e With the metric we can lower and raise indices:
Xi = gika7 [Di = gikwka
where ¢'* denotes the inverse of ¢;,. It also works for tensor fields of different types: 7%, =
Tig" = T gu..
1

e Given a basis (e1,...,e,) of T,, the covectors of the dual basis (e',...,e") become themselves

vectors; indeed e; = g;;e’.

Riemann connection: The metric tensor g at a point p in M is a symmetric (g) tensor. It assigns a
magnitude /|g(X, X)| to each vector X on T),(M), denoted by d(X) and defines the angle between
any two vectors X, Y (# 0) on T,(M) via

_ 9(X,Y)
a(X,Y) = arccos (d(X)d(Y)) . (18.1)

If a(X,Y) = % then X and Y are orthogonal. Further observations:

to
e The length of a curve with tangent vector X between t; and ¢y is L(t1,t2) = [ d(X) dt.
t1

o If (e,) is a basis of T),(M), the components of g with respect to this basis are ga, = g(eq, €p).

e Like in special relativity we classify vectors at a point as timelike (g(X, X)) > 0), null (¢(X, X) =
0) and space like (g(X, X) < 0).

Definition: let (M, g) be a pseudo-Riemannian manifold. An affine connection is a metric connection

if parallel transport along any smooth curve v on M preserve the inner product: for autoparallel fields
X (1), Y(t) (see (16.7))), gy (X(t), Y (t)) is independent of ¢ along +.

Theorem: an affine connection V is metric if and only if (no proof)
Vg=0. (18.2)

Eq. (18.2) is equivalent for (¢(Y, Z)) to

Vxg=0=Xg(Y,Z) - g(VxY,Z) —g(Y,VxZ)
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18 RIEMANNIAN CONNECTIONS

or

Xg(Y,2) =g(VxY,Z) +g(Y,VxZ). (18.3)

Theorem: For every pseudo-Riemannian manifold (M, g), there exists a unique affine connection such
that

(a) V has vanishing torsion (V is symmetric),

(b) V is metric.

Proof: T' = 0 (vanishing torsion) means VxY = Vy X + [X,Y]. Inserting this into (18.3) (and the

linearity of g) gives

Xg(Y,2) =g(Vy X, Z) + g([X,Y], Z) + g(Y,Vx Z). (18.4)
By cyclic permutations one obtains as well

Yg(Z,X) =g(VzY,X) +g([Y, 2], X) + 9(Z,Vy X), (18.5)

Z9(X,)Y)=9(VxZ,Y)+9([Z,X],Y) + g(X,VzY). (18.6)

Taking the linear combination (18.5) + (18.6]) - (18.4), we get (Koszul formula):

29(VzY, X) = —Xg(Y,Z2)+Yg(Z X)+Zg(X,Y)
—g([Z,X],Y) _g([K Z]’X) —|—g([X,Y],Z).

(18.7)

The right hand side is independent of V. Since g is non-degenerate, the uniqueness of V follows from

()

Definition: the unique connection on (M, g) from the above theorem is called the Riemannian or

Levi-Civita connection.

We determine the Christoffel symbols for the Riemannian connection in a given chart (U, x!,... z").
For this purpose we take X = 0y, Y = 9;, Z = 0; in (18.7) and we use [0;,0;] = 0 as well as
(0i,0j) = gij. The result is

<v5iaj>ak> = Féj <ala 8k>a
——

gik

2]_"2].9“C — _ak <8Z,8]> +aj <8z7ak> +82 <ak7 aj>7
\ ; N—— N——

gij gik 9kj
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18 RIEMANNIAN CONNECTIONS

or

1
glkr»lij = §(gkj,i + Gik,j — Gjik)- (18.8)

g% denoting the inverse matrix of gij, we obtain

1
T} = iglk(gkj,i + Gik.j — Gjik)s (18.9)

which is exactly equation ((9.11)).

Properties of the Riemannian connection:

(i) The inner product of any two vectors remains constant upon parallel transporting them along

any curve v ((X,Y )y = 9(X,Y)0))-

(ii) The covariant derivative commutes with raising or lowering indices, e.g. T}, = (gkmT"™).

= gkaim;l, because grpm; = 0.

Riemann tensor: the curvature tensor of a Riemannian connection has the following additional sym-

metry properties (without proof):
(R(X,Y)Z,U)=—(R(X,Y)U, Z), (18.10)
(R(X,Y)Z,U)=(R(Z,U)X,Y). (18.11)

In coordinate expression the Riemann tensor satisfies the following symmetries:

R = —R is always the case, (18.12)

> Ry =0 1st Bianchi identity, (18.13)
(kL)

> Rjkim =0 2nd Bianchi identity. (18.14)

(klm)

Egs. (18.13)) and (18.14)) are valid for vanishing torsion. Here Y denotes the cyclic sum. Additionally,
(kD)

Rijri = —Rjiki, (18.15)
Rijri = Ryuij, (18.16)

for the Riemannian connection with R = gis % -

Ricci and Einstein tensor
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18 RIEMANNIAN CONNECTIONS

R = Rjijk Ricci tensor (18.17)
R =R scalar curvature (18.18)
1 . .
Gir = Ry, — ERgik Einstein tensor (18.19)
By symmetry, Rix = Ry, Git = Gk and
1
RFip = 3R (18.20)
GFi =0, (18.21)

which are the contracted 2nd Bianchi identity.

Proof: R, = glelijk = glejkh-, 2nd Bianchi identity gives:

lek:l;m + lelm;k + lemk:;l =0.

Then we take the (ik)-trace:

le;m + lelm;i _ij;l = 07
~—

—9F Rjkimsi

. Sy .
R]l;m - gZ Rjklm;i - ij;l = 07

(jm)-trace:
le;j + gikRkl;i —R,;=0.
—_———
2RIy
= (|18.20)
For (18.21)):
1

k _ pk
G";, = R, 5

1
GMi = Rk = 5 (07 R ) =

Without proof in n dimensions, the Riemann tensor has ¢, =

(01 :0, Cy = 1, C3 :6, Cy :20)

63

¢";R=RF, - %5’2—73

1 1
5Ri —5Ri =0
—~—
(18.20)

2 2
w independent components




19 PHYSICAL LAWS WITH GRAVITATION

Part V

General Relativity

19 Physical laws with gravitation

19.1 Mechanics

The physical laws are relations among tensors (scalars and vectors being tensors of rank 0 and 1
respectively). Thus the physical laws read the same in all coordinate systems (provided the physical
quantities are transformed suitably) and satisfy general covariance (same form). Practically, this means
that from the special relativity laws that hold in absence of gravitation, we have to replace 745 by gas

and replace derivation by covariant derivation.

In an inertial system, we have the equation of motion (see (4.3))

du® o
me = fe. (19.1)
According to the equivalence principle, holds in a local IS. f* does not contain gravitational
forces as they would vanish in a local IS. We transform it to general KS (coordinate system), then the
Lorentz vector f® gets transformed to f# = g%f‘1 (&> is in local IS, a* is in KS). Equation
holds in a local IS reads then
Du#

dr
——
covariant derivative
\é;ivcn in v
(Vx — 2) with &* — u# (dt — d7 and % = u) and thus

Du* B du*

— (19.2)

- _ 7 Fll v )\'
dr dr 2N
Then equation ([19.2) reads
dut
mdi = fr— mIH uu?, (19.3)
-

We see that on the right hand side there are now gravitational forces appearing explicitly (via T'%,).
Equation (19.3) (or (19.2)) is covariant (it has the same form in all coordinate systems) and reduces for
Guv = Nap (thus 'Yy = 0) to equation (19.1)) (in a local IS). The components of u* are not independent

but satisfy the condition g, u*u” = ¢*.

19.2 Electrodynamics

According to the equivalence principle, Maxwell’s equations (see (6.4]) and (6.5]))

4
D FP = %jﬂ and PP F.5 =0

are valid in a local IS. Applying the covariance principle, they become as follows in a general KS:
47

v
) A
c

)

Vs and Ay o = 0, (19.4)
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19 PHYSICAL LAWS WITH GRAVITATION

provided that going from coordinates £ in a local IS to the KS coordinates z# we have

oxH ozt dx¥
_ 77 a _ 27 7" paB
= 9ga’ e ogp L

Jo = m and  F™

Gravity enters via the I', in the covariant derivative. The continuity equation d,j* = 0 translates
to j#,, = 0. It can be shown that in the homogeneous equation the terms with I' vanish. Thus the

covariant derivative reduces to the ordinary derivative (,) E

19.3 Energy-momentum tensor

For an ideal fluid, given by (in a local IS)

T = (p + c%) utu” — nt¥p, (19.8)
with
e ut: four-velocity,
e p: proper energy density,
e p: pressure of the fluid.
In a KS this becomes
T = (p + %) ufu? — g'vp. (19.9)

In the IS the conservation law implies T#" , = 0 and in the KS T"",, = 0 (explicitely, T"",, =

T, + T TV + TY, T = 0). With (19.5), I'V, = %gz@, we get instead

v L OygT™
v N

This is no longer a conservation law, as we cannot form any constant of motion from ((19.10). This

+ I8 T = 0. (19.10)

should also not be expected, since the system under consideration can exchange energy and momentum

with the gravitational field.

n
i1 . ) i1 99k 99k gy,
165 = det(g;x) = €1'ngii ... gni, - Consider ng = E €1 tngry . ——% ... gni, and use = gﬁi" S
k=1

o ox ox
%gmrg”k. Due to the antisymmetry of €, only the term r = k survives. Thus
@ _ O9km mk
ozt ox!
Plugging this into the definition of le (one contraction):
rk gkm (6gmk Ogm1  Ogri ) _ 9" 9gmr _9Inyg 1 95 (19.5)
kl 2 Ox! ozk Ox™ 2 ozl ox! N ’
—_——
vanish by interchanging
(m<>k)
With (19.5) one can show that the inhomogeneous Maxwell equation in KS can be written as
10 Frv 4
L OVEE) _Am o, (19.6)
Vg  Oxv c?
and the continuity equation: j#,, = 0 becomes
0 jH
m =0. (19.7)
ozH
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20 EINSTEIN’S FIELD EQUATIONS

20 Einstein’s field equations

The field equations cannot be derived by using the covariance principle, since there is no equivalent

equation in a local IS. We have to make some requirements/assumptions.

Requirements:
e The Newtonian limit is well confirmed through all observations: A¢ = 47Gp.
e From the Newtonian limit of the equation of motion for a particle we derived (equation )
goo ~ 1+ 2%.
e The non-relativistic limit should then be
Agoo = — 5 Too; (20.1)
with Tho ~ pc?® (other T;; are small).

Thus a generalization should lead to something of type G, = SZTGTW where G, has to satisfy the

following requirements:
(1) G, is a tensor (T}, is tensor).

(2) G, has the “dimension” of a second derivative. If we assume that no new dimensional constant
enter in G, then it has to be a linear combination of terms which are either second derivatives of

the metric g, or quadratic in the first derivative of g, .

(3) Since T}, is symmetric, G, also has to be symmetric and due to the fact that 7),, is covariantly

conserved, i.e. TH,, =0, it follows that G/, must satisfy G, = G, and G,,’” = 0.
(4) For a weak stationary field we shall get , thus Gop =~ Aggo-
Conditions (1)-(4) determine G, uniquely. (1) and (2) imply that G, has to be a linear combination
G = aRyy + VRguw (20.2)

of R,,, the Ricci tensor, and R, the Ricci scalalﬂ The symmetry of G, is automatically satisfied.
The contracted Bianchi identity (18.20), (18.21) suggests that G’ = 0 on the Einstein tensor, what

implies b = —5. Thus we find

1 8rG
G = a(Ryy — §9uuR) =4

The constant a has to be determined by performing the Newtonian limit. Consider weak fields:
Guv = Mpw + vy [hyw| < 1 (non relativistic velocities: v* < ¢), then |Tix| < |Too| = |Gik| < |Gool-
Compute the trace of G,

=a(R—2R)=—aR from ([20.3])
gNVG,ul/ ~ Goy = a(ROO — % oo ) = G'(ROO — R/Q) . (204)
~~

Moo
=1

Ty (20.3)

17Tt can be shown that indeed the Ricci tensor is the only tensor made of the metric tensor and first and second

deivatives of it, and which is linear in the second derivative.

66



20 EINSTEIN’S FIELD EQUATIONS

Compairing the two results gives R ~ —2Ry, thus
R
GOO >~ a ROO — 5 >~ QGRQ(J. (205)

For weak fields all terms quadratic in h,, can be neglected in the Riemann tensor; we get to leading

order:
8FZV B 8F§ "

— R~
Ry = RPpy ~ P D ([huw| < 1).
For weak stationary fields we find:
81”' . i 1 8900
Roo = =2 with T, =-——.
0= Tgpi M 007 9 gyt

061“5_0 = aAgoo = Agoo, therefore a = 1. Einstein’s field equations are |'S| (found 1915 by

zt

Thus Gog ~ 2a
Albert Einstein):

R;u/ - Eg,uv = TT,LW (206)

Together with the geodesic equation (((16.12)) or (19.3])), these are the fundamental equations of general
relativity. By contraction of (20.6)), we find also

R 837G
R, =5 8 = —R=—FT. (20.7)
~—
=4
R can be expressed in (20.6)) in terms of T' | and we get:
8nG T
Ry = oA (TW - 29W> (20.8)

an equivalent version of the field equations. For the vacuum case where T}, = 0 we have

Ry, = 0. (20.9)

Significance of the Bianchi identity

FEinstein’s equation constitutes a set of non-linear coupled partial differential equations whose general
solution is not known. Usually one makes some assumptions, for instance spherical symmetry. Because
the Ricci tensor is symmetric, the Einstein equations constitute a set of 10 algebraically independent
second order differential equations for g, .

The Einstein equations are generally covariant, so that they can at best determine the metric
up to coordinate transformation (— 4 functions). Therefore we expect only 6 independent generally
covariant equations for the metric. Indeed the (contracted) Bianchi identities tell us that (equation
(18.21)) G¥ ., = 0 and hence there are 4 differential relations among the Einstein’s equations. Bianchi

identities can also be understood as a consequence of the general covariance of the Einstein equations.

18Depending on the convention used for the Riemann tensor, one could also encounter a minus in front of the energy-

momentum tensor, as for example in Weinberg.
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21 THE EINSTEIN-HILBERT ACTION

20.1 The cosmological constant

As a generalization, one can relax condition (2) and have a linear term in g, E The field equations
become
8rG

R
Ry — EQMV - Ag/w = CTT/LW (20.10)

where A is a constant: the cosmological constant ([A] = L~2). For point (4) the Newtonian limit of

(20.10)) leads to

2
A = 4mpG + %A. (20.11)

The right-hand side can also be written as 47G(p + pyacuum ), With

2

e = ——A 20.12
Prac = 3= (20.12)

A corresponds to the (constant) energy density of empty space (vacuum). A~'/2 (distance) has to be

much larger than the dimension of the solar system.

21 The Einstein-Hilbert action

The field equations (20.6)) can be obtained from a covariant variational principle. The action for the

metric g is

Splg] = /R(g) dv, (21.1)
D
where D C M is a compact region space-time, R is a scalar curvature and dv a volume element:

dv = +/|g|d*z (21.2)

(g9 = det gix, d*x in 4 dimensions). The Euler-Lagrange equations are the field equations in vacuum:

5SD[g] =0.
We have
6/7?,(9) dv = /J(Q”VRW\/—g) diz = /(5R#,,)g’“’\/—g d*z + /Rﬂy5(g‘w\/—g) d*z. (21.3)
D D D D
Consider first 0R,,,:
Ry = 0a15, — 0,1, + 17,10 —T0.10,. (21.4)

Let us compute the variation of R,, at any point p in normal coordinates, whose center is in p itself
(z(p) = 0, then I'g_(0) = 0). Thus §R,, reduces (at any such p) to

ORu = (0Tp,) , = (0T5a) - ] (21.5)

19Note that Guvie = 0.
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21 THE EINSTEIN-HILBERT ACTION

Without proof one finds that 0I'j;, is indeed a tensor although I'jj, is not a tensor. (21.5) is thus a

tensor equation, it holds in every coordinate system and we can also take the covariant derivative:
0Ru = (0T7,)., — (0Tha),, (21.6)
(Palatini identity). Since gu.,o = 0 we can write (21.6) as

9" R, = (¢"0Ty,) = (9" )., (21.7)

_ 1 a(/ g
== (21.8)

Inserting this into the integral (21.3) and applying (15.21)) (Gauss theorem), we get

/(divg w)n = /iw,

D oD

where divyw = w®,, and thus

/(5R/w)g“”\/fg d'z = /w“\/—g d0,.

D oD

d0,, is the coordinate normal to 0D and
w® = g“”él‘ij — g“aéFZV (21.9)

is a vector field. If the variations of d¢g** vanish outside a region contained in D, then the boundary

term vanishes as well.

As for the second term in (21.3) ([ R, d8(g""\/—g) d*z), we recall that for an n x n matrix A(\)
D

we have (see linear algebra):
i) 4 det A=det Atr (A71d4),
i) S(ATHA=—-A"14.

Thus (6¢"")gve = —g"8gys comes from ii) and §g = gg/*dg,,, comes from i) with A~ = g". Hence

we find the desired expressions
1 pv 1 aff
0W=9=5V=99"0guu = —5V =9 94509,

1
39" V=9) = V=909"" = 5V =99"" 9a3 09" (21.10)

variation (with respect to ¢g) § and normal derivative commute

20
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21 THE EINSTEIN-HILBERT ACTION

And thus

1
0= /Rwé(g“”\/—g) diz = /,/—g d*z | R0 — = Ruwg™ gasdg®®
S —— ot &P 7

D dv R a— i

B—v
1
= /dv (R;w — 2ng> oghv.

D

=G, =0

Therefore 65p[gu] = 0 = G = Ry — $Rguw = 0. Since 0 [ /=g d'z = [ /=g d*zi g"0g,, =
D D
—% [ v/=g d*z g, 6g", it follows that if we have a cosmological constant , the Einstein’s vacuum
D

equations are obtained from the action principle applied on

Splg] = /(R—2A)\/—g d*z. (21.11)
D

The variational principle extends to matter described by any field ¢ = (¢4) (A = 1,..., N), (we include
also the electromagnetic field among the ¢ 4) transforming as a tensor under change of coordinates.

Consider an action of the form

Sply] = /E(w7vgw)\/jgd4x, (21.12)
D

where V,, is the Riemannian connection of the metric g. If we know £ in flat space, the equivalence

principle prescribes to replace 1.3 by gos and replace ordinary derivatives by covariant ones.

Example: electromagnetic field

1
167

1

L= 167

FMVFHV = F},LV Fop gau gpya

and the Euler-Lagrange equations in this case (Fj,, = A, — Ay = Ay — Auy) for the basic
4-potential A, field read:

oL oL
oA, MOV,A,

0, with V, A, = Ay s

in this case ;TLV =0, and ava fAV = —ﬁF #v. The Euler-Lagrange equations are then F*¥,, = 0, which
are the Maxwell equations for vanishing current j# (F*., = %j“ and £ = —M%FWFW — %j“AH

with j# A, = ¢"j, A,).
Variations in (21.12)) with respect to the fields ¢4 lead to the Euler-Lagrange equations, whereas
variations with respect to the metric (which is also a function and is determined by solving Einstein’s

equations) gives (without proof)

1
5g/£(¢,vg¢)¢fg diz = -5 /T“”(Sgwj\/TQ dz. (21.13)
D

D
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22 STATIC ISOTROPIC METRIC

This term has to be added to the one proportional to dg,, in Einstein’s action:

A 1
"16rG 2

=0

/\/fg d*z <G Tw) ogh”
D

and thus G, = 8:—4GTW. For electrodynamics: T},, =
Lg*?). And similarly for other “matter” fields.

e (F#UF;/T - iFo’pFUpguu) (01" TP = _FﬁFﬂﬁ_

22 Static isotropic metric

22.1 Form of the metric

For the gravity field of Earth and Sun we assume a spherically symmetric distribution of the matter
(rotation velocities v* < ¢). Thus we need a spherically symmetric and static solution for the metric
guv(x). We first give the general form of such a metric (static and isotropic) which we then use as an
ansatz to solve the field equations. For r — oo, the Newtonian gravitational potential ¢ = —GTM goes
to zero. Thus, asymptotically, the metric should be Minkowskian: ds? ol c2dt? — dr? — r2(d6? +

sin? #d¢?), in spherical coordinates r, 6, ¢ and t. Thus,
ds? = B(r)cdt? — A(r)dr? — C(r)r?(d6? + sin? 0d¢?). (22.1)

Due to isotropy and time independence, A, B and C cannot depend on 6, ¢ and ¢ (and no linear terms
in df and d¢). Freedom in the choice of coordinates allows to introduce a new radial coordinate in
[22.1): C(r)r? — r2, thus C(r) can be absorbed into 7. We get the standard form:

ds? = B(r)c2dt? — A(r)dr? — r?(d6? + sin? 0d¢?) (22.2)

(0 and ¢ have the same significance as in Minkowski coordinates). Due to our asymptotic requirements

(r — 00) we can assume that B(r) — 1 and A(r) — 1.

22.2 Robertson expansion

Even without knowing the solution to the field equations, we can give an expansion of the metric
for weak fields outside the mass distribution. The metric can only depend on the total mass of the

considered object (Earth or Sun for instance), on the distance from it and on the constants G, ¢. Since

GM
c2r”

A and B are dimensionless, they can only depend on a combination of the dimensionless quantity

For C;Af < 1 we can then have the following expansion:

c3r

B =1-29 a5 ) () .
(22.3)

GM
A(r) =1+2y—5—+...
cr

which is the Robertson expansion. The linear term in B(r) has no free parameter since it is constrained

by the Newtonian limit: ggg ~ 1 + 2;%, ¢ = fGTM (Newtonian potential), therefore B — ggo. The
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22 STATIC ISOTROPIC METRIC

coefficient 2(8 — «y) comes from historical reasons, 8 and « are independent coefficients. In the solar

system, Cszj\f < C?évg ~ 2 x 1079, then only linear terms in v and 3 play a role. For general relativity:

v = =1 (Newtonian gravity: v = 5 = 0).

22.3 Christoffel symbols and Ricci tensor for the standard form

The metric tensor g, is diagonal.

g()(] — B(/r) 911 = —A(T) 922 — _7,,2 g33 — —7"2 Sin2 0 (224)
1 1 1 1

00 _ m_ 2 _ B ——— 22.5

9 B(r) g A(r) g 72 g r2sin% 6 ( )

v (0gu,  Ogny O
The non-vanishing components of I'] , = 92( Iy | G _ gM) are

oz O+ oV

B’ B’ A’
Fgle?O:ﬁ Fcl)o:ﬂ Fh:ﬂ
1 r rsin® 6
F%2 = Fgl s F%z -7 leas - A (22.6)
1
I, =03 = " I3, =T3, =cotf '3, = —sinfcosf
where ’ stands for %. With
—g=r*ABsin*0 (22.7)
we get
dln\/—g 2 A B
ry=———=)=(0,—4+—+ —,cot6,0 | . 22.8
( “”) < Ozt > (7r+2A+QB’CO ’ ( )
The Ricci tensor can then be calculated as
aFZV anu o TP o TP
Ty Pl + 17,10, =15, 0, (22.9)
and we get as a result
B// A/Bl B/2 B/ 2 AI Bl
R = ——— = — — — — — e _—
0= 547 242 24B ' 24 (1" toat 23)
B// BI A/ B/ BI
-2 _ =2 (£ 12 = 22.1
24 4A(A+B>+rA’ (22.10)
B// B/ A/ B/ A/
Ri=——=+—=|—+—= — 22.11
1 2B+4B<A+B>+TA’ (22.11)
r (A B 1
Roo=14 — 2 - —)_= 22.12
22 + 9A (A B) 1 ( )
R33 = Ry sin 4, (22.13)

The non-diagonal components R,,, with p # v vanish.
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22 STATIC ISOTROPIC METRIC

22.4 Schwarzschild metric

We assume a static, spherically symmetric, mass distribution with finite extension:

p(r) #0 rsmo (22.14)
=0 r>rnr

Similarly, the pressure P(r) is thought to vanish for r > ro. The four velocity vector within the mass
distribution in the static case is u* = (u® = constant,0,0,0). This way, the energy-momentum tensor
(describing matter) does not depend on time. We then adopt the ansatz for the metric elaborated
in (22.2): g, = diag(B(r), —A(r), —r?, —r?sin® ). Outside the mass distribution (r > o), the Ricci
tensor vanishes: R,, = 0. We have already calculated the coeflicients R,, in equations -
(22.13)). For p # v, Ry, = 0 is trivially satisfied while the diagonal components should be set to zero:
Roo = Ri1 = Raa = R33 =0 (r > 79).

o Reo R 1 (B A"\ d — 0 (i —
Consider erT =7 (B + a)= 0 and thus a(ln AB) =0 (since rA # 0) or AB = constant
(or In AB = constant). For r — oo we require A = B = 1, therefore AB = 1 = A(r) = B%T).
Introducing this into Raoo (22.12)) and Ry; (22.11)) leads to

Roy=1-rB — B =0, (22.15)
B" B B" +2B' 1 dR
Riy = R 2 _. (22.16)

"2B 1B 2rB ~ 2B dr
With (22.15)), (22.16) is automatically satisified (since Rgoo = 0 also its derivative vanishes). We write

(22.15) as

d
—((rB)=1. 22.17
= (rB) (22.17)
We integrate it and get rB = r 4 constant = r — 2a. Then
N—
—2a
2a
B(r)y=1-—
(n=1--",
1 (22.18)
A(r) = 1 _ 2a°

for r > rg. This solution for the vacuum Einstein’ equations was found in 1916 by Schwarzschild. The

Schwarzschild solution is

2 2
45 — (1 _ f) 2di? — li’"@ — r2(d6 + sin? 6d?) (22.19)

The constant can be determined by considering the Newtonian limit:

GM 2
oo = B(r) — 1422 —1_oGM 420
r—00 c? cAr T

Thus one introduces the so called Schwarzschild radius:

2GM
rg = 2a =

c2
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23 GENERAL EQUATIONS OF MOTION

The Schwarzschild radius of the Sun is 5o = 26Mo ~ 3 km (Mg ~2x10% kg, R, = 7 x 10° km) so

C
Tg’g = 252/[5 ~4 %1076 A clock at rest in r has the proper time dr = v/ B dt, thus g—i diverges

at 7 — rg. This implies that a photon emitted at » = rg will be infinitely redshifted (t is not a good

coordinate either for events taking place at 7 < rg). A star, whose radius 7, is smaller than rg, is
a black hole since photons emitted at its surface cannot reach regions with r > rg.

Expanding the Schwarzschild metric in power of “% and comparing it with the Robertson expansion
(22.3)), one finds § = v =1 for general relativity.

23 General equations of motion

We now consider the motion of a freely falling material particle or photon in a static isotropic gravi-
tational field (e.g. motion of planets around the Sun). For the relativistic orbit z*(\) of a particle in

a gravitational field we have:
d2z* dz* dz¥
=Tk — 23.1
dA? YN dA ( )

and

TR 2 2 2 0, A=
dz* dx _(ds) :Cz<d7'> _ e m# T (23.9)

I ax - \a o) Vo om0

For a massive particle we can take the proper time as a parameter for the trajectory or orbit (d\ = dr).
For massless particles one has to choose another parameter. For the spherically symmetric gravitational

field, we use the metric (r > rg, radius of the star)
ds? = B(r)c2dt? — dr?A(r) — r?(d6? + sin? 0dp?), (23.3)

with the coordinates (z°,zt, 22, 23) = (ct,r,0,4). Equations (23.1) — (23.3)) define the relativistic
Kepler problem. Using the Christoffel symbols given in (22.6)), we get for ((23.1)):

d?z0° B’ difvo dr

A2~ B dx ax’ (234)
2 B’ 0\ 2 Al 2 2 .2 2
& B (delA T AT (drT o (dOAT rsin®f (ded T (23.5)
a2 24 \dx 24 \dx A\ d) A \ax
ﬁ——g%ng mbcosd 12 i (23.6)
A2~ rdady TPty ) ¢ '
A2 2d¢ dr 4o dé
SO 28 gcoth 2=l 93.
D2 v 2T (23.7)
Equation (23.6)) can be solved by
0= g = constant. (23.8)

Without loss of generality we can choose the coordinate system such that 6 = 7, this way the trajectory

lies on the plane with 6 = 7. % = 0 corresponds to angular momentum conservation. With (23.8)

21 Apparently it seems that the Schwarzschild metric is singular for » = rs, but this is not the case. It is only an

artefact of the coordinate choice. To be discussed later.
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23 GENERAL EQUATIONS OF MOTION

we get for (23.7) :
1d [ ,do
- ) = 23.
72 dx (r d)\> 0 (23.9)
which leads to do
27 = =
LY constant = [. (23.10)

[ can be interpreted as the (orbital) angular momentum (per unit mass). Equations (23.8) and (23.10)

follow from angular momentum conservation, which is a consequence of spherical symmetry (rotation

invariance).

Equation (23.4]) can be written as (B = B(r(\))

d dz?

which can be integrated as In [(%) B] = constant or

d 0
B% = constant = F. (23.12)

In (23.5) we use (23.8)), (23.10) and (23.12)) and get:

&r  F2B A (dr\®  P?
—+ —+—|—) ————==0. 23.13
oz T2am 24 (d)\) A (23.13)
We multiply it with 24 (g—;) and get
d ar\? 12 F? s
o A<d>\> + 55| =0 I (23.14)
Integration gives
dr\? 12 F?
A (d/\) + i constant. (23.15)

Integrating it once more we get r = r(\). Inserting then this result into (23.10) and (23.12]), we obtain
with one more integration ¢ = ¢(A\) and ¢ = ¢(\). Next we eliminate A and get r = r(t) and ¢ = ¢(t).

Together with § = 7, this is then a complete solution (generally it has to be done numerically).

Equation (23.2)) becomes
dat dz” dz\* ar\? a0\ > , dg\ >
guyaa =B <d>\> —A <d>\> — 7"2 <d>\> — 7”2 Sln2 0 (dA) =€, (2316)

using (23.8), (23.10), (23.12)) and (23.15]). On the other hand

We are left with two integration constants, F' and .

dA d
22Notice: — = A' L
dx dA
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23 GENERAL EQUATIONS OF MOTION

23.1 Trajectory
From we get

dr %—%—e
a A
andwith,
do dedi l A
dr —dxdr P2\ E_E

Thus,

dr A(r
¢(7’):/72 sz(ie

(23.17)

(23.18)

(23.19)

With this we can find the trajectory ¢ = ¢(r) in the orbital plane. (Massive particles: 2 integration

2 . 2
constants % and 73, massless particles: only %)

Trajectory in Schwarzschild metric:

Insert Schwarzschild metric: B(r) = A7'(r) =1 — 1 =1 — 22 and write:

Codt . dr . do
t—a, T—a, (ﬁ—a

Then with (23.8]), (23.10), (23.12)) and (23.15]) we get
Q:E, ci(l—ZCL)—F, r2¢ =1.
2 r

Multiplying (23.15)) with B and using AB = 1, we have

7 ae 2 al? F? —¢

2 22 32

The radial component can be written as

= constant.

22
% + Vegg(r) = constant,

with the effective potential (2a = 2EM ¢ = {¢?,0})

Veff(r): 12 ' GMI?

272 c2r3

GM_’_%_GMI2 (m;éO)

273

A formal solution r = r(X) of (23.22)) is given through the following integral :

- i/ dr
B /2(constant — Vz7(r))

(23.20)

(23.21)

(23.22)

(23.23)

(23.24)

Due to the T%, term (relativistic), this is an elliptical integral which has to be solved numerically.

For small values of r, centrifugal potential term dominates (as long as [ is not too small), then for

even smaller values of r the attractive relativistic term takes over: 2] [

2
23l~r><v—>i—2~v2

2
M2 107 = % ~ 1078
c [
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Vetr 4 collision
circular unstable
scattering
"
ellipse with precession
circular stable
Figure 11: Effective potential for massive particles in Schwarzschild metric

GM 2 GM v?

- ~ T (23.25)
r c2r? r 2

Eq. (23.22)) differs from the non-relativistic case by an additional T% term and 7 = g—: differs from %

by terms of order Z—i

Observations:

o Where Vog has a minimum there are bounded solutions, however due to the relativistic effects
there will be small deviations from the elliptical orbits (precession of the perihelion). As a special
case, with 7 = 0, the circular orbit is a possible solution (in which case the constant in is
equal to the value of Vg at its minimum).

e The solution at the maximum of Vg is an unstable circular orbit.

o If the constant is positive one gets non-bounded trajectories (corresponding to hyperbolic solu-

tions in the non-relativistic case).
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23 GENERAL EQUATIONS OF MOTION

e If the constant is larger than the maximum value of the potential, the particle falls into the

center.
e At minimum and maximum we have d‘g% = 0. For m # 0 we get
2 9 L3¢ (23.26)
29l =0. .
12 rs

In order to have two real solutions, we need %2 < T% That means
S
1> lerit = V3rsc. (23.27)
For | — ., the angular momentum barrier gets smaller and smaller until the maximum and

minimum fall together for [ = [..;+. For [ < .., the potential decreases monotonically for » — 0.

Vert collision

circular unstable

scattering

<3V

Figure 12: Effective potential for massless particles in Schwarzschild metric
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23 GENERAL EQUATIONS OF MOTION

Here both terms are proportional to 12, thus the shape of Vig does not depend on I. At 7pqp = %rs
the potential has a maximum. At r,,., the photons can move on a circular orbit, which is unstable. If
the constant in is smaller than Vig(rmaz) then the incoming photon will be scattered, whereas
if the constant is bigger the photon will be absorbed at the center. E

25for r < rg the Schwarzschild solution is not applicable
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24 LIGHT DEFLECTION

Part VI

Applications of General Relativity

24 Light deflection
The trajectory r = r(¢) of a photon in the gravitational field is given by (23.19) (e = 0):

o) = ot + [ G [ (24.1)
ro )z

B(7

light ray

Figure 13: Deflection of light by the Sun

We will now show that light is deflected by a massive body, carrying through calculations for the Sun.
In fig. the following quantities are defined: light is deflected by A¢ and r( is the minimal distance
(or impact parameter) from the Sun. For simplification we assume also ¢ > rg.

As starting point of the integration we choose the minimum distance ry, where we set ¢(rg) = 0.
Going from 7 till o, the angle changes by ¢(o0). Along the drawn trajectory the radial vector turns
by 2¢(00). If the trajectory would be a straight line, then 2¢(c0) = .

Thus A¢ =7 — 7 = 0 for a straight line and in general (¢(rg) = 0):

A = 2¢(00) — . (24.2)
()
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At 79, r(¢) is a minimum, thus

0. (24.3)
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light ray

."
B(r) — ¢(o0) = B(r) — d(o0) =

Figure 14: Non-deflected ray of light

From (24.3) we get with (23.17)) and (23.18)) the condition
F2 B(T‘o)

— = . 24.4
12 r3 (24.4)
This way we can eliminate the constants F' and [ in terms of ro with (24.1)):
(24.5)
Let us compute the integral by inserting the Robertson expansion A(r) = 14+~2%, B(r) = 1 — 2% (with
a=%5 = C’;IQVI) We keep terms up to &+ with
B(rg) r? r? 1 1
ol~ 142 -- )] -1
B(r) r3 3 +ea r T
2 2
b
g ro(r+ro)
We get using V1 +x =1+ 3,
7 dr 70 a ar
o00) — [ 14+~v—+
#loo) / r2 —rd ( Ty ro(r+r0)>
T0o
2 _ 2 —Q |~
_ lmcos (F0) 4 pa VI [T
T 70 T oV r+70
o
7r a a
= — — 4+ —. 24.6
2 + ’y’r‘o + To ( )
With (24.2]) we get
4a (1 2 1
Ap—da (147 _2rs (147 (24.7)
To 2 To 2
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24 LIGHT DEFLECTION

For general relativity, vy =1, rg = 2652M and thus

A(ﬁ:%

To

For a light ray which just grazes the surface of the Sun (rg = Rg = 7x10° km) we get (7 = 180x3600"):

Ap = 1.75" (1;7) . (24.8)

On May 29, 1919, an eclipse allowed experimental confirm of this result.

Figure 15: Gravitational lensing in the Abel 2218 galaxy cluster

26«cheating” with Newton’s theory gives half this result that is 0.84"
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25 PERIHELION PRECESSION

25 Perihelion precession

Consider the elliptical orbit of a planet around the Sun:

Mercury

Figure 16: Non-relativistic elliptical orbit of Mercury around the Sun

We will use the following notations: minimum distance r— = 7,,;,, maximum distance ry = 74z,
¢+ = ¢(ry), Ax = A(ry), B+ = B(ry). The relativistic orbit follows from equation (23.19)) for
r = r(¢) with e = ¢2. The integral gives for the change in angle between r_ and 7, :

T T+

“5*‘(1’*:/% %Z/dl 2((?) (25.1)

For a full orbit the angle is 27, i.e. twice the integral (25.1). The shift of the perihelion (per complete
orbit) is given by

Ap=2(by — ¢_) — 2m. (25.2)

The integrand in (25.1]) is equal to %. For r = r4 due to g—; = 0, v/K(r)r? has to vanish, thus
K(?"i) =0:
F? 1 2
—— = — + . 25.3
B2 % + 12 ( )
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25 PERIHELION PRECESSION

This way we can express F' and [ through r:

1
F?2 5z r2 —ri
2o AL o (1 1Y
By B TRTT By T BC
B B_ 2 2
: - it
¢ I By ~ B_
12 B, - B_ 2.2 (1 1
T \By T BC

This leads us to an expression for K (r):

2 (sta ~ )~ (sl ~ )
K(r) = B(r) _ B_ B(r) _ By

For A and B insert the Robertson expansion

2a
A(r):1+77+...,

BET) :1+27a+2<2—5+7)(%)2+....

(25.4)

(25.5)

(25.6)

(25.7)

(25.8)

(25.9)

With eq. (25.9), K(r) becomes a quadratic form in % Since % =ooforr=ry, Ky = K_ =0. This

determines K (r) up to a constant ¢

wo-o(2-) (- 2)

We get thus the following integral:

T+ 1
1 [dr a 1 1\ /1 1\]°°
¢+‘¢—:ﬁ/ﬁ (1+17) K‘)(‘)] -
r_ SN——— N +
from\/Zzl-q—’y%

We perform the following substitution:

1 1/1 1 1/1 1 .
= —+— )+ [ — - — ) sine;
r 2(T+ r_) 2(7‘+ T_>

2702
=

same order in % Therefore B has to be expanded one order in % more than A.
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(25.10)

(25.11)

(25.12)

(25.13)

~ 2; terms goouu® &= Bc® and griu'u' & Av? &~ Ac?% show up both and have thus to be expanded to the
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ry and r_ correspond to ¢ = 5 and ¢ = — 37, respectively. With
1 1 1/1 1

d{Z)=—=dr=2( =~ - — d 25.14

() =-mar=3 (£ - ) coswan. (25.14)
1 1 1/1 1
=== )1 4+si 25.15
r_ r 2 (r r+> (1+siny), ( )
1 1 1/1 1
e ( — ) (1 —siny), (25.16)
roory  2\r-  rg

we get for the integral

z
1 a1 1 a1 1
—¢p_=— [ dv |1 - — 4+ — - — = —)si . 25.17
¢+ — ¢ \@/ 1&{ +75 (T+r+)+72 (r+ T>sm¢] (25.17)
-3
Now introduce the parameter p of the ellipse (see figure :

2 1 1
-—=—+ —. (25.18)

p Ty r_

Integration of eq. (25.17) leads to
77 a a a a
—¢p_=— |1+ :|=7T|:1+ 2—-06+ ] [1—|— :|:7T|:1+ 2—-8+2 ] 25.19
61— 0o = = 149 @-p+n2| 1442 e-p+:l]. @519

Precession per orbit for the perihelion is:

Ap=2(py —¢_) —2m = G%G <H3+27> . (25.20)

In general relativity v = 8 =1 and so 2—[%27 = 1. Thus,

A¢:6£‘
p

Consider Mercury: p = 55 x 10° km, 2ac ~ 3 km, 7 = 180° x 3600” which give A¢ = 6;—“ =
0.104” (per full orbit). In 100 years Mercury fulfills 415 orbits around the Sun, this way we get
A¢ = 43" (per century). For more distant planets (Venus, Earth,...) Ag is at most ~ 5” per century.
Already in 1882, Newcomb found a perihelion precession of 43" per century for Mercury. Full perihelion
precession amounts to 575" per century of which 532" are due to the influence of other planets (this
within Newtonian theory). One finds
2—p+2y

5 = 1.003£0.005, (25.21)

in good agreement with general relativity. So far, the parameters of the Robertson expansion are
constrained to |y — 1| < 3 x 107% and |8 — 1| < 3 x 102, More recently (radar echoes delay from
Cassini spacecraft): |y — 1] = (2.1 £2.3) x 1075@

28B. Bertotti et al. Nature 425, 374 (2003)
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25 PERIHELION PRECESSION

Mercury

Figure 17: Illustration of the perihelion precession of Mercury (effect strongly exagerated)

25.1 Quadrupole moment of the Sun

A quadrupole moment of the Sun could also influence a perihelion precession of Mercury, that is why
one has to study it. The mass quadrupole moment of the Sun (due to its rotation) is
2 RH — R,

25.22
S (25,22

Q= JMoR: with Jp =

and
e Ry: orthogonal (to R ) radius,

e R : radius orthogonal to the plane containing the planet orbits and parallel to the rotation axis

of the Sun.

The induced gravitational potential in the planet’s orbital plane (which is also the equatorial plane of

the Sun) is
GM G
o(r) = — - —272. (25.23)

r

The additional term has the same r dependence than the additional relativistic term:

GM 12 GMI?
Vi =———+ — — ———. 25.24
off r 2r2 c2r3 (25.24)
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26 LIE DERIVATIVE OF THE METRIC AND KILLING VECTORS

With [ ~ pv and v? ~ % we can compare the two terms (their relative strength)

GQ JaRY N JoRY N JoRY
GML  p2y plH pa

c2

We see that the full expression for the perihelion precession is given by

W(‘A‘W?u%%).

A
¢ p 3 2ap

(25.25)

2
From observations one finds Jo ~ (1 — 1.7) x 10~7; thus the additional term is ‘722;1@ ~ 5 x 1074,
accounting for at most 1/10 of the error given in (25.21]) and is thus negligible.

26 Lie derivative of the metric and Killing vectors

Consider the Lie derivative of the metric tensor g,, in the direction of the vector K. According to
equation (14.2) we get:
EKgul/ = guumKK +9MKKK,V +gm/KK7;4- (26-1>

To rewrite this expression we observe the identities
K, = gauK/La

. OK" O(K"gpur)
K v9ur = O Jux = axuﬂ oz - oxrv o v .

Hence eq. (26.1]) can also be written as

_ K" Ogur _ 0K, K" Gun

0K 0K dg Jg dg
LicOon = o P H po _ 99uo _ OY9pu
K9op oxP + ox° + ozH oxP 0x°
0K, 0K,
= —2K,T* 26.2
OxP  Ox° n=po ( )
= Koip + Kpio-
An infinitesimal coordinate transformation is a symmetry of the metric if Lk g,, = 0, thus if
Koip+ Kpo = 0] (26.3)

Any 4-vector K, (x) satisfying this equation will be said to form a Killing vector. E

Example: Consider a stationary gravitational field, for which there exists coordinates {«*} such that the
components of g,, do not depend on ct = z° (for instance Schwarzschild metric). Let K* = §#( with
the corresponding vector field §#(0,, (— 0p). Inserting K* into one gets Lk guy = Guv,o+0+0 =
%gw = 0 (since g,,, does not depend on 2). K is a Killing vector or Killing field or an infinitesimal

isometry.

29Named after 19" century mathematician Wilhelm Killing

87



27 MAXIMALLY SYMMETRIC SPACES

Notice that, due to the properties of the Lie derivative, if K; and K are Killing vectors, L, g, = 0,

Lk,gu =0 then [Kq, K»] is also a Killing vector since

[Lreys L1190 = Lire, K519 = 0. (26.4)

We are used to the fact that symmetries lead to conserved quantities: in classical mechanics the angular
momentum of a particle moving in a rotationally symmetric field is conserved. In the present context,
the concept of “symmetries of a gravitational field” is replaced by “symmetries of the metric” and we
therefore expect conserved quantities to be associated with the presence of Killing vectors.

Let K* be a Killing vector and z#(7) be a geodesic. Then the quantity K,4* is constant along the
geodesic. Indeed,
D . DN Ly
di(KuxM) = (Vo Kya")i" + K, (Vi) ¥

T
=0 geodesic

1
5 (VoK + V) 83" = 0. (26.5)
—_————
~o

TH is the covariantly conserved symmetric energy-momentum tensor with V,7#” = 0. Then J* =

TH K, is a covariantly conserved current:

1
V,Jh =V, T*")K,+THV, K, = §T’“’ (V,.K, +V,K,) =0,
—_————
) ~0

to which we can associate a conserved charge.

27 Maximally symmetric spaces

Maximally symmetric spaces are spaces that admit the maximal number of Killing vectors (which below
will turn out to be % for an n-dimensional space). In the context of the cosmological principle
such spaces, which are simultaneously homogeneous (“the same at every point”) and isotropic (“the
same in every direction”), provide a description of space in a cosmological space-time.

From equation ((17.2]) we had (from definition of Riemann tensor and covariant derivative)
(Vx,Vy] - V[X’y])Vk = RAUW,X“YVV”, (27.1)

along with X = X#0,,,Y = Y"0, and Vyv, V* = YV, V} = YV, VA VxVy VA = XHV,(YVV, V) =
XMV, YV, VA + XHYVYV,V, VA ete, we get

[vuv VV]VA = RAU;,LVVU' (272)

Taking into account the first Bianchi identity, it is possible to find that for a Killing vector K, one
has (no proof here)
ViV K, (2) = R, K,(z) (27.3)
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27 MAXIMALLY SYMMETRIC SPACES

for x = xp. Thus a Killing vector K*(x) is completely determined everywhere by the values of K*(x)
and VK, (zo) at a single point zo (think of Taylor expansion). A set of Killing vectors {Kﬁz)(x)} is

said to be independent if any linear relation of the form
> KD (z) =0, (27.4)

with constant coefficients ¢;; implying ¢; = 0. Since in an n-dimensional space-time there can be

(4) n(n—1)
2

at most n linearly independent vectors K,,”(xo) at a point, and at most independent anti-

symmetric matrices (V, K, (20)), we reach the conclusion that an n-dimensional space-time can have

at most 1 1
n+ ”(”2_ ) _ ”(”; ) (27.5)

independent Killing vectors.

e Homogeneous space is meaning that the n-dimensional space(-time) admits n-translational Killing

vectors.

o Isotropic space: VK, (zo) is an arbitrary anti-symmetric matrix (— rotation). We can choose
n(n—1)

a set of 5

Killing vectors.

e We define a mazximally symmetric space to be a space with a metric with a maximal number of

% Killing vectors.

The Riemann curvature tensor of a maximally symmetric space becomes simpler. One can show (no

proof) that it becomes
Rijwi = k(9ikg;1 — gugjx) (27.6)

for some constant k. The Ricci tensor then becomes
Rij(z) = (n — 1)kg;;. (27.7)
The Ricci scalar can be obtained to be
R(z) =n(n— 1)k, (27.8)

and the Einstein tensor

1 n
Gir = Rik — 5Rgi = k (n—1) (1 - 5) Gik-

The Bianchi identity implies that k£ is a constant in order for Gi’* to vanish. We shall deal with
space-times in which the metric is spherically symmetric and homogenous on each “plane” of constant
time. In our case n = 4 and the maximally symmetric subspace has 3 dimensions. Consider first the

metric on the 3-dimensional subspace
do? = 2 2 2
o =A(r)dr® +r dQ
d62+sin? 0d¢2

For the Christoffel symbols, we use the ones for the general form of a static isotropic metric (22.6) with

B(r) = 0. Since the Christoffel symbols are invariant under an overall sign change of the metric, also
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27 MAXIMALLY SYMMETRIC SPACES

the Ricci tensor is and thus one can apply (22.10)-(22.13]) with B(r) = 0 for this three-dimensional
space, without caring for the sign in front of A. Hence we get for equation (27.7))
A/

Ryp = Ry = —,
T 11 rA

(27.9)

1 rA’
ReoZRzzz—Zﬁ-l—i—ﬁ.

From eq. (27.7), we have R,, = 2kA, and Rpy = 2kggy = 2kr?. Thus from equating the two first

equation leads us to

A/
2kA = = Al = 2krA? (27.10)
r
while we get for the second one
1 rA’ 1 2kr2 A2 1 1
2 _ _ 1+ ra _ _+ skr-a” L 2 2 _ _+
2kr* = A+1+2A2 A+1+ 242 A+1+kr = kr A+1,
which leads to )

and solves also (27.10)). Then the metric on the 3-dimensional subspace (maximally symmetric) is

B dr?
1 —kr?

do? +r2d02. (27.12)

It can be shown that k can have the following values: 0, +1.

+1 sphere, positive curvature
k=14 —1 hyperbola, negative curvature

0 plane, zero curvature

The full metric (with time coordinate) has then the form:

dr?
1— kr?

ds? = c2dt* — a®(t) { + 72(d6? + sin® 9dq{)2)} (27.13)

where a(t) is the cosmic scale factor, which has to be determined by solving the Einstein’s equations via
the matter content of the universe. This metric (first discovered by Friedmann, Lemaitre, Roberston
and Walker) is a reasonable ansatz for describing the universe. There is good evidence that the universe
(on large scales) is surprisingly homogeneous and isotropic (from redshift surveys of galaxies and cosmic

microwave background radiation).
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28 Friedmann equations
We write the metric (27.13)) as follows:
ds® = 2dt* — a?(t)g;j da* da? (28.1)
where tildes denote 3-dimensional quantities calculated with the metric g;;. The Christoffel symbols
are given by (notice I'jj, = 0):
i i i a g 0 -
ij :ij, FjO: E(Sj’ Fij = aagj, (282)
where dot denotes derivation with respect to t. The relevant components of the Riemann tensor are:
. a .
Rlojo = ——0"; Rl =aigi, RV = Rij+24° i (28.3)

We can make use of Rij = 2k§;; (maximal symmetry of the 3-dimensional subspace) to compute R,,, .

The non-zero components are then

o ,a . .9 . a a? k
ROO - —3a, Rij = (aa + 2a + Qk)g” = — E + 2@ + 2@ gij7 (284)
where g;; = —a? gi;- The Ricci scalar becomes R = fa%(ad +a% + k) and the non-zero components of

the Einstein tensor are
2

a®>  k i a
G00—3<a2+aQ), Goi =0, Gij—<2a+a2

k

Next we have to specify the matter content. We treat here the universe as non-interacting particles or
a perfect fluid. A perfect fluid has energy-momentum tensor ((19.8)

™ = (c% + p) ulu” — g*¥p, (28.6)

where p is the pressure, p the energy density and u* the velocity field of the fluid (u* = (c,0,0,0) in

a comoving coordinate system). The trace of the energy-momentum tensor is then
", = pc* — 3p. (28.7)
The equation of state is p = p(p) and in particular one assumes
p = wp, (28.8)

where w is the equation of state parameter.

Examples:

e For non-interacting particles we have p = 0, w = 0. Such matter is referred to as dust. The

energy-momentum tensor is T"" = putu”.

e For radiation the energy-momentum tensor is (like in Maxwell’s theory) traceless and hence

radiation has the equation of state

_ = 928.9
p=3p (28.9)

_1
thus w = 3
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28 FRIEDMANN EQUATIONS

e As we will see, a cosmological constant A corresponds to a “matter” contribution with w = —1.

The conservation law T%#,, = 0 implies 7%, = 0 or 9, T#° +T* T"° + T, T = 0. For a perfect
fluid: 9;p(t) +Thop+T0op+T5T = 0 (with i,j = 1,2,3). Inserting the expressions for the Christoffel
symbols (28.2) we get:

) a
p=-3(p+p)-. (28.10)
For dust (p = 0): ) )
L (28.11)
p a

Integration gives pa® = constant or p o< a~3. For a radiation dominated universe we get

p:

WD

=P 42 (28.12)
p a

Integration gives pa* = constant or p oc a=*. More generally for (28.8) one gets:
pa(t)31+%) = constant. (28.13)

The Einstein equations with A (equation (20.10)) are

381G
G#V = 7Tl“’ + Agl“"
Using (19.8) and that u* = (¢,0,0,0) in a comoving coordinate system, let us write down the 00-

component and the ij-component of this equation:

a? k
a a2 k
25 + = + 2 )%= (—87Gp + A) gij. (28.15)

One has in addition equation (28.10)) from the conservation law. Using the first equation to eliminate

52 . . .
o+ a—kz from the second one, one obtains the Friedmann equations:

@ k  siG A
a _ k _ A 28.1
sta= 5 Pty (28.16)
—3% = 47G(p + 3p) — A, (28.17)
, a
p= —3(p+p)g. (28.18)

Notice that one could also use the form (20.8)) of the Einstein equations to derive the above equations.

Introducing the Hubble parameter: H(t) = % and the deceleration parameter: q(t) = —aE.LtQ)(dt()t), with

their present day values denoted by Hy = H(to) and qo = ¢(to), where tg is the age of the universe;
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we get instead

1@ k A
gr=, B2
5 P2 t3
1
_ B 98.19
4= 5 4G+ 3p) — A) (2519

d
3 (@) = —3Hpa®

In the case of A = 0, we define a critical density periv = % and a density parameter ) = ﬁ. Then

p < perit < k= —1 open universe

p=pPerit = k=0 flat universe

P> perit < k=41 close universe

Let us now assume that the density is a combination of dust (that we shall simply denote as
“matter”) and radiation: p = p,, + p,. Moreover, we assume that p,, ~ a=3 and p, ~ a~*. This is
valid if radiation and matter are decoupled, or if one density is much bigger that the other one (notice
that in today’s universe p,, > p,). Let us introduce the constants K,, = 8%, a® and K, = % prat.

- 3
Inserting them into equation ([28.16|) leads to

-2 2
_ It _2m ZAG2 = — k. 28.2
a 2 . 3ha (28.20)
This equation reads as
a* +V(a) = —k,
where % 1% 1
A ) P 28.21
Vie)=——f = =2 — ~ha (28.21)

plays the role of an effective potential, see figure

Consider the solution for ¢ — 0: in that case the terms 52 and % dominate and the behavior

does not depend neither on £ nor on A.
— a(t) ~ Vit (28.22)

= a(t) ~t3 (28.23)

For a — 0, @ goes to oo. If K, # 0, then for a — 0 a ~ v/t. From figure we can discriminate
different types of solutions:

1. For A < 0, there is for all k-values a maximal a,,4,. Thus there will be a periodic solution going

between a = 0 and a4z

2. A =0 (Einstein-de Sitter universe): for k = 1 there is a bounded solution as in the case 1. For

k = 0 the expansion velocity goes towards 0, instead for £k = —1 it goes towards a constant value.

3. For A > 0 there are several cases:
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28 FRIEDMANN EQUATIONS

a) A = A.ip and k = 1. The value of A.,;; is obtained for the horizontal line —k (figure

just going through the maximum of the potential. Assuming K, ~ 0 (as in today’s universe)

we get witha =0,V =-1 — %:O:
3K,
A= ACT’it = @ and a = Astat — T (2824)

This corresponds to the static Einstein solution. Einstein introduced a cosmological constant
in order to get such a static solution, which is however unstable. Small perturbations lead

either to a contraction or to an exponential growth.

b) A < Agrie and k = 1. The horizontal line —k intercepts the curve V(a) in two points a; and
as. We obtain either a periodic solution between 0 and a; or an unbounded solution with
a > as.

c) A =A,i(1+¢) and k = 1. For 0 < ¢ < 1 the horizontal line —k lies just above the
maximum value of V(a). Thus the expansion velocity @ will be very low in this region

(Lemaitre universe).

d) A > A.ie and k = 1. The line —k does not intercept the V' (a) curve. Around the maximum

of V(a) the expansion is lowered.

e) A >0and k = —1,0 : as in the previous case, but there may be less deceleration in the

region of the maximum of V' (a).

Vv

A>0

Figure 18: Sketch of the “effective potential” V' (a) for different values of A.

For A > 0, all solutions are unbounded. In the limit a — oo, V'(a) is dominated by the A-term:
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a(t) ~ exp (\/§t> . (28.25)

The expansion is exponentially accelerated.

thus

According to the currently most accepted model (so-called ACDM-model), the main contributions
to the density are

o ordinary matter (baryons) Qparyons ~ 0.05

o dark matter Qpy ~ 0.27

e cosmological constant 2 = % ~ 0.68 with py = % (also called dark energy).

Moreover, the universe seems to be almost flat: k ~ 0. These cosmological parameters would thus
correspond to the case 3e) of the previous discussion.

Finally, H(;l is related to the age of the universe. Hy ~ 67.4 +0.5 scclﬁ/l[pc gives an age of ~ 13.8
billion yearﬂ

29 Gravitational waves

On 14 September 2015 the two LIGO detectors simultaneously observed a transient gravitational wave
(GW) signal, which has been interpreted as due to the merger of two black holes with masses of
about 36 Mg and 29 M), respectively. This being the first direct detection of GW was announced 11
February 2016E| and led to the 2017 Nobel prize in physics for Rainer Weiss, Kip Thorne and Barry
Barish for “decisive contributions to the LIGO detector and the observation of gravitational waves'>2}
In the data of the first and second Advanced LIGO observing run 11 GW events have been found, 10
binary black hole mergers as well as a coalescence of two neutron starﬁ

Moreover, the satellite LISA Pathfinder, with the aim to test the technology needed to build LISA,
a GW detector in space, was successfully launched on 3 December 2015. On 7 June 2016 the first
results which showed that the performance of LISA Pathfinder was much better than expected and
almost already at the level of the LISA requirements were releasedlﬂ Thus the year 2016, 100 years
after Einstein’s first paper on GW as a consequence of his theory of General Relativity, has thus seen

dramatic advancements in the field of GW.

30Planck 2018 results. VI. Cosmological parameters, http://arxiv.org/abs/1807.06209
31 LIGO Scientific and Virgo Collaborations (B.P. Abbott (Caltech) et al.), Observation of Gravitational Waves from

a Binary Black Hole Merger, Phys.Rev.Lett. 116, (2016) 061102

32The Nobel Prize in Physics 2017, http://www.nobelprize.org/prizes/physics/2017

33LIGO Scientific and Virgo Collaborations (B. P. Abbot et al.), GWTC-1: A Gravitational-Wave Transient Catalog
of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys.Rev.X 9,
(2019) 031040

34The LISA Pathfinder collaboration, M. Armano et al. Sub-Femto- g Free Fall for Space-Based Gravitational Wave
Observatories: LISA Pathfinder Results, Phys.Rev.Lett. 116, (2016) 231101
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29 GRAVITATIONAL WAVES

29.1 Linearized Field Equations

In order to find solutions to the Einstein field equations in the weak field regime, one can linearize the
equations. The results of this section will be used to describe gravitational waves.

The field itself is a form of energy and thus also a source of the field. This effect is purely due to
the non-linearities, of course. Considering a weak field, we can work with small deviations from the

Minkowski metric:
Guw = N + By With By, | < 1. (29.1)

One proceeds as follows. First, G, has to be expanded in powers of h,,. The first order terms
will lead to a linear wave equation. Neglecting terms of third order, the second order terms give the
energy-momentum tensor of the gravitational field.

The expansion of the Ricci tensor can be written as
1 2
R, =R} +R3) + ... (29.2)
with RLO,) = 0. In order to compute the first order term of 1) we write down the expansion of the
curvature tensor:

1
Ropor = b) (Gposuw + Guvpo = Guowp — Ypv,o) + O(hQ) (29.3)

where the derivatives are non-covariant (the additional terms due to covariant derivatives are of higher
order). We can thus write the first order Ricci tensor in terms of h,,:

RO —

mz

(Bhpw + 0P = 1P oy — P 0 p ) - (29.4)

N |

The d’Alembert operator can be used instead of 0,0 because in the approximation (29.1)) the coor-
dinates are “almost” Minkowskian, so 0,0" = O+ O(h). The first order Ricci scalar is given by

RY =R, (29.5)

We proceed by considering the second order equations. The left-hand side of the field equations

can be written in terms of the quantity ¢,,, which is defined by

@)
Rg 81
2 v .
R - (2“ > ==t (29.6)

We take these terms to the right-hand side of Einstein’s equations and find at second order in h,,:

(1) R(l) &G

w T o Huv = _CT(THV + t;w)- (297)

R
2

This can be interpreted as a wave equation linear in h,, with source terms

Tuv = Tuy + tuu- (298)

35Notice that we adopt here a different notation with respect to GR I: we adopt the “minus” convention of the EFE
(ie. Ruw — ggm, = —%TET;“,), which simply follows from a change of sign of the Riemann tensor. The Riemann tensor
from which (29.3) is derived differs thus from (GR I, 17.4) by a factor —1.
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We have to think of 7, as being the energy-momentum tensor which also includes the contribution of
the gravitational field itself.
We interpret (29.7)) as follows: since G*¥,,, = 0 (Bianchi identity), we find for the left-hand side of

9D

o R
. (R;(}u) - QWV) =0. (29.9)

Therefore the right-hand side satisfies

0T
=0. 29.10
oz, (29.10)
This gives the momentum
P, = /d3r T,0 = const. (29.11)

which is conserved (in time). We can thus interpret 7,0 as the momentum density and 7,,,, as an energy-
momentum tensor (indeed we know that T#",, = 0 but so far we did not necessarily conclude 7#”,, =
0). Since T}, includes all non-gravitational sources and 7, is interpreted as the “complete” energy-
momentum tensor, t,, clearly describes energy-momentum which is purely due to the gravitational
field:

=5 <R,323 - <2”> (|| < 1). (29.12)

We now turn back to the first order in h,,, and write down the field equations using Eq. (29.4) at
first order:

167G T
Ohyw + 02 gy — W pp — Py = ——a (TW — 277,”) ) (29.13)

We use 7, instead of g, in this equation because both sides are already of order h. Since the field
equations are covariant, we are free to perform a coordinate transformation. But note that since
|huw| < 1 we can only perform coordinate transformations which deviate only slightly from Minkowski

coordinates:

ot — 2 =t + eH(z) with e <« 1. (29.14)

un v . . s B, .
From ¢'** = %@A %fcp g** we infer how h,,, transforms. With %ZA =0+ g% inserted into g’ we get

g/pl/ — 77;“/ _ h/p.l/

Oct L,  0e”

where we used that from g,,, = 1,, + hy, it follows g"” = n#** — h*¥. From Eq. (29.15|) we infer

B oet B oe”
oz, Oz,

h/ul/ — hul/

(29.16)
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Since this is already a first order equation (in h), we can raise and lower indices with g,, ~ 7,, and

gt ~nt¥. Thus
Oz Oy

Oxv  Ozr’

In analogy to electrodynamics this transformation of the “potentials” g, is called a gauge transfor-

Ry =l —

(29.17)

mation. We can choose four functions e#(x) which give four constraints on the “potentials” h,,,. For

instance,
2h* =k (29.18)

We insert the gauge condition (29.18)) into (29.13) and obtain the decoupled linearized field equa-

tions:

16mG T
Dhuu = _CT (11“1/ - 277uu) . (2919)

This can easily be seen if we differentiate (i.e. h?,, = 2h?, ,) with respect to z":
B o = 20" p = P pp + P00 0 (29.20)
(we used hy, = hyy). This implies
—hP g —h o+ =0, (29.21)

which is just another form of our gauge condition from which it can be seen that (29.13f) indeed reduces

to (29.19)).
Furthermore, it can be shown that from (29.17) it follows that if h,, does not satisfy (29.18)), then

we can find a transformed hj, that does so. This can be done using the coordinate transformation

(29.14) with O, = h*,,,, — $h*,, ..

The linearized field equation Eq. (29.19)) has the same structure as the field equations in electrody-

namics. We can therefore immediately write down the well-known solution for the retarded potentials:

(29.22)

T
Wlth S'uy == Tuy - 577;1,%

The interpretation is the same as in electrodynamics: a change in Sy, at position 7 does not affect
the position 7 before some time @ has passed.

For weak gravitational fields (i.e. |huu| = |guv — M| < 1) the Einstein field equations read

167G T
Ol = ==~ <TW - 277;w) : (29.23)

In the vacuum (7, = 0) the equation reduces to

Ry =0 (29.24)
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which has plane waves as its simplest solution. The above equation is quite similar to the wave
equation in electromagnetism, JA* = 0 with the electromagnetic vector potential A*. As we will see,
the solutions are similar, as well. Note that the wave equation in electromagnetism is exact whereas
the general relativistic wave equation arises from the approximate linearized field equations.

29.2 Electromagnetic Waves

Physical fields are invariant under gauge transformations

Al AT = AF 4 Py (29.25)

so that we can choose 0, A" = 0 (Lorenz gauge) and get

4
A" = %j“. (29.26)

Due to the gauge conditions, only three out of four components of A* are independent. While
leaving the Lorenz gauge unaltered, we still have the freedom to perform an additional gauge trans-
formation satisfying Oy = 0. Since in vacuum j* = 0, this allows us to set A% = 0. Finally we are left

with two degrees of freedom (polarizations). The conditions read then
OA* =0, A% =0, DA = 0. (29.27)
This is solved by the ansatz
A¥ = et exp[—ik,x"] + c.c. , (29.28)

where k, k" = 0 and e;k* = 0 (polarizations are transverse to propagation direction).

29.3 The Case of Gravity

Due to the symmetry h,, = h,,, 10 out of 16 components of h,, are independent. With a gauge
transformation of the form (29.18)) we can impose four additional conditions. This leaves us with 6

degrees of freedom that are truly independent. If we consider the vacuum case
Ohu =0, (29.29)
in addition to we can perform a further transformation of the form
hyw — h:w = hyy — Ouer — Ouey, (29.30)
provided that ¢, satisfies
Oe, = 0. (29.31)

Such a transformation leaves Eq. (29.29) and the gauge condition (29.18) invariant (this is in complete
analogy to electromagnetism, of course). With these four additional conditions we are left with two
independent components of h,,. The solution to (29.29)) can be written in terms of plane waves

huy = ey expl—ik,.x"] + c.c. (29.32)
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where

2 —

Pk, =Kk, =0 & k2= % =R =2 (29.33)

The amplitude of the wave e,, is called polarization tensor. Inserting (29.32)) into the gauge
condition (29.18)) (2h*,, ,, = h*, ) leads to

2kun"Pen = kunPe,,. (29.34)

Clearly e, inherits the symmetry of h,,, thus e,, = e,,. Let us choose a wave travelling along the

x3-axis. This yields the wave solution

huw = e exp [ik(z® — ct)] (29.35)
where we used Eq. (29.33). The components of the wave vector are then
by =ks =0, ko= —ky=k= % (29.36)

In this case the gauge condition ([29.34]) reads

1
ego + €30 = 5(600 —e11 — eaz — €33), (29.37)
eo1 +e31 =0, (29.38)
o2 + €32 = 0, (29.39)
1
€03 +e33 = —5(600 —e11 — €22 — €33). (29.40)

With e,, = e,, and these four conditions, the polarization tensor is fully determined by six compo-

nents. All the other components can be expressed in terms of the six independent components
€00, €11, €33, €12, €13 and ea3. (29.41)
The other components are given by
1
€01 = —€31 = —€13, €o2 = —€32, €22 = —€11, €03 = —5(600 + e33). (29.42)

We can perform yet another transformation (29.14) (z'* = a# + ) with functions e satisfying
Oe* = 0. The functions are solutions of the wave equation, therefore we can write them as

et (z) = 0¥ exp [—ik,a"] + c.c.. (29.43)

As noted before, such a transformation with arbitrary §* does not violate the gauge condition (29.18]).
We choose k* in (29.43) equal to the wave vector of a given gravitational wave. Using (29.43) in
(29.16)) we obtain a new solution h;w in which all the terms have the same exponential dependence of

100



29 GRAVITATIONAL WAVES

exp[—ik,x*]. Thus only the amplitudes transform as
/ p—
€11 = €11,
ro_
€19 = €12,
/ .
€13 = €13 — ’L(Slk‘,
/ .
€93 = €23 — 2(52]{5,
6%3 = €33 — 2253]{3,

660 = €go + 2’Lk50

(29.44)
(29.45)
(29.46)
(29.47)
(29.48)

(29.49)

We can choose d,, such that ef, = €5 = e33 = e53 = 0. This new solution is equivalent to the old one.

From the physical point of view, only polarizations corresponding to e}, and e/, are relevant.

Neglecting primes in our notation from now on, we get for the gravitational wave propagating in

x3-direction, after gauging away all redundancies

0 O 0 0
0 ein e O 3
hy, = -exp |tk(x® — ct)| + c.c.
g 0 e2 —enr O P [ ( )]
0 O 0 0

(29.50)

The direction of k is the z3-axis. We ask now the question how (129.50) transforms under a rotation

around this axis. Since we are in an almost Minkowskian metric we can realize this transformation as

a Lorentz transformation described by the matrix

0 0

cos sin
A/J/V — ] SO (p
—singp cosgp

0 0

S O O =
_ o O O

Therefore the polarization tensor transforms as
€ = AP LA e
This yields
ey = e11 cos(2¢) + e1asin(2¢),
€]y = —e11 sin(2¢) + e12 cos(2¢).
If we consider e4 = e11 *+ ieqs instead, we thus have

ey = et

(29.51)

(29.52)

(29.53)

(29.54)

(29.55)

The vectors e4+ have helicity +2, whereas the wave solutions in electrodynamics have helicity +1.

Generalizing from the electromagnetic field, which is quantized using a spin 1 particle, the photon,
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one can thus expect the quanta of the gravitational field to be spin 2 particles. While there is neither
evidence for their existence nor a closed theory of quantum gravity, the hypothetical quanta of the

gravitational field are commonly dubbed gravitons .

29.4 Quadrupole Radiation

Oscillating charge distributions emit electromagnetic waves. In analogy we expect oscillating mass dis-
tributions to emit gravitational waves. We quickly repeat the case of electromagnetic dipole radiation
before turning to the case of oscillating mass distributions.

In electromagnetism one finds that an oscillating dipole moment
p(t) = po exp(—iwt) + c.c. (29.56)

emits electromagnetic waves whose power P per solid angle is given by

ar wt

- %|ﬁ|2sin2 0 (29.57)

where 6 is the angle between p and k where k is the direction of propagation. The total emitted power

can be obtained by integrating in 6:

w4

P= 3?\;312. (29.58)

The computation of the emitted gravitational radiation is similar to electromagnetism but also

more involved since the source terms are rank 2 tensors. We will proceed with the following steps:
1. Calculate the asymptotic fields emitted by a source T}, .
2. Reduce the result to spatial components.
3. Apply the long wavelength approximation.

In contrast to the electromagnetic case there is no gravitational dipole radiation. The density is

given by
p(7,t) = p(7) exp(—iwt) + cc. = p= /d?’r Fp(7) = MR, (29.59)

where M is the total mass and R'C,m‘ is the center of mass. If we choose the center of mass system
as the inertial system then p’= 0. Consequently p’= 0 in all inertial systems. This is not possible in
electromagnetism.

The following derivation of the quadrupole formula is skipped, it will be presented in full glory in
the consecutive lecture. Instead we directly show the quadrupole formula:

We define the traceless quadrupole tensor of the mass distribution:

Qij(t) = /d?’x (ximj — :137‘26”) p(t, T). (29.60)
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Then we find for the power emitted in gravitational waves

G ergees
P = 5(@"Qw) (29.61)

where (-) denotes a time average, for instance over one orbital period. The third time derivatives Q”
in the above equation can be easily evaluated for a plane wave Q;; x exp [—iwt] and yield Qw x w3

and thus P o« w®. Note again the difference to electromagnetic radiation, where we found P o w?.
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