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1 NEWTON’S THEORY OF GRAVITATION

Part I

Introduction
1 Newton’s theory of gravitation

In his book Principia in 1687, Isaac Newton laid the foundations of classical mechanics and made a
first step in unifying the laws of physics.

The trajectories of N point masses, attracted to each other via gravity, are the solutions to the equation
of motion

mi
d2~ri
dt2 = −G

N∑
j=1
j 6=i

mimj(~ri − ~rj)
|~ri − ~rj |3

i = 1 . . . N, (1.1)

with ~ri(t) being the position of point massmi at time t. Newton’s constant of gravitation is determined
experimentally to be

G = 6.6743± 0.0007× 10−11 m3 kg−1 s−2 (1.2)

The scalar gravitational potential φ(~r) is given by

φ(~r) = −G
N∑
j=1

mj

|~r − ~rj |
= −G

∫
d3r′

ρ(~r ′)
|~r − ~r ′|

, (1.3)

where it has been assumed that the mass is smeared out in a small volume d3r. The mass is given by
dm = ρ(~r ′)d3r′, ρ(~r ′) being the mass density. For point-like particles we have ρ(~r ′) ∼ mjδ

(3)(~r ′−~rj).
The gradient of the gravitational potential can then be used to produce the equation of motion:

m
d2~r

dt2 = −m∇φ(~r). (1.4)

According to (1.3), the field φ(~r) is determined through the mass of the other particles. The corre-
sponding field equation derived from (1.3) is given by1

∆φ(~r) = 4πGρ(~r) (1.5)

The so called Poisson equation (1.5) is a linear partial differential equation of 2nd order. The source of
the field is the mass density. Equations (1.4) and (1.5) show the same structure as the field equation
of electrostatics:

∆φe(~r) = −4πρe(~r), (1.6)

and the non-relativistic equation of motion for charged particles

m
d2~r

dt2 = −q∇φe(~r). (1.7)

Here, ρe is the charge density, φe is the electrostatic potential and q represents the charge which acts
as coupling constant in (1.7). m and q are independent characteristics of the considered body. In

1∆ 1
|~r−~r ′| = −4πδ(3)(~r − ~r ′)
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2 GOALS OF GENERAL RELATIVITY

analogy one could consider the “gravitational mass” (right side) as a charge, not to be confused with
the “inertial mass” (left side). Experimentally, one finds to very high accuracy (∼ 10−13) that they
are the same. As a consequence, all bodies fall at a rate independent of their mass (Galileo Galilei).
This appears to be just a chance in Newton’s theory, whereas in GR it will be an important starting
point.

For many applications, (1.4) and (1.5) are good enough. It must however be clear that these
equations cannot be always valid. In particular (1.5) implies an instantaneous action at a distance,
what is in contradiction with the predictions of special relativity. We therefore have to suspect that
Newton’s theory of gravitation is only a special case of a more general theory.

2 Goals of general relativity

In order to get rid of instantaneous interactions, we can try to perform a relativistic generalization of
Newton’s theory (eqs. (1.4) and (1.5)), similar to the transition from electrostatics (eqs. (1.6) and
(1.7)) to electrodynamics.

The Laplace operator ∆ is completed such as to get the D’Alembert operator (wave equation)

∆⇒ � = 1
c2
∂2

∂t2
−∆ (2.1)

Changes in ρe travel with the speed of light to another point in space. If we consider inertial coordinate
frames in relative motion to each other it is clear that the charge density has to be related to a
current density. In other words, charge density and current density transform into each other. In
electrodynamics we use the current density jα (α = 0, 1, 2, 3):

ρe → (ρec, ρevi) = jα, (2.2)

where the vi are the cartesian components of the velocity ~v (i = 1, 2, 3). An analogous generalization
can be performed for the potential:

φe → (φe, Ai) = Aα. (2.3)

The relativistic field equation is then

∆φe = −4πρe → �Aα = 4π
c
jα. (2.4)

In the static case, the 0-component reduces to the equation on the left.
Equation (2.4) is equivalent to Maxwell’s equations (in addition one has to choose a suitable gauge

condition). Since electrostatics and Newton’s theory have the same mathematical structure, one may
want to generalize it the same way. So in (1.5) one could introduce the change ∆→ �. Similarly one
generalizes the mass density. But there are differences with electrodynamics. The first difference is
that the charge q of a particle is independent on how the particle moves; this is not the case for the
mass: m = m0√

1− v2
c2

.

As an example, consider a hydrogen atom with a proton (rest mass mp, charge +e) and an electron
(rest mass me, charge −e). Both have a finite velocity within the atom. The total charge of the atom

7



2 GOALS OF GENERAL RELATIVITY

is q = qe + qp = 0, but for the total mass we get mH 6= mp + me (binding energy). Formally this
means that charge is a Lorentz scalar (does not depend on the frame in which the measurement is
performed). Therefore we can assign a charge to an elementary particle, and not only a “charge at
rest”, whereas for the mass we must specify the rest mass.

Since charge is a Lorentz scalar, the charge density (ρe = δq
δV ) transforms like the 0-component

of a Lorentz vector ( 1
δV gets a factor γ = 1√

1−v2/c2
due to length contraction). The mass density

(ρ = δm
δV ) transforms instead like the 00-component of a Lorentz tensor, which we denote as the

energy-momentum tensor Tαβ . This follows from the fact that the energy (mass is energy E = mc2)
is the 0-component of a 4-vector (energy-momentum vector pα) and transforms as such. Thus, instead
of (2.2), we shall have

ρ⇒

(
ρc2 ρcvi

ρcvi ρvivj

)
∼ Tαβ i, j = 1, 2, 3 (2.5)

This implies that we have to generalize the gravitational potential φ to a quantity depending on 2
indices which we shall call the metric tensor gαβ . Hence we get

∆φ = 4πGρ⇒ �gαβ ∼ GTαβ . (2.6)

In GR one finds (2.6) for a weak gravitational field (linearized case), e.g. used for the description of
gravitational waves.

Due to the equivalence between mass and energy, the energy carried by the gravitational field is
also mass and thus also a source of the gravitational field itself. This leads to non-linearities. One can
note that photons do not have a charge and thus Maxwell’s equations can be linear.
To summarize:

1. GR is the relativistic generalization of Newton’s theory. Several similarities between GR and
electrodynamics exist.

2. GR requires tensorial equations (rather than vectorial as in electrodynamics).

3. There are non-linearities which will lead to non-linear field equations.

8



3 LORENTZ TRANSFORMATIONS

Part II

Special Relativity
3 Lorentz transformations

A reference system with a well defined choice of coordinates is called a coordinate system. Inertial
reference systems (IS) are (from a “practical” point of view) systems which move with constant speed
with respect to distant (thus fixed) stars in the sky. Newton’s equations of motion are valid in IS. Non-
IS are reference systems which are accelerated with respect to an IS. In this chapter we will establish
how to transform coordinates between different inertial systems.

3.1 Galilean invariance

Galilei stated that “all IS are equivalent”, i.e. all physical laws are valid in any IS: the physical laws
are covariant under transformations from an IS to another IS’. Covariant means here form invariant.
The equations should have the same form in all IS.

With the coordinates xi (i = 1, 2, 3) and t, an event in an IS can be defined. In another IS’, the
same event has different coordinates x′i and t′. A general Galilean transformation can then be written
as:

x′i = αikx
k + vit+ ai, (3.1)

t′ = t+ τ, (3.2)

where

• xi, vi and ai are cartesian components of vectors

• ~v = vi~ei where ~ei is a unit vector

• we use the summation rule over repeated indices: αikxk =
∑
k

αikx
k

• latin indices run on 1,2,3

• greek indices run on 0,1,2,3

• ~v is the relative velocity between IS and IS’

• ~a is a constant vector (translation)

• αik is the relative rotation of coordinates systems, α = (αik) is defined by

αin(αT )nk = δik or ααT = I i.e. α−1 = αT (3.3)

9



3 LORENTZ TRANSFORMATIONS

The condition ααT = I ensures that the line element

ds2 = dx2 + dy2 + dz2 (3.4)

remains invariant. α can be defined by giving 3 Euler angles. Eqs. (3.1) and (3.2) define a 10
(a = 3, v = 3, τ = 1 and α = 3) parametric group of transformations, the so-called Galilean
group.

The laws of mechanics are left invariant under transformations (3.1) and (3.2). But Maxwell’s equations
are not invariant under Galilean transformations, since they contain the speed of light c. This led
Einstein to formulate a new relativity principle (special relativity, SR): All physical laws, including
Maxwell’s equations, are valid in any inertial system. This leads us to Lorentz transformations (instead
of Galilean), thus the law of mechanics have to be modified.

3.2 Lorentz transformations

We start by introducing 4-dimensional vectors, glueing time and space together to a spacetime. The
Minkowski coordinates are defined by

x0 = ct, x1 = x, x2 = y, x3 = z. (3.5)

xα is a vector in a 4-dimension space (or 4-vector). An event is given by xα in an IS and by x′α in an
IS’. Homogeneity of space and time imply that the transformation from xα to x′α has to be linear:

x′α = Λαβxβ + aα, (3.6)

where aα is a space and time translation. The relative rotations and boosts are described by the 4× 4
matrix Λ. Linear means in this context that the coefficients Λαβ and aα do not depend on xα. In
order to preserve the speed of light appearing in Maxwell’s equations as a constant, the Λαβ have to be
such that the square of the line element

ds2 = ηαβdxαdxβ = c2dt2 − d~r2 (3.7)

remains unchanged, with the Minkowski metric

ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (3.8)

Because of ds2 = ds′2 ⇔ c2dτ2 = c2dτ ′2, the proper time is an invariant under Lorentz transformations.
Indeed for light dτ2 = dt2 − dx2+dy2+dz2

c2 = 0. Thus, c2 =
∣∣d~x

dt
∣∣2 and c =

∣∣d~x
dt
∣∣. Applying a Lorentz

transformation results in c =
∣∣∣d~x′dt′

∣∣∣. This has the important consequence that the speed of light c is
the same in all coordinate systems (what we intended by the definition of (3.7)).
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3 LORENTZ TRANSFORMATIONS

A 4-dimensionial space together with this metric is called a Minkowski space. Inserting (3.6) into the
invariant condition ds2 = ds′2 gives

ds′2 = ηαβdx′αdx′β

= ηαβΛαγdxγΛβδdxδ

= ηγδdxγdxδ = ds2. (3.9)

Then we get
ΛαγΛβδηαβ = ηγδ or ΛT ηΛ = η. (3.10)

Rotations are special subcases incorporated in Λ: x′α = Λαβxβ with Λik = αik, and Λ0
0 = 1,

Λi0 = Λ0
i = 0. The entire group of Lorentz transformations (LT) is the so called Poincaré group (and

has 10 parameters). The case aα 6= 0 corresponds to the Poincaré group or inhomogeneous Lorentz
group, while the subcase aα = 0 can be described by the homogeneous Lorentz group. Translations and
rotations are subgroups of Galilean and Lorentz groups.

Consider now a Lorentz ’boost’ in the direction of the x-axis: x′2 = x2, x′3 = x3. v denotes the
relative velocity difference between IS and the boosted IS’. Then

Λαβ =


Λ0

0 Λ0
1 0 0

Λ1
0 Λ1

1 0 0
0 0 1 0
0 0 0 1

 . (3.11)

Evaluating eq. (3.10):

(γ, δ) = (0, 0) (Λ0
0)2 − (Λ1

0)2 = 1 (3.12a)

= (1, 1) (Λ0
1)2 − (Λ1

1)2 = −1 (3.12b)

= (0, 1) or (1, 0) Λ0
0Λ0

1 − Λ1
0Λ1

1 = 0 (3.12c)

The solution to this system is (
Λ0

0 Λ0
1

Λ1
0 Λ1

1

)
=
(

cosh Ψ − sinh Ψ
− sinh Ψ cosh Ψ

)
. (3.13)

For the origin of IS’ we have x′1 = 0 = Λ1
0ct+ Λ1

1vt. This way we find

tanh Ψ = −Λ1
0

Λ00
= v

c
, (3.14)

and as a function of velocity:

Λ0
0 = Λ1

1 = γ = 1√
1− v2

c2

, (3.15a)

Λ0
1 = Λ1

0 = −v/c√
1− v2

c2

. (3.15b)
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3 LORENTZ TRANSFORMATIONS

A Lorentz transformation (called a boost) along the x-axis can then be written explicitly as

x′ = x− vt√
1− v2

c2

, (3.16a)

y′ = y, (3.16b)

z′ = z, (3.16c)

ct′ =
ct− xvc√

1− v2

c2

, (3.16d)

which is valid only for |v| < c. For |v| � c, (3.16) recovers the special (no rotation) Galilean transfor-
mation x′ = x− vt, y′ = y, z′ = z and t′ = t. The parameter

Ψ = arctanh v
c

(3.17)

is called the rapidity. From this we find for the addition of parallel velocities:

Ψ = Ψ1 + Ψ2

⇒ v = v1 + v2

1 + v1v2
c2

(3.18)

3.3 Proper time

The time coordinate t in IS is the time shown by clocks at rest in IS. We next determine the proper
time τ shown by a clock which moves with velocity ~v(t). Consider a given moment t0 an IS’, which
moves with respect to IS with a constant velocity ~v0(t0). During an infinitesimal time interval dt′ the
clock can be considered at rest in IS’, thus:

dτ = dt′ =
√

1− v2
0
c2

dt. (3.19)

Indeed (3.16) with x = v0t gives t′ = t(1−v2
0/c

2)√
1−

v2
0
c2

= t

√
1− v2

0
c2 and thus (3.19).

At the next time t0 + dt, we consider an IS” with velocity ~v0 = ~v(t0 + dt) and so on. Summing up
all infinitesimal proper times dτ gives the proper time interval:

τ =
t2∫
t1

dt
√

1− v2(t)
c2

(3.20)

This is the time interval measured by an observer moving at a speed v (t) between t1 and t2 (as given
by a clock at rest in IS). This effect is called time dilation.
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4 RELATIVISTIC MECHANICS

4 Relativistic mechanics

Let us now perform the relativistic generalization of Newton’s equation of motion for a point particle.

4.1 Equations of motion

The velocity ~v can be generalized to a 4-velocity vector uα:

vi = dxi

dt → uα = dxα

dτ (4.1)

Since dτ = ds
c , dτ is invariant. With dx′α = Λαβdxβ it follows that uα transforms like dxα:

u′α = Λαβuβ (4.2)

All quantities which transforms this way are Lorentz vectors or form-vectors. The generalized equation
of motion is then

m
duα

dτ = fα. (4.3)

Both duα
dτ and fα are Lorentz vectors, therefore, (4.3) is a Lorentz vector equation: if we perform a

Lorentz transformation, we get mdu′α
dτ = f ′α. Eq. (4.3) is covariant under Lorentz transformations

and for v � c it reduces to Newton’s equations. (left hand side becomes m
(
0, d~v

dt
)
and the right hand

side
(
f0, ~f

)
=
(

0, ~K
)
). The Minkowski force f ′α is determined in any IS through a corresponding

LT: f ′α = Λαβfβ . For example ~v = −v~e1 with γ =
(

1− v2

c2

)−1/2
, leads to f ′0 = γvK1

c , f ′1 = γK1,
f ′2 = K2 and f ′3 = K3. For a general direction of velocity (−~v) we get:

f ′0 = γ
~v · ~K
c

, ~f ′ = ~K + (γ − 1)~v ~v ·
~K

v2 . (4.4)

4.2 Energy and momentum

The 4-momentum pα = muα = mdxα
dτ is a Lorentz vector. With (3.19) we get

pα =

 mc√
1− v2

c2

,
mvi√
1− v2

c2

 =
(
E

c
, ~p

)
. (4.5)

This yields the relativistic

energy : E = mc2√
1− v2

c2

= γmc2 (4.6a)

momentum : ~p = m~v√
1− v2

c2

= γm~v
v�c−−−→ ~p = m~v. (4.6b)

With (4.4), the 0-component of (4.3) becomes (in the case v � c)

dE
dt = ~v · ~K︸ ︷︷ ︸

power given
to the particle

. (4.7)
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5 TENSORS IN MINKOWSKI SPACE

This justifies to call the quantity E = γmc2 an energy. From ds2 = c2dτ2 = ηαβdxαdxβ it follows
ηαβp

αpβ = m2c2 and thus
E2 = m2c4 + c2~p 2, (4.8)

the relativistic energy-momentum relation. The limit cases are

E =
√
m2c4 + c2~p 2 ≈

mc2 + p2

2m v � c or p� mc2

cp v ∼ c or p� mc2
(4.9)

with p = |~p|. For particles with no rest mass (photons): E = cp (exact relation).

4.3 Equivalence between mass and energy

One can divide the energy into the rest energy

E0 = mc2 (4.10)

and the kinetic energy Ekin = E −E0 = E −mc2. The quantities defined in (4.6) are conserved when
more particles are involved. Due to the equivalence between energy and mass, the mass or the mass
density becomes a source of the gravitational field.

5 Tensors in Minkowski space

Let us discuss the transformation properties of physical quantities under a Lorentz transformation.
We have already seen how a 4-vector is transformed:

V α → V ′α = ΛαβV β . (5.1)

This is a so-called contravariant 4-vector (indices are up). The coordinate system transforms according
to Xα → X ′α = ΛαβXβ . A covariant 4-vector is defined through

Vα = ηαβV
β . (5.2)

Let us now define the matrix ηαβ as the inverse matrix to ηαβ :

ηαβηβγ = δαγ . (5.3)

In our case

ηαβ = ηαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (5.4)

With (5.3) we can express (5.2) equally as

V α = ηαβVβ . (5.5)
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5 TENSORS IN MINKOWSKI SPACE

The transformation of a covariant vector is then given by

V ′α = ηαβV
′β = ηαβΛβγV γ = ηαβΛβγηγδVδ = Λ̄δαVδ, (5.6)

with
Λ̄δα = ηαβΛβγηγδ (5.7)

(one can use Λαβ instead of Λ̄βα but one should be very careful in writings since Λαβ 6= Λβα). Thanks
to (3.10), we find

Λ̄γαΛαβ = ηαδη
γεΛδεΛαβ = ηγεηεβ = δγβ (5.8)

And similarly, we get ΛβαΛ̄αγ = δβγ . In matrix notation, we have ΛΛ̄ = Λ̄Λ = I and thus Λ̄ = Λ−1.
To summarize the transformations of 4-vectors:

• A contravariant vector transforms with Λ

• A covariant vector transforms with Λ−1 = Λ̄

The scalar product of two vectors V α and Uβ is defined by

V αUα = VαU
α = ηαβVαUβ = ηαβV

αUβ (5.9)

and is invariant under Lorentz transformations: V ′αU ′α = ΛαβΛ̄δα︸ ︷︷ ︸
δδ
β

V βUδ = V βUβ .

The operator ∂
∂xα transforms like a covariant vector: ∂

∂x′α = ∂xβ

∂x′α
∂
∂xβ

. Since ∂xβ

∂x′α = Λ̄βα ⇒ ∂
∂x′α =

Λ̄βα ∂
∂xβ

. We will now use the notations ∂α ≡ ∂
∂xα (covariant vector) and ∂α ≡ ∂

∂xα
(contravariant

vector). The D’Alembert operator can be written as � = ∂α∂α = ηαβ∂α∂β = 1
c2

∂2

∂t2 − ∆ and is a
Lorentz scalar.

A quantity is a rank r contravariant tensor if its components transform like the coordinates xα:

T ′α1...αr = Λα1
β1 . . .ΛαrβrT β1...βr (5.10)

Tensors of rank 0 are scalars, tensors of rank 1 are vectors. For “mixed” tensors we have for example:

T ′αβγ = ΛαδΛ̄ε βΛ̄µγT δεµ

The following operations can be used to form new tensors:

1. Linear combinations of tensors with the same upper and lower indices: Tαβ = aRαβ + bSαβ

2. Direct products of tensors: TαβV γ (works with mixed indices)

3. Contractions of tensors: Tαββ or TαβVβ (lowers a tensor by 2 in rank)

4. Differentiation of a tensor field: ∂αT βα (the derivative ∂α of any tensor is a tensor with one
additional lower index α: ∂αT βγ ≡ Rαβγ)

5. Going from a covariant to a contravariant component of a tensor is defined like in (5.2) and (5.5)
(lowering and raising indices with ηαβ , ηαβ).
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5 TENSORS IN MINKOWSKI SPACE

One must be aware that

• the order of the upper and lower indices is important,

• Λαβ is not a tensor.

η can be considered as a tensor: η = ηαβ = ηαβ is the Minkowski tensor.

η′αβ = Λ̄γαΛ̄δβηγδ
(3.10)= Λ̄γαΛ̄δβΛµγΛνδηµν

(5.8)= ηαβ

η appears in the line element (ds2 = ηαβdxαdxβ) and is thus the metric tensor in Minkowski space.
We also have ηαβ = ηαγηγβ = δαβ = ηβ

α, and thus the Kronecker symbol is also a tensor.

We define the totally antisymmetric tensor or (Levi-Civita tensor) as

εαβγδ =


+1 (α, β, γ, δ) is an even permutation of (0, 1, 2, 3)

−1 (α, β, γ, δ) is an odd permutation of (0, 1, 2, 3)

0 otherwise

(5.11)

Without proof we have: (det (Λ) = 1)

ε′αβγδ = εαβγδ,

εαβγδ = ηαα′ηββ′ηγγ′ηδδ′ε
α′β′γ′δ′ = −εαβγδ.

The functions S(x), V α(x), Tαβ . . . with x = (x0, x1, x2, x3) are a scalar field, a vector field, or a tensor
field . . . respectively if:

S′(x′) = S(x)

V ′α(x′) = ΛαβV β(x)

T ′αβ(x′) = Λαδ ΛβγT δγ(x)

...

Also the argument has to be transformed, thus x′ has to be understood as x′α = Λαβxβ .
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6 ELECTRODYNAMICS

6 Electrodynamics

Maxwell’s equations relate the fields ~E(~r, t), ~B(~r, t), the charge density ρe(~r, t) and the current density
~(~r, t):

inhomogeneous


div ~E = 4πρc

rot ~B = 4π
c
~+ 1

c

∂ ~E

∂t

homogeneous


div ~B = 0

rot ~E = −1
c

∂ ~B

∂t

(6.1)

The continuity equation
div~+ ρ̇c = 0→ ∂αj

α = 0 (6.2)

with jα = (cρe,~) follows from the conservation of charge, which for an isolated system implies
∂t

∫
j0 d3r = 0. ∂αj

α is a Lorentz scalar. We can define the field strength tensor which is given
by the antisymmetric matrix

Fαβ =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx
Ez −By Bx 0

 . (6.3)

Using this tensor we can rewrite the inhomogeneous Maxwell equations

∂αF
αβ︸ ︷︷ ︸

4−vector

= 4π
c

jβ︸︷︷︸
4−vector

, (6.4)

and also the homogeneous ones:
εαβγδ∂βFγδ = 0. (6.5)

Both equations are covariant under a Lorentz transformation. Eq. (6.5) allows to represent Fαβ as a
“curl” of a 4-vector Aα:

Fαβ = ∂αAβ − ∂βAα. (6.6)

We can then reformulate Maxwell’s equations for Aα = (φ,Ai). From (6.6) it follows that the gauge
transformation

Aα → Aα + ∂αΘ (6.7)

of the 4-vector Aα leaves Fαβ unchanged, where Θ(x) is an arbitrary scalar field. The Lorenz gauge
∂αA

α = 0 leads to the decoupling of the inhomogeneous Maxwell’s equation (6.4) to

�Aα = 4π
c
jα. (6.8)

The generalized equation of motion for a particle with charge q is

m
duα

dτ = q

c
Fαβuβ (6.9)
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7 ACCELERATED REFERENCE SYSTEMS IN SPECIAL RELATIVITY

The spatial components give the expression of the Lorentz force d~p
dt = q

(
~E + ~v

c
∧ ~B

)
with ~p = γm~v.

The energy-momentum tensor for the electromagnetic field is

Tαβem = 1
4π

(
FαγF

γβ + 1
4η

αβFγδF
γδ

)
(6.10)

The 00-component represents the energy density of the field T 00
em = uem = 1

8π

(
~E2 + ~B2

)
and the

0i-components the Poynting vector ~Si = cT 0i
em = c

4π

(
~E ∧ ~B

)i
. In terms of these tensors, Maxwell’s

equations are ∂αTαβem = −1
c
F βγjγ . Tαβem is symmetric and conserved: ∂αT

αβ
em = 0. Setting β = 0

leads to energy conservation whereas ∂αTαkem = 0 leads to conservation of the kth component of the
momentum. One should note that ∂αTαβem = 0 is valid only if there is no external force, otherwise we
can write ∂αTαβem = fβ , where fβ is the external force density. Such an external force can often be
included in the energy-momentum tensor.

7 Accelerated reference systems in special relativity

Non inertial systems can be considered in the context of special relativity. However, then the physical
laws no longer have their simple covariant form. In e.g. a rotating coordinate system, additional terms
will appear in the equations of motion (centrifugal terms, Coriolis force, etc.).

Let us look at a coordinate system KS’ (with coordinates x′µ) which rotates with constant angular
speed with respect to an inertial system IS (xα):

x = x′ cos(ωt′)− y′ sin(ωt′),

y = x′ sin(ωt′) + y′ cos(ωt′),

z = z′,

t = t′,

(7.1)

and assume that ω2(x′2 + y′2) � c2. Then we insert (7.1) into the line element ds (in the known IS
form):

ds2 = ηαβdxαdxβ = c2dt2 − dx2 − dy2 − dz2

=
[
c2 − ω2(x′2 + y′2)

]
dt′2 + 2ωy′dx′dt′ − 2ωx′dy′dt′ − dx′2 − dy′2 − dz′2

= gµνdx′µdx′ν . (7.2)

The resulting line element is more complicated. For arbitrary coordinates x′µ, ds2 is a quadratic form
of the coordinate differentials dx′µ. Consider a general coordinate transformation from xµ (in IS) to
x′µ (in KS’):

xα ≡ xα(x′) = xα(x′0, x′1, x′2, x′3), (7.3)
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7 ACCELERATED REFERENCE SYSTEMS IN SPECIAL RELATIVITY

then we get for the line element

ds2 = ηαβdxαdxβ = ηαβ
∂xα

∂x′µ
∂xβ

∂x′ν
dx′µdx′ν = gµν(x′)dx′µdx′ν , (7.4)

with
gµν(x′) = ηαβ

∂xα

∂x′µ
∂xβ

∂x′ν
. (7.5)

The quantity gµν is the metric tensor of the KS’ system. It is symmetric (gµν = gνµ) and depends on
x′. It is called metric because it defines distances between points in coordinate systems.

In an accelerated reference system we get inertial forces. In the rotating frame we expect to
experience the centrifugal force ~Z, which can be written in terms of a centrifugal potential φ:

φ = −ω
2

2 (x′2 + y′2) and ~Z = −m~∇φ. (7.6)

This enables us to see that g00 from (7.2) is

g00 = 1 + 2φ
c2
. (7.7)

The centrifugal potential appears in the metric tensor. We will see later that the first derivatives of
the metric tensor are related to the forces in the relativistic equations of motion. To get the meaning
of t′ in KS’ we evaluate (7.2) at a point with dx′ = dy′ = dz′ = 0:

dτ = dsclock

c
= √g00 dt′ =

√
1 + 2φ

c2
dt′ =

√
1− v2

c2︸ ︷︷ ︸
correspond to clocks
time computed in
an inertial system

dt (7.8)

τ represents the time of a clock at rest in KS’.
In an inertial system we have gµν = ηµν and the clock moves with speed v = ωρ (ρ =

√
x′2 + y′2).

With (7.6) we see that both expressions in (7.8) are the same.
The coefficients of the metric tensor gµν(x′) are functions of the coordinates. Such a dependence

will also arise when one uses curved coordinates. Consider for example cylindrical coordinates:

x′0 = ct = x0, x′1 = ρ, x′2 = θ, x′3 = z.

This results in the line element

ds2 = c2dt2 − dx2 − dy2 − dz2 = c2dt2 − dρ2 − ρ2dθ2 − dz2 = gµν(x′)dx′µdx′ν . (7.9)

Here gµν is diagonal:

gµν =


1
−1

−ρ2

−1

 . (7.10)

The fact that the metric tensor depends on the coordinates can be either due to the fact that the
considered coordinate system is accelerated or that we are using non-cartesian coordinates.
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8 THE EQUIVALENCE PRINCIPLE

Part III

Towards General Relativity
8 The equivalence principle

The principle of equivalence of gravitation and inertia tells us how an arbitrary physical system re-
sponds to an external gravitational field (with the help of tensor analysis). The physical basis of
general relativity is the equivalence principle as formulated by Einstein:

1. Inertial and gravitational mass are equal

2. Gravitational forces are equivalent to inertial forces

3. In a local inertial frame, we experience the known laws of special relativity without gravitation

8.1 About the masses

The inertial mass mt is the quantity appearing in Newton’s law ~F = mt ~a which acts against accelera-
tion by external forces. In contrast, the gravitational mass ms is the proportionality constant relating
the gravitational force between mass points to each other. For a particle moving in a homogeneous
gravitational field, we have the equation mtz̈ = −msg, whose solution is

z(t) = −1
2
ms

mt
gt2 (+v0t+ z0). (8.1)

Galilei stated that “all bodies fall at the same rate in a gravitational field”, i.e. ms
mt

is the same for
all bodies. Another experiment is to consider the period T of a pendulum (in the small amplitude
approximation):

(
T
2π
)2 = ms

mt
l
g , where l is the length of the pendulum. Newton verified that this period

is independent on the material of the pendulum to a precision of about 10−3. Eötvös (∼1890), using
torsion balance, got a precision of about 5 × 10−9. Today’s precision is about 10−11 ∼ 10−12, this is
way we can make the assumption ms = mt on safe grounds.

Due to the equivalence between energy and mass (E = mc2), all forms of energy contribute to
mass, and due to the first point of the equivalence principle, to the inertial and to the gravitational
masses.

8.2 About the forces

As long as gravitational and inertial masses are equal, then gravitational forces are equivalent to inertial
forces: going to a well-chosen accelerated reference frame, one can get rid of the gravitational field. As
an example take the equation of motion in the homogeneous gravitational field at Earth’s surface:

mt
d2~r

dt2 = ms~g (8.2)
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8 THE EQUIVALENCE PRINCIPLE

This expression is valid for a reference system which is at rest on Earth’s surface (∼ to a good
approximation an IS). Then we perform the following transformation to an accelerated KS system:

~r = ~r ′ + 1
2~gt
′2, t = t′, (8.3)

and we assume gt � c. The origin of KS ~r ′ = 0 moves in IS with ~r(t) = 1
2~gt

2. Then, inserting (8.3)
into (8.2) results in

mt
d2

dt′2

(
~r ′ + 1

2~gt
′2
)

= ms~g

⇒ mt
d2~r ′

dt′2 = (ms −mt)~g. (8.4)

If ms = mt, the resulting equation in KS is the one of a free moving particle d2~r ′

dt′2 = 0; the gravitational
force vanishes. As another example in a “free falling elevator” the “observer” does not feel any gravity.

Einstein generalized this finding postulating that (this is the Einstein equivalence principle) “in a
free falling accelerated reference system all physical processes run as if there is no gravitational field”.
Notice that the “mechanical” finding is now expanded to all types of physical processes (at all times
and places). Moreover also non-homogeneous gravitational fields are allowed. The equality of inertial
and gravitational mass is also called the weak equivalence principle (or universality of the free fall).

As an example of a freely falling system, consider a satellite in orbit around Earth (assuming that
the laboratory on the satellite is not rotating). Thus the equivalence principle states that in such a
system all physical processes run as if there would be no gravitational field. The processes run as in an
inertial system: the local IS. However, the local IS is not an inertial system, indeed the laboratory on
the satellite is accelerated compared to the reference system of the fixed distant stars. The equivalence
principle implies that in a local IS the rules of special relativity apply.

• For an observer on the satellite laboratory all physical processes follow special relativity and
there are neither gravitational nor inertial forces.

• For an observer on Earth, the laboratory moves in a gravitational field and moreover inertial
forces are present, since it is accelerated.

The motion of the satellite laboratory, i.e. its free falling trajectory, is such that the gravitational
forces and inertial forces just compensate each other (cf (8.4)). The compensation of the forces is
exactly valid only for the center of mass of the satellite laboratory. Thus the equivalence principle
applies only to a very small or local satellite laboratory (”how small” depends on the situation).

The equivalence principle can also be formulated as follows:

“At every space-time point in an arbitrary gravitational field, it is possible to choose a
locally inertial coordinate system such that, within a sufficiently small region around the
point in question, the laws of nature take the same form as in non-accelerated Cartesian
coordinate systems in the absence of gravitation.”2

2Notice the analogy with the axiom Gauss took as a basis of non-Euclidean geometry: he assumed that at any point
on a curved surface we may erect a locally Cartesian coordinate system in which distances obey the law of Pythagoras.
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8 THE EQUIVALENCE PRINCIPLE

The equivalence principle allows us to set up the relativistic laws including gravitation; indeed one can
just perform a coordinate transformation to another KS:

special relativity laws
without

gravitation

}
coordinate−−−−−−−−−−→

transformation

{relativistic laws
with

gravitation

The coordinate transformation includes the relative acceleration between the laboratory system and
KS which corresponds to the gravitational field. Thus from the equivalence principle we can derive the
relativistic laws in a gravitational field. However, it does not fix the field equations for gµν(x) since
those equations have no analogue in special relativity.

From a geometrical point of view the coordinate dependence of the metric tensor gµν(x) means
that space is curved. In this sense the field equations describe the connection between curvature of
space and the sources of the gravitational field in a quantitative way.

8.3 Riemann space

We denote with ξα the Minkowski coordinates in the local IS (e.g. the satellite laboratory). From the
equivalence principle, the special relativity laws apply. In particular, we have for the line element

ds2 = ηαβdξαdξβ . (8.5)

Going from the local IS to a KS with coordinates xµ is given by a coordinate transformation ξα =
ξα(x0, x1, x2, x3). Inserting this into (8.5) results in

ds2 = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
dxµdxν = gµν(x)dxµdxν , (8.6)

and thus gµν(x) = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν
. A space with such a path element of the form (8.6) is called a Riemann

space.
The coordinate transformation (expressed via gµν) also describes the relative acceleration between

KS and the local IS. Since at two different points of the local IS the accelerations are (in general)
different, there is no global transformation in the form (8.6) that can be brought to the Minkowski
form (8.5). We shall see that gµν are the relativistic gravitational potentials, whereas their derivatives
determine the gravitational forces.
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8 THE EQUIVALENCE PRINCIPLE

Figure 1: An experimenter and his two stones freely floating somewhere in outer space, i.e. in the
absence of forces.

Figure 2: Constant acceleration upwards mimics the effect of a gravitational field: experimenter and
stones drop to the bottom of the box.
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Figure 3: The effect of a constant gravitational
field: indistinguishable for our experimenter from
that of a constant acceleration as in figure 2.

Figure 4: Free fall in a gravitational field has the
same effect as no gravitational field (figure 1): ex-
perimenter and stones float.

Figure 5: The experimenter and his stones in a
non-uniform gravitational field: the stones will ap-
proach each other slightly as they fall to the bot-
tom of the elevator.

Figure 6: The experimenter and stones freely
falling in a non-uniform gravitational field: the ex-
perimenter floats, so do the stones, but they move
closer together, indicating the presence of some
external forces.
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9 Physics in a gravitational field

9.1 Equations of motion

According to the equivalence principle, in a local IS the laws of special relativity hold. For a mass
point on which no forces act we have

d2ξα

dτ2 = 0, (9.1)

where the proper time τ is defined through ds2 = ηαβdξαdξβ = c2dτ2. We can also define the 4-velocity
as uα = dξα

dτ . Solutions of (9.1) are straight lines

ξα = aατ + bα. (9.2)

Light (or a photon) moves in the local IS on straight lines. However, for photons τ cannot be identified
with the proper time since on the light cone ds = cdτ = 0. Thus we denote by λ a parameter of the
trajectory of photons:

d2ξα

dλ2 = 0. (9.3)

Let us now consider a global coordinate system KS with xµ and metric gµν(x). At all points xµ, one can
locally bring ds2 into the form ds2 = ηαβdξαdξβ . Thus at all points P there exists a transformation
ξα(x) = ξα(x0, x1, x2, x3) between ξα and xµ. The transformation varies from point to point. Consider
a small region around point P . Inserting the coordinate transformation into the line element, we get

ds2 = ηαβdξαdξβ = ηαβ
∂ξα

∂xµ
∂ξβ

∂xν︸ ︷︷ ︸
≡gµν(x) metric tensor

dxµdxν . (9.4)

We write (9.1) in the form

0 = d
dτ

(
∂ξα

∂xµ
dxµ

dτ

)
= ∂ξα

∂xµ
d2xµ

dτ2 + ∂2ξα

∂xµ∂xν
dxµ

dτ
dxν

dτ ,

multiply it by ∂xκ

∂ξα and make use of ∂ξ
α

∂xµ
∂xκ

∂ξα = δκµ. This way we can solve for d2xµ

dτ2 and get the following
equation of motion in a gravitational field

d2xκ

dτ2 = −Γκµν
dxµ

dτ
dxν

dτ , (9.5)

with
Γκµν = ∂xκ

∂ξα
∂2ξα

∂xµ∂xν
. (9.6)

The Γκµν are called the Christoffel symbols and represent a pseudo force or fictive gravitational field
(like centrifugal or Coriolis forces) that arises whenever one describes inertial motion in non-inertial
coordinates. Eq. (9.5) is a second order differential equation for the functions xµ(τ) which describe
the trajectory of a particle in KS with gµν(x). Eq. (9.5) can also be written as mduα

dτ = fα, uα = dxα
dτ .

Comparing with (4.3) one infers that the right hand side of (9.5) describes the gravitational forces.
Due to (9.4), the velocity dxµ

dτ has to satisfy the condition

c2 = gµν
dxµ

dτ
dxν

dτ (for m 6= 0) (9.7)
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(assume dτ 6= 0 and m 6= 0). Due to (9.7) only 3 of the 4 components of dxµ
dτ are independent (this

is also the case for the 4-velocity in special relativity). For photons (m = 0) one finds instead, using
(9.3), a completely analogous equation for the trajectory:

d2xκ

dλ2 = −Γκµν
dxµ

dλ
dxν

dλ , (9.8)

and since dτ = ds = 0, one has instead of (9.7):

0 = gµν
dxµ

dλ
dxν

dλ (for m = 0).

9.2 Christoffel symbols

The Christoffel symbols can be expressed in terms of the first derivatives of gµν . Consider with (9.4):

∂gµν
∂xλ

+ ∂gλν
∂xµ

− ∂gµλ
∂xν

=ηαβ

 ∂2ξα

∂xµ∂xλ
∂ξβ

∂xν
+
���

���∂ξα

∂xµ
∂2ξβ

∂xν∂xλ︸ ︷︷ ︸
1



+ ηαβ

 ∂2ξα

∂xλ∂xµ
∂ξβ

∂xν
+
��

����∂ξα

∂xλ
∂2ξβ

∂xν∂xµ︸ ︷︷ ︸
2



− ηαβ


�

���
��∂2ξα

∂xµ∂xν
∂ξβ

∂xλ︸ ︷︷ ︸
2

+
�
���

��∂ξα

∂xµ
∂2ξβ

∂xλ∂xν︸ ︷︷ ︸
1

 .

Using ηαβ = ηβα this becomes

= 2ηαβ
∂2ξα

∂xµ∂xλ
∂ξβ

∂xν
. (9.9)

On the other hand

gνσΓσµλ =

gνσ︷ ︸︸ ︷
ηαβ

∂ξα

∂xν ︸ ︷︷ ︸
δβρ

∂ξβ

∂xσ

Γσµλ︷ ︸︸ ︷
∂xσ

∂ξρ
∂2ξρ

∂xµ∂xλ

= ηαβ
∂ξα

∂xν
∂2ξβ

∂xµ∂xλ

= 1
2

[
∂gµν
∂xλ

+ ∂gλν
∂xµ

− ∂gµλ
∂xν

]
. (9.10)

We introduce the inverse matrix gµν such that gµνgνσ = δµσ. Therefore we can solve with respect to
the Christoffel symbols:

Γκµλ = 1
2g

κν

[
∂gµν
∂xλ

+ ∂gλν
∂xµ

− ∂gµλ
∂xν

]
. (9.11)
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9 PHYSICS IN A GRAVITATIONAL FIELD

Note that the Γ’s are symmetric in the lower indices Γκµν = Γκνµ. The gravitational forces on the right
hand side of (9.6) are given by derivatives of gµν . Comparing with the equation of motion of a particle
in a electromagnetic field shows that the Γλµν correspond to the field Fαβ , whereas the gµν correspond
to the potentials Aα.

9.3 Newtonian limit

Let us assume that vi � c and the fields are weak and static (i.e. not time dependent). Thus
dxi
dτ �

dx0

dτ . Inserting this into (9.5) leads to

d2xκ

dτ2 = −Γκµν
dxµ

dτ
dxν

dτ

small
velocity︷︸︸︷
≈ −Γκ00

(
dx0

dτ

)2

. (9.12)

For static fields we get from (9.11):

Γκ00

staticity︷︸︸︷= −g
κi

2
∂g00

∂xi
(i = 1, 2, 3) (9.13)

(the other terms contain partial derivative with respect to x0 which are zero by staticity). We write
the metric tensor as gµν = ηµν +hµν . For weak fields we have |hµν | = |gµν − ηµν | � 1. In this case the
coordinates (ct, xi) are “almost” Minkowski coordinates. Inserting the expansion for gµν into (9.13)
(taking only linear terms in h) gives

Γκ00 =
(

0, 1
2
∂h00

∂xi
δki

)
. (9.14)

Then, let us compute (9.12) for κ = 0, κ = j:

d2t

dτ2 = 0⇒ dt
dτ = constant

choice︷︸︸︷= 1, (9.15a)

d2xj

dτ2 = −c
2

2
∂h00

∂xj

(
dt
dτ

)2

︸ ︷︷ ︸
12

. (9.15b)

Taking (xj) = ~r, we can write
d2~r

dt2 = −c
2

2 ∇h00(~r), (9.16)

which is to be compared with the Newtonian case d2~r

dt2 = −∇φ(~r). Therefore:

g00(~r) = 1 + h00(~r) = 1 + 2φ(~r)
c2

. (9.17)

Notice that the Newtonian limit (9.16) gives no clue on the other components of hµν . The quantity
2φ
c2 is a measure of the strength of the gravitational field. Consider a spherically symmetric mass
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10 TIME DILATION

distribution. Then

2φ(R)
c2

≈ 1.4× 10−9 at Earth surface,

≈ 4× 10−6 on the Sun (and similar stars),

≈ 3× 10−4 on a white dwarf,

≈ 3× 10−1 on a neutron star → GR required.

10 Time dilation

We study a clock in a static gravitational field and the phenomenon of gravitational redshift.

10.1 Proper time

The proper time τ of the clock is defined through the 4-dimensional line element as

dτ = dsclock

c
= 1
c

(√
gµν(x)dxµdxν

)
clock

, (10.1)

x = (xµ) are the coordinates of the clock. The time shown by the clock depends on both the gravita-
tional field and of its motion (the gravitational field being described by gµν).

Special cases:

1. Moving clock in an IS without gravity :

dτ =
√

1− v2

c2
dt

(gµν = ηµν , dxi = vidt, dx0 = cdt).

2. Clock at rest in a gravitational field (dxi = 0)

dτ = √g00 dt.

For a weak static field, one has with (9.17):

dτ =
√

1 + 2φ(r)
c2

dt (|φ| � c2). (10.2)

The fact that φ is negative implies that a clock in a gravitational field goes more slowly than a
clock outside the gravitational field.

10.2 Redshift

Let us now consider objects which emit or absorb light with a given frequency. Consider only a static
gravitational field (gµν does not depend on time). A source in ~rA (at rest) emits a monochromatic
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10 TIME DILATION

electromagnetic wave at a frequency νA. An observer at ~rB , also at rest, measures a frequency νB .

At source: dτA =
√
g00(~rA)dtA

At observer: dτB =
√
g00(~rB)dtB

(10.3)

As a time interval we consider the time between two following peaks departing from A or arriving
at B. In this case dτA and dτB correspond to the period of the electromagnetic waves at A and B,
respectively, and therefore

dτA = 1
νA
, dτB = 1

νB
. (10.4)

Going from A to B needs the same time ∆t for the first and the second peak of the electromagnetic
wave. Consequently, they will arrive with a time delay which is equal to the one with which they were
emitted, thus dtA = dtB . With (10.3) and (10.4) we get:

νA
νB

=

√
g00(~rB)
g00(~rA) , with z = νA

νB
− 1 = λB

λA
− 1. (10.5)

The quantity z is the gravitational redshift:

z =

√
g00(~rB)
g00(~rA) − 1. (10.6)

For weak fields with g00 = 1 + 2φ
c2 we have

z = φ(~rB)− φ(~rA)
c2

(|φ| � c2), (10.7)

such a redshift is observed by measuring spectral lines from stars. As an example take solar light with
(10.7)

z = φ(rB)− φ(rA)
c2

≈ −φ(rA)
c2

= GM�
c2R�

≈ 2× 10−6,

withM� ≈ 2×1030 kg and R� ≈ 7×108 m. For a white dwarf we find z ≈ 10−4 and for a neutron star
z ≈ 10−1. In general there are 3 effects which can lead to a modification in the frequency of spectral
lines:

1. Doppler shift due to the motion of the source (or of the observer)

2. Gravitational redshift due to the gravitational field at the source (or at the observer)

3. Cosmological redshift due to the expansion of the Universe (metric tensor is time dependent)

10.3 Photon in a gravitational field

Consider a photon with energy Eγ = ~ω = 2π~ν, travelling upwards in the homogeneous gravity field
of the Earth, covering a distance of h = hB − hA (h small). The corresponding redshift is

z = νA
νB
− 1 = φ(rB)− φ(rA)

c2
= g(hB − hA)

c2
= gh

c2
, (10.8)
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resulting in a frequency change ∆ν = νB − νA (νA > νB , νB = ν) and thus

∆ν
ν

= −gh
c2
. (10.9)

The photon changes its energy by ∆Eγ = −Eγc2 gh (like a particle with mass Eγ
c2 = m). This effect has

been measured in 1965 (through the Mössbauer effect) as ∆νexp
∆νth

= 1.00± 0.01 (1% accuracy)3.

11 Geometrical considerations

In general, the coordinate dependence of gµν(x) means that spacetime, defined through the line element
ds2, is curved. The trajectories in a gravitational field are the geodesic lines in the corresponding
spacetime.

11.1 Curvature of space

The line element in an N -dimensional Riemann space with coordinates x = (x1, . . . , xN ) is given as

ds2 = gµνdxµdxν (µ, ν = 1, . . . , N).

Let us just consider a two dimensional space x = (x1, x2) with

ds2 = g11dx1dx1 + 2g12dx1dx2 + g22dx2dx2. (11.1)

Examples:

• Plane with Cartesian coordinates (x1, x2) = (x, y):

ds2 = dx2 + dy2, (11.2)

or with polar coordinates (x1, x2) = (ρ, φ):

ds2 = dρ2 + ρ2dφ2 (11.3)

• Surface of a sphere with angular coordinates (x1, x2) = (θ, φ):

ds2 = a2 (dθ2 + sin2 θdφ2) (11.4)

The line element (11.2) can, via a coordinate transformation, be brought into the form (11.3). However,
there is no coordinate transformation which brings (11.4) into (11.2). Thus:

• The metric tensor determines the properties of the space, among which is also the curvature.

• The form of the metric tensor is not uniquely determined by the space, in other words it depends
on the choice of coordinates.

3Pound, R. V. and Snider, J. L., Effect of Gravity on Gamma Radiation, Physical Review, 140

30



11 GEOMETRICAL CONSIDERATIONS

The curvature of the space is determined via the metric tensor (and it does not depend on the coordinate
choice)4. If gik = const then the space is not curved. In an Euclidian space, one can introduce Cartesian
coordinates gik = δik. For a curved space gik 6= const (does not always imply that space is curved).
For instance by measuring the angles of a triangle and checking if their sum amounts to 180 degrees
or differs, one can infer if the space is curved or not (for instance by being on the surface of a sphere).

4Beside the curvature discussed here, there is also an exterior curvature. We only consider intrinsic curvatures here.
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12 DIFFERENTIABLE MANIFOLDS

Part IV

Differential Geometry
12 Differentiable manifolds

A manifold is a topological space that locally looks like the Euclidean Rn space with its usual topology.
A simple example of a curved space is the S2 sphere: one can setup local coordinates (θ, ϕ) which map
S2 onto a plane R2 (a chart). Collections of charts are called atlases. There is no one-to-one map of
S2 onto R2; we need several charts to cover S2.

Definition: Given a (topological) spaceM, a chart onM is a one-to-one map φ from an open subset
U ⊂ M to an open subset φ(U) ⊂ Rn, i.e. a map φ : M→ Rn. A chart is often called a coordinate
system. A set of charts with domain Uα is called an atlas ofM, if

⋃
α
Uα =M, {φα|α ∈ I}.

Definition: dimM = n

Definition: Two charts φ1, φ2 are C∞-related if both the maps φ2 ◦ φ−1
1 : φ1(U1 ∩ U2) → φ2(U1 ∩ U2)

and its inverse are C∞. φ2 ◦φ−1
1 is the so-called transition function between the two coordinate charts.

A collection of C∞ related charts such that every point ofM lies in the domain of at least one chart
forms an atlas (C∞: derivatives of all orders exist and are continuous).

The collection of all such C∞-related charts forms a maximal atlas. IfM is a space and A its maximal
atlas, the set (M, A) is a (C∞)-differentiable manifold. (If for each φ in the atlas the map φ : U → Rn

has the same n, then the manifold has dimension n.)

Important notions:

• A differentiable function f : M → R belongs to the algebra F = C∞(M), sum and product of
such functions are again in F = C∞(M).

• Fp is the algebra of C∞-functions defined in any neighbourhood of p ∈ M (f = g means f(q) =
g(q) in some neighbourhood of p).

• A differentiable curve is a differentiable map γ : R→M.

• Differentiable maps F :M→M′ are differentiable if φ2 ◦ F ◦ φ−1
1 is a differentiable map for all

suitable charts φ1 ofM and φ2 ofM′.

The notions have to be understood by means of a chart, e.g. f : M → R is differentiable if x 7→
f(p(x)︸︷︷︸
∈M

) ≡ f(x) is differentiable. This is independent of the chart representing a neighbourhood of p.
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M
U1

U2

Rn

X

Rn

X̄

p

x x̄

φ1 φ2

φ2 ◦ φ−1
1

(Chart φ1) ⊂ Rn (Chart φ2) ⊂ Rn

Figure 7: Manifold, charts and transition function.

12.1 Tangent vectors and tangent spaces

At every point p of a differentiable manifoldM one can introduce a linear space, called tangent space
Tp(M). A tensor field is a (smooth) map which assigns to each point p ∈M a tensor of a given type
on Tp(M).

Definition: a C∞-curve in a manifold M is a map γ of the open interval I = (a, b) ⊂ R → M such
that for any chart φ, φ ◦ γ : I → Rn is a C∞ map.
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12 DIFFERENTIABLE MANIFOLDS

Let f :M→ R be a smooth function onM. Consider the map f ◦ γ : I → R, t 7→ f(γ(t)). This has
a well-defined derivative: the rate of change of f along the curve. Consider f ◦ φ−1︸ ︷︷ ︸

Rn→R
xi→f(xi)

=f(φ−1(xi))

◦ φ ◦ γ︸ ︷︷ ︸
I→Rn

t→xi(γ(t))

and

use the chain rule:
d
dt (f ◦ γ) =

n∑
i=1

(
∂

∂xi
f(xi)

)
dxi(γ(t))

dt . (12.1)

Thus, given a curve γ(t) and a function f , we can obtain a qualitatively new object
[

d
dt (f ◦ γ)

]∣∣∣∣
t=t0

,

the rate of change of f along the curve γ(t) at t = t0.

Definition: The tangent vector γ̇p to a curve γ(t) at a point p is a map from the set of real functions
f defined in a neighbourhood of p to R defined by

γ̇p : f 7→
[

d
dt (f ◦ γ)

]
p

= (f ◦ γ)•p = γ̇p(f). (12.2)

Given a chart φ with coordinates xi, the components of γ̇p with respect to the chart are

(xi ◦ γ)•p =
[

d
dtx

i(γ(t))
]
p

. (12.3)

The set of tangent vectors at p is the tangent space Tp(M) at p.

Theorem: If the dimension ofM is n, then Tp(M) is a vector space of dimension n (without proof).

We set γ(0) = p (t = 0), Xp = γ̇p, and Xpf = γ̇p(f). Eq. (12.3) determines Xp(xi), the components
of Xp with respect to a given basis:

Xpf = [f ◦ γ]•(0)

=
[
f ◦ φ−1 ◦ φ ◦ γ

]•(0)

=
n∑
i=1

∂

∂xi
(f ◦ φ−1) d

dt (x
i ◦ γ)(0)

=
∑
i

(
∂

∂xi
f(x1, . . . , xn)

)(
Xp(xi)

)
.

(12.4)

This way we see that

Xp =
∑
i

(
Xp(xi)

)( ∂

∂xi

)
p

, (12.5)

and so the
(

∂

∂xi

)
p

span Tp(M). From (12.5) we see that Xp(xi) are the components of Xp with

respect to the given basis (Xp(xi) = Xi
p or Xi).
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Suppose that f, g are real functions on M and fg : M → R is defined as fg(p) = f(p)g(p). If
Xp ∈ Tp(M), then (Leibniz rule)

Xp(fg) = (Xpf)g(p) + f(p)(Xpg). (12.6)

Notation: (Xf)(p) = Xpf , p ∈M.

Basis of Tp(M): Tp = TP (M) has dimension n. In any basis (e1, . . . , en) we have X = Xiei. Changes
of basis are given by

ēi = φi
kek, X̄i = φikX

k. (12.7)

The transformations φik and φik are inverse transposed of each other. In particular, ei = ∂
∂xi is called

coordinate basis (with respect to a chart). Upon change of chart x 7→ x̄,

φi
k = ∂xk

∂x̄i
, φik = ∂x̄i

∂xk
. (12.8)

Definition: The cotangent space T ∗p (or dual space T ∗p of Tp) consists of covectors ω ∈ T ∗p , which are
linear one-forms ω : X 7→ ω(X) ≡< ω,X >∈ R (ω : Tp → R).

In particular for functions f , df : X 7→ Xf is an element of T ∗p . The elements df = f,i dxi =
(
∂f
∂xi

)
dxi

form a linear space of dimension n, therefore all of T ∗p .
We can define a dual basis (e1, . . . , en) of T ∗p : ω = ωie

i. In particular the dual basis of a basis
(e1, . . . , en) of Tp is given by< ei, X >= Xi or< ei, Xjej >= Xj < ei, ej >︸ ︷︷ ︸

δij

= Xi. Thus ωi =< ω, ei >.

Upon changing the basis, the ωi transform like the ei and the ei like the Xi (see (12.7)). In particular
we have for the coordinate basis ei = ∂

∂xi , e
i = dxi (< ei, ej >=< dxi, ∂

∂xj >= δij). The change of
basis is:

∂

∂x̄i
= ∂xk

∂x̄i
∂

∂xk
= φi

k ∂

∂xk

dx̄i = ∂x̄i

∂xk
dxk = φikdxk

(Similar to co- and contravariant vectors.)

Tensors on Tp are multilinear forms on T ∗p and Tp, i.e. a tensor T of type
(1

2
)
(for short T ∈ ⊗1

2Tp):
T (ω,X, Y ) is a trilinear form on T ∗p × Tp × Tp. The tensor product is defined between tensors of any
type, i.e. T (ω,X, Y ) = R(ω,X)S(Y ) : T = R⊗ S. In components:

T (ω,X, Y ) = T (ei, ej , ek)︸ ︷︷ ︸
≡T ijk

ωiX
jY k︸ ︷︷ ︸

ei(ω)ej(X)ek(Y )

, (12.9)

hence T = T ijk ei⊗ ej ⊗ ek. Any tensor of any type can therefore be obtained as a linear combination
of tensor products X ⊗ ω ⊗ ω′ with X ∈ Tp, ω, ω′ ∈ T ∗p . A change of basis can be performed similarly
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to the ones for vectors and covectors:

T̄ ijk = Tαβγφ
i
αφj

βφk
γ (12.10)

Trace: any bilinear form b ∈ T ∗p ⊗ Tp determines a linear form l ∈ (Tp ⊗ T ∗p )∗ such that l(X ⊗ ω) =
b(X,ω). In particular trT is a linear form on tensors T of type

(1
1
)
, defined by tr(X ⊗ ω) =< ω,X >.

In components with respect to a dual pair of bases we have: trT = Tαα. Similarly T ijk 7→ Sk = T iik

defines for instance a map from tensors of type
(1

2
)
to tensors of type

(0
1
)
.

12.2 The tangent map

Definition: Let ϕ be a differentiable map: M→ M̄ and let p ∈M, p̄ = ϕ(p). Then ϕ induces a linear
map (“push-forward”):

ϕ∗ : Tp(M)→ Tp̄(M̄),

which we can describe in two ways:

(a) For any f̄ ∈ Fp̄(M̄) (F : space of all smooth functions onM (or M̄), that is C∞ map f :M→ R):

(ϕ∗X)f̄ = X(f̄ ◦ ϕ)

(b) Let γ be a representative of X (X = γ̇p, see (12.2) and (12.3)). Then let γ̄ = ϕ ◦ γ be a
representative of ϕ∗X. This agrees with (a) since d

dt f̄(γ̄(t))
∣∣
t=0 = d

dt (f̄ ◦ ϕ)(γ(t))
∣∣
t=0.

With respect to bases (e1, . . . , en) of Tp and (ē1, . . . , ēn) of Tp̄(M̄), this reads X̄ = ϕ∗X: X̄i = (ϕ∗)ikXk

with (ϕ∗)ik =< ēi, ϕ∗ek > or in case of coordinate bases: (ϕ∗)ik = ∂x̄i

∂xk
.

Definition: The adjoint map (or “pull-back”) ϕ∗ of ϕ∗ is defined as ϕ∗ : T ∗p̄ → T ∗p , ω̄ 7→ ϕ∗ω̄ (= ω in
T ∗p ) with < ϕ∗ω̄,X >=< ω̄, ϕ∗X >. The same result is obtained from the definition

ϕ∗ : df̄ 7→ d(f̄ ◦ ϕ), f̄ ∈ F(M̄). (12.10a)

In components, ω = ϕ∗ω̄ reads ωk = ω̄i(ϕ∗)ik.

Consider (local) diffeomorphisms, i.e. maps ϕ such that ϕ−1 exists in a neighbourhood of p̄. Note that
dimM = dimM̄ and det

(
∂x̄i

∂xj

)
6= 0. Then ϕ∗ and ϕ∗, as defined above, are invertible and may be

extended to tensors of arbitrary types.

Example: tensor of type
(1

1
)

(ϕ∗T )(ω̄, X̄) = T (ϕ∗ω̄︸︷︷︸
ω

, ϕ−1
∗ X̄︸ ︷︷ ︸
X

),

(ϕ∗T̄ )(ω,X) = T̄ ((ϕ∗)−1ω︸ ︷︷ ︸
ω̄

, ϕ∗X︸︷︷︸
X̄

).
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Here, ϕ∗ and ϕ∗ are the inverse of each other and we have

ϕ∗(T ⊗ S) = (ϕ∗T )⊗ (ϕ∗S),

tr(ϕ∗T ) = ϕ∗(trT ),
(12.11)

and similarly for ϕ∗. In components T̄ = ϕ∗T reads

T̄ ik = Tαβ
∂x̄i

∂xα
∂xβ

∂x̄k
(in a coordinate basis). (12.12)

This is formally the same as for transformation (12.10) when changing basis.

13 Vector and tensor fields

Definition: If to every point p of a differentiable manifoldM a tangent vector Xp ∈ Tp(M) is assigned,
then we call the map X: p 7→ Xp a vector field onM.

Given a coordinate system xi and associated basis
(
∂
∂xi

)
p
for each Tp(M), Xp has components Xi

p with
Xp = Xi

p

(
∂
∂xi

)
p
and Xi

p = Xp(xi) (see (12.5)). Eq. (12.8) shows how Xi
p transform under coordinate

transformations. The quantity Xf is called the derivative of f with respect to the vector field X. The
following rules apply:

X(f + g) = Xf +Xg,

X(fg) = (Xf)g + f(Xg) (Leibnitz rule).
(13.1)

The vector fields onM form a linear space on which the following operations are defined as well:

X 7→ fX (multiplication by f ∈ F),

X, Y 7→ [X,Y ] = XY − Y X (commutator).

[X,Y ], unlike XY , satisfies the Leibniz rule (13.1). The components of the commutator of two vector
fields X, Y relative to a local coordinate basis can be obtained by its action on xi. Thus using
X = Xi ∂

∂xi and Y = Y k ∂
∂xk

we get

[X,Y ]j = (XY − Y X)xj

Y xj = Y k
∂xj

∂xk
= Y kδjk = Y j

XY j = Xk ∂

∂xk
(Y j) = Xk Y j ,k︸︷︷︸

∂Y j

∂xk

⇒ XY j − Y Xj = XkY j ,k − Y kXj
,k

In a local coordinate basis, the bracket [∂k, ∂j ] clearly vanishes since Xk = 1 and Y k = 1, thus Xk
,j = 0

and Y k,j = 0.
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The Jacobi identity holds:
[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (13.2)

Definition: Let Tp(M)rs be the set of all tensors of rank (r, s) defined on Tp(M) (contravariant of rank
r, covariant of rank s). If we assign to every p ∈ M a tensor tp ∈ Tp(M)rs, then the map t : p 7→ tp

defines a tensor field of type
(
r
s

)
.

Algebraic operations on tensor fields are defined point-wise; for instance the sum of two tensor fields
is defined by (t+ s̃)p = tp + s̃p where t, s̃ ∈ Tp(M)rs. Tensor products and contractions of tensor fields
are defined analogously. Multiplication by a function f ∈ F(M) is given by (ft)p = f(p)tp. In a
neighbourhood U of p, having coordinates (x1, . . . , xn) a tensor field can be expanded in the form

t = ti1...ir j1...js︸ ︷︷ ︸
components of t relative
to the coordinate system

(x1, . . . , xn)

(
∂

∂xi1
⊗ . . .⊗ ∂

∂xir

)
⊗
(
dxj1 ⊗ . . .⊗ dxjs

)
. (13.3)

If the coordinates are transformed to (x̄1, . . . , x̄n) the components of t transform according to

t̄i1...ir j1...js ≡ tk1...kr
l1...ls

∂x̄i1

∂xk1
. . .

∂x̄ir

∂xkr
∂xl1

∂x̄j1
. . .

∂xls

∂x̄js
. (13.4)

(We shall consider C∞ tensor fields). Covariant tensors of order 1 are also called one-forms. The set
of tensor fields of type

(
r
s

)
is denoted by T rs (M).

Definition: A pseudo-Riemannian metric on a differentiable manifoldM is a tensor field g ∈ T 0
2 (M)

having the properties:

(i) g(X,Y ) = g(Y,X) for all X,Y

(ii) For every p ∈ M, gp is a non-degenerate (6= 0) bilinear form on Tp(M). This means that
gp(X,Y ) = 0 for all X ∈ Tp(M) if and only if Y = 0.

The tensor field g ∈ T 0
2 (M) is a (proper) Riemannian metric if gp is positive definite at every point p.

Definition: A (pseudo-)Riemannian manifold is a differentiable manifoldM, together with a (pseudo-)
Riemannian metric g.

13.1 Flows and generating vector fields

A flow is a 1-parametric group of diffeomorphisms: ϕt : M → M, s, t ∈ R with ϕt ◦ ϕs = ϕt+s. In
particular ϕ0 = id. Moreover, the orbits (or integral curves) of any point p ∈ M, t 7→ ϕt(p) ≡ γ(t)
shall be differentiable. A flow determines a vector field X by means of

Xf = d
dt (f ◦ ϕt)

∣∣∣∣
t=0

(13.5)
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13 VECTOR AND TENSOR FIELDS

i.e. Xp = d
dtγ(t)

∣∣
t=0 = γ̇(0) (see (12.2) and (12.3)). γ̇(0) is the tangent vector to γ at the point

p = γ(0). At the point γ(t) we have then

γ̇(t) = d
dtϕt(p) = d

ds (ϕs ◦ ϕt) (p)
∣∣∣∣
s=0

= Xϕt(p)

i.e. γ(t) solves the ordinary differential equation:

γ̇(t) = Xγ(t), γ(0) = p. (13.6)

The generating vector field determines the flow uniquely. Not always does (13.6) admit global solutions
(i.e. for all t ∈ R), however for most purposes, “local flows” are good enough.
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14 Lie derivative

The derivative of a vector field V rests on the comparison of Vp and Vp′ at nearby points p, p′. Since
Vp ∈ Tp and Vp′ ∈ Tp′ belong to different spaces their difference can be taken only after Vp′ has been
transported to Vp. This can be achieved by means of the tangent map ϕ∗ (Lie transport). The Lie
derivative LXR of a tensor field R in direction of a vector field X is defined by

LXR = d
dtϕ

∗
tR

∣∣∣∣
t=0

, (14.1)

or more explicitly (LXR)p = d
dtϕ

∗
tRϕt(p)

∣∣∣∣
t=0

. Here ϕt is the (local) flow generated by X, where

ϕ∗tRϕt(p) is a tensor on Tp depending on t.

p

ϕt(p)

Rp

R ◦ ϕt(p)

ϕ−t∗ (R ◦ ϕt(p)) = ϕ∗t (R ◦ ϕt(p))

LXR = d
dtϕ

∗
tR

∣∣∣∣
t=0

= lim
t→0

1
t

(ϕ∗tR−R)

t→ ϕt(p) = γ(t);Xp = d
dtγ(t)|t=0 = γ̇(0)

(ϕ∗ is the inverse of ϕ∗ )

Figure 8: Illustration of the Lie derivative

In order to express LX in components we write ϕt in a chart: ϕt : x 7→ x̄(t), and linearize it for small
t: x̄i = xi + tXi(x) +O(t2), xi = x̄i − tXi(x̄) +O(t2), thus ∂2x̄i

∂xk∂t
= − ∂2xi

∂x̄k∂t
= Xi

,k at t = 0.
As an example, let R be of type

(1
1
)
. By (12.12) we have (ϕ∗tR)ij(x) = Rαβ(x̄) ∂x

i

∂x̄α
∂x̄β

∂xj . Taking
(according to (14.1)) a derivative with respect to t at t = 0 yields

(LXR)ij = Rij,kX
k −RαjXi

,α +RiβX
β
,j (14.2)

(first term: ∂

∂x̄k
Rαβ(x̄)︸ ︷︷ ︸

Rαβ,k(x̄)

∂x̄k

∂t︸︷︷︸
Xk

∂xi

∂x̄α
∂x̄β

∂xj

∣∣∣∣
t=0

= Rij,kX
k).
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14 LIE DERIVATIVE

Properties of LX :

(a) LX is a linear map from tensor fields to tensor fields of the same type.

(b) LX(trT ) = tr(LXT )

(c) LX(T ⊗ S) = (LXT )⊗ S + T ⊗ (LXS)

(d) LXf = Xf (f ∈ F(M))

(e) LXY = [X,Y ] (Y vector field)

(proof: (a) follows from (14.1), (b) and (c) from (12.11), (d) from (13.5), whereas (e) is more involved).

Further properties of LX : if X,Y are vector fields and λ ∈ R, then

(i) LX+Y = LX + LY , LλX = λLX

(ii) L[X,Y ] = [LX , LY ] = LX ◦ LY − LY ◦ LX

“Proof” of (ii): Apply it to f ∈ F(M),

[LX , LY ]f = LX ◦ LY f − LY ◦ LXf = LX(Y f)− LY (Xf) = XY f − Y Xf = [X,Y ]f = L[X,Y ]f.

Next apply it on a vector field Z:

[LX , LY ]Z =
(e)

[X, [Y,Z]]− [Y, [X,Z]] =
Jacobi
identity

[[X,Y ], Z] = L[X,Y ]Z.

For higher rank tensors the derivation follows from the use of (c).
If [X,Y ] = 0 then LXLY = LY LX and for φ and ψ, which are the flows generated by X and Y , one
finds: φs ◦ ψt = ψt ◦ φs.
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15 Differential forms

Definition: A p-form Ω is a totally antisymmetric tensor field of type
(0
p

)
Ω(Xπ(1), . . . , Xπ(p)) = (sign π)Ω(X1, . . . , Xp)

for any permutation π of {1, . . . , p} (π ∈ Sp (group of permutations)) with sign π being its parity. For
p > dimM, Ω ≡ 0. Any tensor field of type

(0
p

)
can be antisymmetrized by means of the operation A:

(AT )(X1, . . . , Xp) = 1
p!
∑
π∈Sp

(sign π)T (Xπ(1), . . . , Xπ(p)) (15.1)

with A2 = A. The exterior product of a p1-form Ω1 with a p2-form Ω2 is the (p1 + p2)-form:

Ω1 ∧ Ω2 = (p1 + p2)!
p1! p2! A(Ω1 ⊗ Ω2) (15.2)

Properties:

• Ω1 ∧ Ω2 = (−1)p1p2 Ω2 ∧ Ω1

• Ω1 ∧ (Ω2 ∧ Ω3) = (Ω1 ∧ Ω2) ∧ Ω3 = (p1 + p2 + p3)!
p1! p2! p3! A(Ω1 ⊗ Ω2 ⊗ Ω3)

The components in a local basis (e1, . . . , en) of 1-forms are

Ω = Ωi1...ipei1 ⊗ . . .⊗ eip = AΩ

= Ωi1...ipA(ei1 ⊗ . . .⊗ eip)

=
n∑

i1=1
· · ·

n∑
ip=1

Ωi1...ip
1
p!e

i1 ∧ . . . ∧ eip

=
∑

1≤i1<...<ip≤n
Ωi1...ipei1 ∧ . . . ∧ eip (15.3)

A covariant tensor of rank p, which is antisymmetric under exchange of any pair of indices (i.e. is a
p-form), in n dimensions has

(
n
p

)
= n!

(n−p)!p! independent components.

Examples:

• For 1-forms A, B (vector fields) we have

(A ∧B)ik = AiBk −AkBi = (−1)(B ∧A)ik.

• For a 2-form A and a 1-form B

(A ∧B)ikl = AikBl +AklBi +AliBk, (15.4)
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since

A ∧B = (1 + 2)!
1! 2! A(A⊗B)

= 3!
1! 2! (AikBl)

1
3!e

i ∧ ek ∧ el

= 1
2(AikBl)ei ∧ ek ∧ el

= 1
2

1
3(AikBl + cyclic permutations)ei ∧ ek ∧ el

= (AikBl + cyclic permutations) 1
3!e

i ∧ ek ∧ el.

Thus by comparing with (15.3) we get (15.4).

15.1 Exterior derivative of a differential form

The derivative df of a 0-form f ∈ F is the 1-form df(X) = Xf : the argument X (vector) acts as
a derivation. In a local coordinate basis: df = ∂f

∂xi
dxi. The exterior derivative is performed by an

operator d applied to forms, converting p-forms to (p + 1)-forms. The derivative dΩ of a 1-form Ω is
given by

dΩ(X1, X2) = X1Ω(X2)−X2Ω(X1)− Ω([X1, X2]). (15.5)

This expression is verified as follows:

X1Ω(X2) = X1 〈Ω, X2〉︸ ︷︷ ︸
1-form

= Xi
1
∂

∂xi︸︷︷︸
,i

(
ΩkXk

2
)

= Xi
1Ωk,iXk

2 +Xi
1ΩkXk

2,i,

X2Ω(X1) = Xk
2 Ωi,kXi

1 +Xk
2 ΩiXi

1,k,

Ω([X1, X2]) = 〈Ω, X1X2 −X2X1〉 = Ωi(X1X2 −X2X1)i = Ωi
(
Xk

1X
i
2,k −Xk

2X
i
1,k
)
,

then

dΩ(X1, X2) = (Ωk,i − Ωi,k)Xi
1X

k
2 .

This is manifestly a 2-form (the coefficient also fits the expectations: 1
2!

(1+1)!
1!1! = 1). One can easily

verify that
dΩ(fX1, X2) = fdΩ(X1, X2). (15.6)

For Ω ∧ f = fΩ (as f is a 0-form), the product rule

d(Ω ∧ f) = dΩ ∧ f − Ω ∧ df
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15 DIFFERENTIAL FORMS

applies, as one can verify

d(Ω ∧ f)(X1, X2) =
(15.5)

X1(fΩ)(X2)−X2(fΩ)(X1)− (fΩ)([X1, X2]),

and

X1(fΩ)(X2) = Xi
1
∂

∂xi
(fΩkXk

2 ) = fXi
1
∂

∂xi
(
ΩkXk

2
)

︸ ︷︷ ︸
fX1Ω(X2)

+Xi
1
∂f

∂xi
ΩkXk

2︸ ︷︷ ︸
df(X1)Ω(X2)

.

So

d(f ∧ Ω)(X1, X2) = fdΩ(X1, X2)︸ ︷︷ ︸
dΩ∧f

+ Ω(X2)df(X1)− Ω(X1)df(X2)︸ ︷︷ ︸
−Ω∧df

. (15.7)

Moreover we have d2f = 0, since

d2f(X1, X2) =
(15.5)

X1df(X2)−X2df(X1)− df([X1, X2])

= X1X2f −X2X1f − [X1, X2]f = 0.

(15.8)

The generalization of the definition to a p-form Ω gives

dΩ(X1, .. , Xp+1) =
p+1∑
i=1

(−1)i−1XiΩ(X1, .. , X̂i, .. , Xp+1)

+
p+1∑
i<j

(−1)i+jΩ([Xi, Xj ], X1, .. , X̂i, .. , X̂j , .. , Xp+1), (15.9)

whereˆmeans omission, e.g. (X1, X̂2, X3) = (X1, X3).

One can show that the following properties hold:

(a) d is a linear map from p-forms to p+ 1-forms,

(b) d(Ω1 ∧ Ω2) = dΩ1 ∧ Ω2 + (−1)p1Ω1 ∧ dΩ2,

(c) d2 = 0, i.e. d(dΩ) = 0,

(d) df(X) = Xf (f ∈ F),

By means of (a)-(d) we have an alternative definition of d. By eq. (15.3) we have with respect to a
coordinate basis

Ω = 1
p!Ωi1...ipdxi1 ∧ . . . ∧ dxip , and hence (15.10a)

dΩ =︸︷︷︸
ddxip=0

1
p!dΩi1...ip ∧ dxi1 ∧ . . . ∧ dxip (15.10b)
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Components:

p! dΩ = Ωi1...ip,i0 dxi0 ∧ dxi1 ∧ . . . ∧ dxip

= −Ωi0i2...ip,i1dxi0 ∧ . . . ∧ dxip

= (−1)kΩi0...̂ik...ip,ikdxi0 ∧ . . . ∧ dxip (k = 0, . . . , p)

⇒ dΩ = 1
p!

1
p+ 1︸ ︷︷ ︸

1
(p+1)!

p∑
k=0

(−1)kΩi0...̂ik...ip,ik︸ ︷︷ ︸
(dΩ)i0...ip

dxi0 ∧ . . . ∧ dxip (15.11)

Examples:

• p = 1:
(dΩ)ik = Ωk,i − Ωi,k (15.12)

• p = 2:
(dΩ)ikl = Ωik,l + Ωkl,i + Ωli,k (15.13)

Consider a map ϕ :M→ M̄ and ϕ∗ : T ∗p̄ (M̄)→ T ∗p (M); then

ϕ∗ ◦ d = d ◦ ϕ∗. (15.14)

A “proof” is found by using (15.10), (12.11) and property (b). It suffices to verify (15.14) on 0-forms
and 1-forms. For 0-forms f̄ , (15.14) is identical to (12.10a). For 1-forms which are differentials df̄ ,
due to (c) we have

(ϕ∗ ◦ d)(df̄) = 0 (d2f̄ = 0),

(d ◦ ϕ∗)(df̄) = d(ϕ∗ ◦ df̄) =
(12.10a)
(ϕ∗◦ df̄)
=d(f̄◦ϕ)

d(d(f̄ ◦ ϕ)) = d2(f̄ ◦ ϕ) = 0.

Setting ϕ = ϕt (the flow generated by X) and forming (14.1) (LXR = d
dtϕ
∗
tR
∣∣
t=0), one obtains the

infinitesimal version of (15.14):
LX ◦ d = d ◦ LX . (15.15)

Definition: A p-form ω with

• ω = dη is exact

• dω = 0 is closed

An exact p-form is always closed (d2η = 0), but the converse is not generally true (Poincaré lemma
gives conditions under which the converse is valid).5 6

5η is not unique since gauge transformations η 7→ η + dρ, with ρ any (p− 1)-form, leave dη unchanged.
6This is a generalization of the results of three-dimensional vector analysis: rot grad f = 0 and div rot~k = 0.
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The integral of an n-form:

M is orientable within an atlas of “positively oriented” charts, if det
(
∂x̄i

∂xj

)
> 0 for any change of

coordinates. For an n-form ω (n = dimM):

ω = ωi1...in
1
n!dx

i1 ∧ . . . ∧ dxin = ω1...n︸ ︷︷ ︸
ω(x)

dx1 ∧ . . . ∧ dxn (15.16)

is determined by the single component ω(x); under a change of coordinates ω(x) transforms like

ω̄(x̄) = ω̄1...n = ωi1...in︸ ︷︷ ︸
totally

antisymmetric

∂xi1

∂x̄1 · · ·
∂xin

∂x̄n
= ω(x) det

(
∂xi

∂x̄j

)
. (15.17)

The integral of a n-form is defined as follows:∫
M

ω =
∫
U

dx1 . . . dxn ω(x1, . . . , xn) (if the support of ω is contained in a chart U).

This integral is independent of the choice of coordinates, since in different coordinates∫
dx1 . . . dxn ω(x) =

∫
dx̄1 . . . dx̄n ω(x)

∣∣∣∣det
(
∂xi

∂x̄j

)∣∣∣∣ and (15.17) applies. 7 8

15.2 Stokes theorem

Let D be a region in a n dimensional differentiable manifoldM. The boundary ∂D consists of those
p ∈ D whose image x in some chart satisfies e.g. x1 = 0. One can show that ∂D is a closed (n − 1)
dimension submanifold of M. If M is orientable then ∂D is also orientable. D shall have a smooth
boundary and be such that D̄ is compact. Then for every (n− 1)-form ω we have∫

D

dω =
∫
∂D

ω (15.18)

15.3 The inner product of a p-form

Definition: Let X be a vector field onM. For any p-form Ω we define the inner product as

(iXΩ)(X1, . . . , Xp−1) ≡ Ω(X,X1, . . . , Xp−1) (15.19)

(and zero if p = 0).

Properties:
7Actually, it is often impossible to cover the whole manifold with a single set of coordinates. In the general case it is

necessary to introduce different sets of coordinates in different overlapping patches of the manifold, with the constraint
that in the overlap between the patch with coordinate xi and another patch with coordinate x̄i, the xi can be expressed
in a smooth one-to-one way as functions of x̄i and vice-versa (orientable manifold).

8The integral over a p-form over the overlap between two patches (xi and x̄i) can be evaluated using either coordinate

system, provided det
(
∂xi

∂x̄j

)
> 0.

46



15 DIFFERENTIAL FORMS

(a) iX is a linear map from p-forms to (p− 1)-forms,

(b) iX(Ω1 ∧ Ω2) = (iXΩ1) ∧ Ω2 + (−1)p1Ω1 ∧ (iXΩ2),

(c) iX2 = 0,

(d) iXdf = Xf = 〈df,X〉 with f ∈ F(M),

(e) LX = iX ◦ d + d ◦ iX .

Proof of (e): for 0-forms f we have

LXf = Xf,

iX ◦ df +����d ◦ iXf
=0

= iXdf = Xf,

and for 1-forms df

LXdf =
(15.15)

LX◦d=d◦LX

d(LXf) = d(Xf),

iX ◦��ddf
=0

+ d ◦ iXdf = d(Xf).

Application: Gauss theorem

Let X be a vector field. Then d(iXη) is an n-form with dim M = n. η is an n-form, and if ηp 6= 0 ∀p ∈
M, then η is a “volume form”. A function divηX ∈ F is defined through

(divηX)η = d(iXη) = LXη.
9 (15.20)

We can apply Stokes theorem since d(iXη) is an n-form and thus iXη an (n− 1)-form:∫
D

d(iXη) =
∫
D

(divηX)η =
∫
∂D

iXη. (15.21)

The standard volume form η is given by η =
√
|g|dx1 ∧ . . . ∧ dxn.

9dη = 0, thus LX = iX ◦ d + d ◦ iX applied on η gives LXη = iX ◦��dη + d(iXη).

47



16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Expression for divηX in local coordinates:

Let η = a(x) dx1 ∧ . . . ∧ dxn, X = Xi ∂
∂xi . Then since (divηX)η = LXη, we have (using property (c)

of the Lie derivative):

LXη = (Xa) dx1 ∧ . . . ∧ dxn + a

n∑
i=1

dx1 ∧ . . . ∧ d(Xxi) ∧ . . . ∧ dxn.

Since d(Xxi) = d(Xk ∂

∂xk
xi︸ ︷︷ ︸

δi
k

) = dXi(x) = Xi
,jdxj , but dx1 ∧ . . . ∧ dxj ∧ . . . ∧ dxn 6= 0 only if j = i

(otherwise we have two identical dxi) we find

LXη = Xa︸︷︷︸
Xi ∂a

∂xi

dx1 ∧ . . . ∧ dxn + a

n∑
i=1

Xi
,idx1 ∧ . . . ∧ dxn

= (Xia,i + aXi
,i)

1
a
η

⇒ divηX = 1
a

(aXi),i = 1√
|g|

(√
|g|Xi

)
,i

for the “standard” η. (15.22)

16 Affine connections: Covariant derivative of a vector field

Definition: An affine (linear) connection or covariant differentiation on a manifold M is a mapping
∇ which assigns to every pair X,Y of C∞ vector fields onM another C∞ vector field ∇XY with the
following properties:

(i) ∇XY is bilinear in X and Y ,

(ii) if f ∈ F(M), then

∇fXY = f∇XY,

∇X(fY ) = f∇XY +X(f)Y.

(16.1)

Lemma: Let X and Y be vector fields. If X vanishes at the point p onM, then ∇XY also vanishes at
p.

Proof: Let U be a coordinate neighbourhood of p. On U we have the representation X = ξi ∂
∂xi ,

ξi ∈ F(U) with ξi(p) = 0. Then (∇XY )p = ∇ξi ∂

∂xi
Y = ξi(p)︸ ︷︷ ︸

=0

[∇ ∂

∂xi
Y ]p = 0.

Since ∇XY produces again a vector field, the result of the covariant differentiation can only be a linear
combination of again the basis in the current chart. This leads us to the following statement:
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Definition: One sets, relative to a chart (X1, . . . , Xn) for U ⊂M:

∇ ∂

∂xi

(
∂

∂xj

)
= Γkij

∂

∂xk
(16.2)

The n3 functions Γkij ∈ F(U) are called Christoffel symbols (or connection coefficients) of the connection
∇ in a given chart.10

The Christoffel symbols are not tensors:

∇ ∂
∂x̄a

(
∂

∂x̄b

)
= Γ̄cab

∂

∂x̄c
= Γ̄cab

∂xk

∂x̄c
∂

∂xk
. (16.3)

If we use (16.1):

∇ ∂
∂x̄a

(
∂

∂x̄b

)
= ∇( ∂xi

∂x̄a
∂

∂xi

) (∂xj
∂x̄b

∂

∂xj

)
= ∂xi

∂x̄a

[
∂xj

∂x̄b
Γkij

∂

∂xk
+ ∂

∂xi

(
∂xj

∂x̄b

)
∂

∂xj

]

= ∂xi

∂x̄a
∂xj

∂x̄b
Γkij

∂

∂xk
+ ∂2xj

∂x̄a∂x̄b
∂

∂xj
.

Comparison with 16.3:

∂xk

∂x̄c
Γ̄cab = ∂xi

∂x̄a
∂xj

∂x̄b
Γkij + ∂2xk

∂x̄a∂x̄b

⇒ Γ̄cab = ∂xi

∂x̄a
∂xj

∂x̄b
∂x̄c

∂xk
Γkij + ∂x̄c

∂xk
∂2xk

∂x̄a∂x̄b
(16.4)

The second term is not compatible with being a tensor.
If for every chart there exist n3 functions Γkij which transform according to (16.4) under a change

of coordinates, then one can show that there exists a unique affine connection ∇ onM which satisfies
(16.3).

Definition: for every vector field X we can introduce the tensor ∇X ∈ T 1
1 (M) defined by

∇X(Y, ω) ≡ 〈ω,∇YX〉 , (16.5)

where ω is a one-form. ∇X is called the covariant derivative of X.

In a chart (x1, . . . , xn), let X = ξi∂i and ∇X = ξi;jdxj ⊗ ∂i (< dxi, ∂i >= δik):

ξi;j = ∇X(∂j ,dxi) =
〈
dxi,∇∂jX

〉
=
〈
dxi, ξk,j∂k + ξkΓδjk∂δ

〉
= ξi,j + Γijkξk 11 (16.6)

10For a pseudo-Riemannian manifold, the corresponding connection coefficients are given by (9.6) or (9.11).
11semicolon shall denote the covariant derivative (”normal derivative” + additional terms, that vanish in (cartesian)

Euclidean or Minkowski space)
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

16.1 Parallel transport along a curve

Definition: let γ : I →M be a curve inM with velocity field γ̇(t), and let X be a vector field on some
open neighbourhood of γ(I). X is said to be autoparallel along γ if

∇γ̇X = 0. (16.7)

The vector ∇γ̇X is sometimes denoted as DX
dt or ∇Xdt (covariant derivative along γ). In terms of

coordinates, we have X = ξi∂i, γ̇ = dxi
dt ∂i (see (12.3)). With (16.1) and (16.2) we get

∇γ̇X = ∇ dxi
dt ∂i

(ξk∂k)

= dxi

dt ∇∂i(ξ
k∂k)

= dxi

dt

[
ξkΓjik∂j + ∂iξ

k∂k

]
= dxi

dt
[
ξjΓkij∂k + ∂iξ

k∂k
]

=
[

dξk

dt + Γkij
dxi

dt ξ
j

]
∂k, (16.8)

where we used dxi

dt
∂ξk

∂xi
= dξk

dt . This shows that ∇γ̇X only depends on the values of X along γ. In
terms of coordinates we get for (16.7)

dξk

dt + Γkij
dxi

dt ξ
j = 0. (16.9)

For a curve γ and any two point γ(s) and γ(t) consider the mapping

τt,s : Tγ(s)(M)→ Tγ(t)(M),

which transforms a vector v(s) at γ(s) into the parallel transported vector v(t) at γ(t). The mapping
τt,s is the parallel transport along γ from γ(s) to γ(t). We have τs,s = 1 and τr,s ◦ τs,t = τr,t.

We can now give a geometrical interpretation of the covariant derivative that will be generalized
to tensors. Let X be a vector field along γ, then

∇γ̇X(γ(t)) = d
ds

∣∣∣∣
s=t

τt,sX(γ(s)), (16.10)

Proof: Let’s work in a given chart. By construction, v(t) = τt,sv(s) with v(s) ∈ Tγ(s)(M) and due to
(16.8) it satisifies: v̇i + Γikj ẋkvj = 0. If we write (τt,sv(s))i = (τt,s)ijv

j(s) = vi(t) (with τt,s = (τs,t)−1
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

M

γ(s)

γ(t)
γ

v(s)

v(t)τt,s

Figure 9: Illustration of parallel transport.

and τs,s = 1), we get

v̇i(s) = d
dt

∣∣∣∣
t=s

vi(t)

= d
dt

∣∣∣∣
t=s

[
(τt,s)ijv

j(s)
]

=
(

d
dt

∣∣∣∣
t=s

(τt,s)ij

)
vj(s)

= −Γikj ẋkvj(s).

⇒ d
dt

∣∣∣∣
t=s

(τt,s)ij = −Γikj ẋk (16.11)

Since τt,s = (τs,t)−1, d
ds
∣∣
s=t (τt,s)ij = − d

dt
∣∣
t=s (τt,s)ij = Γikj ẋk. Then

d
ds

∣∣∣∣
s=t

[τt,sX(γ(s))]i =
(

d
ds

∣∣∣∣
s=t

τt,s

)i
j

Xj + d
ds

∣∣∣∣
s=t

Xi(γ(s))

= Γikj ẋkXj +Xi
,j

dxj(γ(s))
ds

∣∣∣∣
s=t

,

which is again (16.8) (X = ξi∂i and the second term gives dξi
dt ).
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Definition: If ∇XY = 0, then Y is said to be parallel transported with respect to X.

Geometrical interpretation of parallel transport: Consider the differential dAi = Ai,jdxj = Ai(x +
dx)− Ai(x). In order that the difference of two vectors be a vector, we have to consider them at the
same position. The transport has to be chosen such that for cartesian coordinates there is no change
in transporting it. The covariant derivative exactly achieves this.

Definition: Let X be a vector field such that ∇XX = 0. Then the integral curves of X are called
geodesics.

In local coordinates xi the curve is given by (using (12.3) and (13.6)) the requirement d
dtx

i(t) =
Xi(x(t)). Inserting this into (16.8) and using d2xi

dt2 = dXi
dt , we get

ẍk + Γkij ẋiẋj = 0. (16.12)

For a vector parallel transported along a geodesic, its length and angle with the geodesic does not
change.

16.2 Round trips by parallel transport

Consider (16.8) and denote ξi = vi, thus

v̇i = −Γikj ẋkvj . (16.13)

Let γ : [0, 1]→M be a closed path, wih γ(0) = p = γ(1). Displace a vector v0 ∈ Tp(M) parallel along
γ and obtain the field v(t) = τt,0v0 ∈ Tγ(t)(M). We assume that the closed path is sufficiently small
(such that we can work in the image of some chart), thus we can expand Γikj(x) around the point
x(0) = x0 on the curve:

Γikj(x) ' Γikj(x0) + (xρ − xρ0) ∂

∂xρ
Γikj(x)

∣∣∣∣
x=x0

+ · · · (16.14)

Thus (16.13) is to first order in (xk − xk0):

t∫
0

v̇i dt = vi(t)− vi0 = −
t∫

0

Γikj vj︸︷︷︸
'vj0

ẋk dt ≈ −Γikj(x0)vj0

t∫
0

ẋk dt

︸ ︷︷ ︸
xk(t)−xk0

,

taking only the first term in the expansion of Γ. And hence,

vi(t) = vi0 − Γikj(x0)(xk(t)− xk0)vj0 + · · · (16.15)
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N

E

S

W
C

1

2

34

α

Figure 10: Illustration of the path dependence of parallel transport on a curved space: vector 1 at N
can be parallel transported along the geodesic N-S to C, giving rise to vector 2. Alternatively, it can
be first transported along the geodesic N-S to E (vector 3) and then along E-W to C to give the vector
4. Clearly these two are different. The angle α between them reflects the curvature of the two-sphere.

By plugging (16.14) and (16.15) into (16.13), we obtain an equation valid to second order:
1∫

0

v̇i dt = −
1∫

0

Γikj ẋkvjdt (16.16)

vi(1)− vi0 ' −
1∫

0

(
Γikj(x0) + (xρ − xρ0) ∂

∂xρ
Γikj(x0) + · · ·

)
×

(
vj0 − Γj

k̃j̃
(x0)(xk̃(t)− xk̃0)vj̃0 + · · ·

)
ẋk dt.

53



16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

Multiplying out and discarding terms of third order or higher in xk − xk0 , we get:

vi(1) ' vi0 − Γikj(x0)vj0

1∫
0

ẋk dt

︸ ︷︷ ︸
xk(1)−xk(0)

=0

−
[
∂

∂xρ
Γikj(x0)− Γi

kj̃
(x0)Γj̃ρj(x0)

]
vj0

1∫
0

(xρ − xρ0)ẋk dt.

Since we are considering a closed path (
∫ 1

0 ẋ dt = xk(1)− xk(0) = 0),

∆vi = vi(1)− vi(0) = −
[
∂

∂xρ
Γikj(x0)− Γikl(x0)Γlρj(x0)

]
vj0

1∫
0

xρẋk dt,

with

1∮
0

xρẋk dt =
1∮

0

d
dt (x

ρxk) dt

︸ ︷︷ ︸
=0

−
1∮

0

ẋρxk dt = −
1∮

0

ẋρxk dt,

antisymmetric in (ρ, k). Then

∆vi = −1
2

[
∂

∂xρ
Γikj − ΓiklΓlρj −

∂

∂xk
Γiρj + ΓiρlΓlkj

]
(x0)︸ ︷︷ ︸

−Ri
jkρ

vj0

1∫
0

xρẋk dt,

∆vi = 1
2R

i
jkρ(x0)vj0

1∫
0

xρẋk dt. (16.17)

We shall see that Rijkρ is the curvature tensor.

Rijkρ = ∂

∂xk
Γiρj −

∂

∂xρ
Γikj + ΓlρjΓikl − ΓlkjΓiρl (16.18)

Thus an arbitrary vector vi will not change when parallel transported around an arbitrary small closed
curve at x0 if and only if Rijkρ vanishes at x0.

16.3 Covariant derivatives of tensor fields

The parallel transport is extended to tensors by means of the requirements:

τs,t(T ⊗ S) = (τs,tT )⊗ (τs,tS),

τs,t tr(T ) = tr(τs,tT ),

τs,t c = c (c ∈ R).
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16 AFFINE CONNECTIONS: COVARIANT DERIVATIVE OF A VECTOR FIELD

For e.g. a covariant vector ω, 〈τs,t ω, τs,tX〉γ(s) = 〈ω,X〉γ(t) and for a tensor of type
(1

1
)
: τs,t T (τs,t ω, τs,tX) =

T (ω,X). In components:
(τs,tT )ik = Tαβ(τs,t)iα(τs,t)kβ (16.19)

(τik is inverse transpose of τ ik). The covariant derivative ∇X (X vector field, T tensor field) associated
to τ is

(∇XT )p = d
dt τ0,tTγ(t)

∣∣∣∣
t=0

, (16.20)

with γ(t) any curve with γ(0) = p and γ̇(0) = Xp (generalization of (16.10)).

Properties of the covariant derivative:

(a) ∇X is a linear map from tensor fields to tensor fields of the same type
(
r
r

)
,

(b) ∇Xf = Xf ,

(c) ∇X(trT ) = tr(∇XT ),

(d) ∇X(T ⊗ S) = (∇XT )⊗ S + T ⊗ (∇XS).

This follows from the properties of τs,t. For a 1-form ω we have:

(∇Xω)(Y ) = tr(∇Xω ⊗ Y )

= tr(∇X(ω ⊗ Y ))− tr(ω ⊗∇XY )

= ∇X tr(ω ⊗ Y )− ω(∇XY )

= Xω(Y )− ω(∇XY ). (16.21)

General differentiation rule for a tensor field of type
(1

1
)
:

(∇XT )(ω, Y ) = XT (ω, Y )− T (∇Xω, Y )− T (ω,∇XY ) (16.22)

Due to (a)-(d), the operation ∇X is completely determined by its action on vector fields Y , which are
the affine connections (see (16.1) and (16.2)).

16.4 Local coordinate expressions for covariant derivative

Let T ∈ T qp (U) be a tensor of rank (p, q) with local coordinates (x1, . . . , xn) valid in a region U . We
have T i1...ip j1...jq ∂i1 ⊗ . . .⊗ ∂ip ⊗ dxj1 ⊗ . . .⊗ dxjq and X = Xk∂k. Let us use

XT i1...ip j1...jq = XkT i1...ip j1...jq,k (16.23)

and write (16.2):
∇X(∂i) = Xk∇∂k∂i = XkΓlki∂l . (16.24)
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Moreover,

(∇Xdxj)(∂i)
(16.21)= X

〈
dxj , ∂i

〉︸ ︷︷ ︸
δji︸ ︷︷ ︸
0

−
〈
dxj ,∇X∂i

〉

= −XkΓjki ,

or ∇Xdxj = −XkΓjkidx
i. (16.25)

Using (16.23), (16.24) and (16.25) for ωj = dxj , Yi = ∂i we obtain the following expression for ∇XT :

T i1...ip j1...jq ;k = T i1...ip j1...jq,k + Γi1kl T
li2...ip

j1...jq + . . .+ Γipkl T
i1...ip−1l

j1...jq

− Γlkj1 T
i1...ip

lj2...jq − . . .− Γlkjq T
i1...ip

j1...jq−1l. (16.26)

Examples:

• Contravariant and covariant vector fields:

ξi;k = ξi,k + Γiklξl,

ηi;k = ηi,k − Γlkiηl,

• Kronecker tensor:
δij;k = 0,

• Tensor
(1

1
)
:

T ik;r = T ik,r + ΓirlT lk − ΓlrkT il.

The covariant derivative of a tensor is again a tensor. Consider the covariant derivative of the metric
gµν :

gµν;λ = ∂gµν
∂xλ

− Γρλµgρν − Γρλνgρµ. (16.27)

Inserting into this the expressions of Γρλµ given by (9.11) leads us to

gµν;λ = 0. (16.28)

This is not surprising since gµν;λ vanishes in locally inertial coordinates and being a tensor it is then
zero in all systems.

Covariance principle: Write the appropriate special relativistic equations that hold in the absence of
gravitation, replace ηαβ by gαβ , and replace all derivatives with covariant derivatives (, → ;). The resulting
equations will be generally covariant and true in the presence of gravitational fields.
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17 Curvature and torsion of an affine connection, Bianchi iden-
tities

Let an affine connection be given onM, let X, Y , Z be vector fields.

Definition:

T (X,Y ) = ∇XY −∇YX − [X,Y ] (17.1)

R(X,Y ) = ∇X∇Y −∇Y∇X −∇[X,Y ] (17.2)

T (X,Y ) is antisymmetric and f -linear in X, Y and then defines a tensor of type
(1

2
)
through:

(ω,X, Y )→ 〈ω, T (X,Y )〉 is thus a
(1

2
)
tensor field called the torsion tensor.

f -linearity:
T (fX, gY ) = fgT (X,Y ) f, g,∈ F(M).

In local coordinates, the components of the torsion tensor are given by:

T kij =
〈
dxk, T (∂i, ∂j)

〉
=
〈

dxk,∇∂i∂j︸ ︷︷ ︸
=Γl

ij
∂l

−∇∂j∂i − [∂i, ∂j ]︸ ︷︷ ︸
=0

〉

= Γkij − Γkji (17.3)

(using that
〈
dxk, ∂l

〉
= δkl). In particular, we have T kij = 0⇔ Γkij = Γkji.

R(X,Y ) = −R(Y,X) is antisymmetric in X,Y . The vector field R(X,Y )Z is f -linear in X, Y , Z:
(R(fX, gY )hZ = fghR(X,Y )Z; f, g, h ∈ F(M)). R determines a tensor of type

(1
3
)
: the Riemann

tensor or curvature tensor.

(ω,Z,X, Y )→ 〈ω,R(X,Y )Z〉 ≡ RijklωiZjXkY l

In components with respect to local coordinates:

Rijkl =
〈
dxi, R(∂k, ∂l)∂j

〉
=
〈
dxi, (∇∂k∇∂l −∇∂l∇∂k)∂j

〉 12
=
〈
dxi,∇∂k(Γslj∂s)−∇∂l(Γskj∂s)

〉
= Γilj,k − Γikj,l + ΓsljΓiks − ΓskjΓils. (17.4)

12Notice that ∇[∂k, ∂l]︸ ︷︷ ︸
=0

∂j = 0.
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Eq. (17.4) is exactly the the same as defined in (16.18). It is antisymmetric in the last two indices:
Rijkl = −Rijlk.

Definition: The Ricci tensor is the following contraction of the curvature tensor:

Rjl ≡ Rijil = Γilj,i − Γiij,l + ΓsljΓiis − ΓsijΓils (17.5)

The scalar curvature is the trace of the Ricci tensor:

R ≡ gljRjl = Rll (17.6)

Example: For a pseudo-Riemannian manifold the connection coefficients are given by (9.11). Consider
a two-sphere (which is a pseudo Riemannian manifold) with the metric ds2 = a2(dθ2 + sin2 θdφ2),
then:

gθφ = a2

(
1 0
0 sin2 θ

)
, gθφ = 1

a2

(
1 0
0 1

sin2 θ

)
.

The non-zero Γ are:

Γθφφ = − sin θ cos θ,

Γφθφ = Γφφθ = cot θ.

The Riemann tensor is given by

Rθφθφ = ∂θΓθφφ − ∂φΓθθφ + ΓθθλΓλφθ − ΓθφλΓλθφ

= (sin2 θ − cos2 θ)− 0 + 0− (− sin θ cos θ) cot θ

= sin2 θ.

The Ricci tensor has the following components:

Rφφ = Rθφθφ +Rφφφφ︸ ︷︷ ︸
=0

= sin2 θ,

Rθθ = 1,

Rθφ = Rφθ = 0.

The Ricci scalar is

R = gθθ︸︷︷︸
1
a2

Rθθ︸︷︷︸
1

+ gφφ︸︷︷︸
1

a2 sin2 θ

Rφφ︸︷︷︸
sin2 θ

+gθφ Rθφ︸︷︷︸
0

+gφθ Rφθ︸︷︷︸
0

= 1
a2 + 1

a2 sin2 θ
sin2 θ

= 2
a2 .
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The Ricci scalar is constant over this two-sphere and positive, thus the sphere is “positively curved”.
13 14 15

17.1 Bianchi identities for the special case of zero torsion

X, Y and Z are vector fields, then

R(X,Y )Z + cyclic = 0 (1st Bianchi identity), (17.7)

(∇XR)(Y,Z) + cyclic = 0 (2nd Bianchi identity). (17.8)

Proof of the 1st identity: Torsion = 0⇒ ∇XY −∇YX = [X,Y ]. Then

(∇X∇Y −∇Y∇X)Z + (∇Z∇X −∇X∇Z)Y

+ (∇Y∇Z −∇Z∇Y )X −∇[X,Y ]Z −∇[Z,X]Y −∇[Y,Z]X

= ∇X(∇Y Z −∇ZY )−∇[Y,Z]X + cyclic

= [X, [Y,Z]] + cyclic

= 0 due to the Jacobi identity (13.2).

(See textbooks for proof of the 2nd Bianchi identity.)

13For a position independent metric (e.g. Cartesian coordinates) the Riemann tensor (and thus the scalar curvature)
vanishes as the Γ vanish.

14For a plane with polar coordinates we get a position dependent metric
(

1 0
0 r2

)
: ds2 = dr2 + r2dθ2 and thus the

Γ do not vanish. However the curvature vanishes.
15The curvature does not depend on the choice of coordinates.
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18 Riemannian connections

Metric: Let M be equipped with a pseudo-Riemannian metric: a symmetric, non-degenerate tensor
field: g(X,Y ) = 〈X,Y 〉 of type

(0
2
)
.

• Non-degenerate means that, for any point p ∈ M, X,Y ∈ Tp, one has gp(X,Y ) = 0 ∀Y ∈ Tp ⇒
X = 0.

• In components, 〈X,Y 〉 = gikX
iY k, gik = gki (symmetric) and det gik 6= 0.

• With the metric we can lower and raise indices:

X̃i = gikX
k, ω̃i = gikωk,

where gik denotes the inverse of gik. It also works for tensor fields of different types: T ik =
Tlkg

il = T ilglk.

• Given a basis (e1, . . . , en) of Tp, the covectors of the dual basis (e1, . . . , en) become themselves
vectors; indeed ei = gije

j .

Riemann connection: The metric tensor g at a point p in M is a symmetric
(0

2
)
tensor. It assigns a

magnitude
√
|g(X,X)| to each vector X on Tp(M), denoted by d(X) and defines the angle between

any two vectors X, Y ( 6= 0) on Tp(M) via

a(X,Y ) = arccos
(

g(X,Y )
d(X)d(Y )

)
. (18.1)

If a(X,Y ) = π
2 then X and Y are orthogonal. Further observations:

• The length of a curve with tangent vector X between t1 and t2 is L(t1, t2) =
t2∫
t1

d(X) dt.

• If (ea) is a basis of Tp(M), the components of g with respect to this basis are gab = g(ea, eb).

• Like in special relativity we classify vectors at a point as timelike (g(X,X) > 0), null (g(X,X) =
0) and space like (g(X,X) < 0).

Definition: let (M, g) be a pseudo-Riemannian manifold. An affine connection is a metric connection
if parallel transport along any smooth curve γ onM preserve the inner product: for autoparallel fields
X(t), Y (t) (see (16.7)), gγ(t)(X(t), Y (t)) is independent of t along γ.

Theorem: an affine connection ∇ is metric if and only if (no proof)

∇g = 0. (18.2)

Eq. (18.2) is equivalent for (g(Y, Z)) to

∇Xg = 0 = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ)
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or

Xg(Y, Z) = g(∇XY,Z) + g(Y,∇XZ). (18.3)

Theorem: For every pseudo-Riemannian manifold (M, g), there exists a unique affine connection such
that

(a) ∇ has vanishing torsion (∇ is symmetric),

(b) ∇ is metric.

Proof: T = 0 (vanishing torsion) means ∇XY = ∇YX + [X,Y ]. Inserting this into (18.3) (and the
linearity of g) gives

Xg(Y,Z) = g(∇YX,Z) + g([X,Y ], Z) + g(Y,∇XZ). (18.4)

By cyclic permutations one obtains as well

Y g(Z,X) = g(∇ZY,X) + g([Y,Z], X) + g(Z,∇YX), (18.5)

Zg(X,Y ) = g(∇XZ, Y ) + g([Z,X], Y ) + g(X,∇ZY ). (18.6)

Taking the linear combination (18.5) + (18.6) - (18.4), we get (Koszul formula):

2g(∇ZY,X) = −Xg(Y, Z) + Y g(Z,X) + Zg(X,Y )

−g([Z,X], Y )− g([Y, Z], X) + g([X,Y ], Z).

(18.7)

The right hand side is independent of ∇. Since g is non-degenerate, the uniqueness of ∇ follows from
(18.7).

Definition: the unique connection on (M, g) from the above theorem is called the Riemannian or
Levi-Civita connection.

We determine the Christoffel symbols for the Riemannian connection in a given chart (U , x1, . . . , xn).
For this purpose we take X = ∂k, Y = ∂j , Z = ∂i in (18.7) and we use [∂i, ∂j ] = 0 as well as
〈∂i, ∂j〉 = gij . The result is

〈∇∂i∂j , ∂k〉 = Γlij 〈∂l, ∂k〉︸ ︷︷ ︸
glk

,

2Γlijglk = −∂k 〈∂i, ∂j〉︸ ︷︷ ︸
gij

+∂j 〈∂i, ∂k〉︸ ︷︷ ︸
gik

+∂i 〈∂k, ∂j〉︸ ︷︷ ︸
gkj

,

61



18 RIEMANNIAN CONNECTIONS

or

glkΓlij = 1
2(gkj,i + gik,j − gji,k). (18.8)

gij denoting the inverse matrix of gij , we obtain

Γlij = 1
2g

lk(gkj,i + gik,j − gji,k), (18.9)

which is exactly equation (9.11).

Properties of the Riemannian connection:

(i) The inner product of any two vectors remains constant upon parallel transporting them along
any curve γ (g(X,Y )γ(t) = g(X,Y )γ(0)).

(ii) The covariant derivative commutes with raising or lowering indices, e.g. T ik;l = (gkmT im);l

= gkmT
im

;l, because gkm;l = 0.

Riemann tensor: the curvature tensor of a Riemannian connection has the following additional sym-
metry properties (without proof):

〈R(X,Y )Z,U〉 = −〈R(X,Y )U,Z〉 , (18.10)

〈R(X,Y )Z,U〉 = 〈R(Z,U)X,Y 〉 . (18.11)

In coordinate expression the Riemann tensor satisfies the following symmetries:

Rijkl = −Rijlk is always the case, (18.12)∑
(jkl)

Rijkl = 0 1st Bianchi identity, (18.13)

∑
(klm)

Rijkl;m = 0 2nd Bianchi identity. (18.14)

Eqs. (18.13) and (18.14) are valid for vanishing torsion. Here
∑

(jkl)
denotes the cyclic sum. Additionally,

Rijkl = −Rjikl, (18.15)

Rijkl = Rklij , (18.16)

for the Riemannian connection with Rijkl = gisR
s
jkl.

Ricci and Einstein tensor
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18 RIEMANNIAN CONNECTIONS

Rik = Rjijk Ricci tensor (18.17)

R = Rii scalar curvature (18.18)

Gik = Rik −
1
2Rgik Einstein tensor (18.19)

By symmetry, Rik = Rki, Gik = Gki and

Rki;k = 1
2R;i, (18.20)

Gki;k = 0, (18.21)

which are the contracted 2nd Bianchi identity.

Proof: Rik = gjlRlijk = gjlRjkli, 2nd Bianchi identity gives:

Rijkl;m +Rijlm;k +Rijmk;l = 0.

Then we take the (ik)-trace:

Rjl;m + Rijlm;i︸ ︷︷ ︸
−gikRjklm;i

−Rjm;l = 0,

Rj l;m − gikRjklm;i −Rjm;l = 0,

(jm)-trace:

Rj l;j + gikRkl;i︸ ︷︷ ︸
2Rjl;j

−R;l = 0.

⇒ (18.20)

For (18.21):

Gki = Rki −
1
2g

k
iR = Rki −

1
2δ

k
iR

Gki;k = Rki;k −
1
2(δkiR);k = 1

2R;i︸ ︷︷ ︸
(18.20)

−1
2R;i = 0

Without proof in n dimensions, the Riemann tensor has cn = n2(n2−1)
12 independent components

(c1 = 0, c2 = 1, c3 = 6, c4 = 20).
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19 PHYSICAL LAWS WITH GRAVITATION

Part V

General Relativity
19 Physical laws with gravitation

19.1 Mechanics

The physical laws are relations among tensors (scalars and vectors being tensors of rank 0 and 1
respectively). Thus the physical laws read the same in all coordinate systems (provided the physical
quantities are transformed suitably) and satisfy general covariance (same form). Practically, this means
that from the special relativity laws that hold in absence of gravitation, we have to replace ηαβ by gαβ
and replace derivation by covariant derivation.

In an inertial system, we have the equation of motion (see (4.3))

m
duα

dτ = fα. (19.1)

According to the equivalence principle, (19.1) holds in a local IS. fα does not contain gravitational
forces as they would vanish in a local IS. We transform it to general KS (coordinate system), then the
Lorentz vector fα gets transformed to fµ = ∂xµ

∂ξα f
α (ξα is in local IS, xµ is in KS). Equation (19.1)

holds in a local IS reads then
m

Duµ

dτ︸ ︷︷ ︸
covariant derivative

given in (16.8)

= fµ, (19.2)

(∇X → D
dτ ) with ξ

µ → uµ (dt→ dτ and dxi
dτ = ui) and thus

Duµ

dτ = duµ

dτ + Γµνλu
νuλ.

Then equation (19.2) reads
m

duµ

dτ = fµ −mΓµνλu
νuλ. (19.3)

We see that on the right hand side there are now gravitational forces appearing explicitly (via Γµνλ).
Equation (19.3) (or (19.2)) is covariant (it has the same form in all coordinate systems) and reduces for
gµν → ηαβ (thus Γµνλ = 0) to equation (19.1) (in a local IS). The components of uµ are not independent
but satisfy the condition gµνuµuν = c2.

19.2 Electrodynamics

According to the equivalence principle, Maxwell’s equations (see (6.4) and (6.5))

∂αF
αβ = 4π

c
jβ and εαβγδ∂βFγδ = 0

are valid in a local IS. Applying the covariance principle, they become as follows in a general KS:

Fµν ;ν = 4π
c
jµ and εµνλκFλκ;ν = 0, (19.4)
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19 PHYSICAL LAWS WITH GRAVITATION

provided that going from coordinates ξα in a local IS to the KS coordinates xµ we have

jα → jµ = ∂xµ

∂ξα
jα and Fµν = ∂xµ

∂ξα
∂xν

∂ξβ
Fαβ .

Gravity enters via the Γµνλ in the covariant derivative. The continuity equation ∂αjα = 0 translates
to jµ;µ = 0. It can be shown that in the homogeneous equation the terms with Γ vanish. Thus the
covariant derivative reduces to the ordinary derivative (,) 16.

19.3 Energy-momentum tensor

For an ideal fluid, given by (in a local IS)

Tµν =
(
ρ+ p

c2

)
uµuν − ηµνp, (19.8)

with

• uµ: four-velocity,

• ρ: proper energy density,

• p: pressure of the fluid.

In a KS this becomes
Tµν =

(
ρ+ p

c2

)
uµuν − gµνp. (19.9)

In the IS the conservation law implies Tµν,ν = 0 and in the KS Tµν ;ν = 0 (explicitely, Tµν ;ν =
Tµν,ν + ΓµνλT νλ + ΓννλTµλ = 0). With (19.5), Γννλ = 1√

g

∂
√
g

∂xλ
, we get instead

Tµν ;ν = 1
√
g

∂
√
gTµν

∂xν
+ ΓµνλT

νλ = 0. (19.10)

This is no longer a conservation law, as we cannot form any constant of motion from (19.10). This
should also not be expected, since the system under consideration can exchange energy and momentum
with the gravitational field.

16g = det(gik) = εi1...ing1i1 . . . gnin . Consider
∂g

∂xl
=

n∑
k=1

εi1...ing1i1 . . .
∂gkik
∂xl

. . . gnin and use
∂gkik
∂xl

= ∂gkm
∂xl

δmik =

∂gkm
∂xl

gmrgrik . Due to the antisymmetry of ε, only the term r = k survives. Thus

∂g

∂xl
=
∂gkm

∂xl
gmkg.

Plugging this into the definition of Γkkl (one contraction):

Γkkl =
gkm

2

(
∂gmk

∂xl
+

∂gml

∂xk
−
∂gkl

∂xm︸ ︷︷ ︸
vanish by interchanging

(m↔k)

)
=
gkm

2
∂gmk

∂xl
=
∂ ln√g
∂xl

=
1
√
g

∂
√
g

∂xl
. (19.5)

With (19.5) one can show that the inhomogeneous Maxwell equation in KS can be written as
1
√
g

∂(√gFµν)
∂xν

=
4π
c2
jµ, (19.6)

and the continuity equation: jµ;µ = 0 becomes
∂(√gjµ)
∂xµ

= 0. (19.7)
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20 EINSTEIN’S FIELD EQUATIONS

20 Einstein’s field equations

The field equations cannot be derived by using the covariance principle, since there is no equivalent
equation in a local IS. We have to make some requirements/assumptions.

Requirements:

• The Newtonian limit is well confirmed through all observations: ∆φ = 4πGρ.

• From the Newtonian limit of the equation of motion for a particle we derived (equation (9.17))
g00 ≈ 1 + 2 φ

c2 .

• The non-relativistic limit should then be

∆g00 = 8πG
c4

T00, (20.1)

with T00 ≈ ρc2 (other Tij are small).

Thus a generalization should lead to something of type Gµν = 8πG
c4 Tµν where Gµν has to satisfy the

following requirements:

(1) Gµν is a tensor (Tµν is tensor).

(2) Gµν has the “dimension” of a second derivative. If we assume that no new dimensional constant
enter in Gµν then it has to be a linear combination of terms which are either second derivatives of
the metric gµν or quadratic in the first derivative of gµν .

(3) Since Tµν is symmetric, Gµν also has to be symmetric and due to the fact that Tµν is covariantly
conserved, i.e. Tµν ;ν = 0, it follows that Gµν must satisfy Gµν = Gνµ and Gµν ;ν = 0.

(4) For a weak stationary field we shall get (20.1), thus G00 ' ∆g00.

Conditions (1)-(4) determine Gµν uniquely. (1) and (2) imply that Gµν has to be a linear combination

Gµν = aRµν + bRgµν (20.2)

of Rµν , the Ricci tensor, and R, the Ricci scalar17. The symmetry of Gµν is automatically satisfied.
The contracted Bianchi identity (18.20), (18.21) suggests that Gµν ;ν = 0 on the Einstein tensor, what
implies b = −a2 . Thus we find

Gµν = a(Rµν −
1
2gµνR) = 8πG

c4
Tµν . (20.3)

The constant a has to be determined by performing the Newtonian limit. Consider weak fields:
gµν = ηµν + hµν , |hµν | � 1 (non relativistic velocities: vi � c), then |Tik| � |T00| ⇒ |Gik| � |G00|.
Compute the trace of Gµν :

gµνGµν


= a(R− 2R) = −aR from (20.3)

≈ G00 = a

(
R00 − R2 g00︸︷︷︸

≈η00
=1

)
= a(R00 −R/2) . (20.4)

17It can be shown that indeed the Ricci tensor is the only tensor made of the metric tensor and first and second
deivatives of it, and which is linear in the second derivative.
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20 EINSTEIN’S FIELD EQUATIONS

Compairing the two results gives R ≈ −2R00, thus

G00 ' a
(
R00 −

R
2

)
' 2aR00. (20.5)

For weak fields all terms quadratic in hµν can be neglected in the Riemann tensor; we get to leading
order:

Rµν = Rρµρν '
∂Γρµν
∂xρ

−
∂Γρρµ
∂xν

(|hµν | � 1).

For weak stationary fields we find:

R00 = ∂Γi00
∂xi

with Γi00 = 1
2
∂g00

∂xi
.

Thus G00 ≈ 2a∂Γi00
∂xi = a∆g00

!= ∆g00, therefore a = 1. Einstein’s field equations are 18 (found 1915 by
Albert Einstein):

Rµν −
R
2 gµν = 8πG

c4
Tµν (20.6)

Together with the geodesic equation ((16.12) or (19.3)), these are the fundamental equations of general
relativity. By contraction of (20.6), we find also

Rµµ −
R
2 δµµ︸︷︷︸

=4

= −R = 8πG
c4

T. (20.7)

R can be expressed in (20.6) in terms of T , and we get:

Rµν = 8πG
c4

(
Tµν −

T

2 gµν
)

(20.8)

an equivalent version of the field equations. For the vacuum case where Tµν = 0 we have

Rµν = 0. (20.9)

Significance of the Bianchi identity

Einstein’s equation constitutes a set of non-linear coupled partial differential equations whose general
solution is not known. Usually one makes some assumptions, for instance spherical symmetry. Because
the Ricci tensor is symmetric, the Einstein equations constitute a set of 10 algebraically independent
second order differential equations for gµν .

The Einstein equations are generally covariant, so that they can at best determine the metric
up to coordinate transformation (→ 4 functions). Therefore we expect only 6 independent generally
covariant equations for the metric. Indeed the (contracted) Bianchi identities tell us that (equation
(18.21)) Gνµ;ν = 0 and hence there are 4 differential relations among the Einstein’s equations. Bianchi
identities can also be understood as a consequence of the general covariance of the Einstein equations.

18Depending on the convention used for the Riemann tensor, one could also encounter a minus in front of the energy-
momentum tensor, as for example in Weinberg.
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21 THE EINSTEIN-HILBERT ACTION

20.1 The cosmological constant

As a generalization, one can relax condition (2) and have a linear term in gµν 19. The field equations
become

Rµν −
R
2 gµν − Λgµν = 8πG

c4
Tµν , (20.10)

where Λ is a constant: the cosmological constant ([Λ] = L−2). For point (4) the Newtonian limit of
(20.10) leads to

∆φ = 4πρG+ c2

2 Λ. (20.11)

The right-hand side can also be written as 4πG(ρ+ ρvacuum), with

ρvac = c2

8πGΛ. (20.12)

Λ corresponds to the (constant) energy density of empty space (vacuum). Λ−1/2 (distance) has to be
much larger than the dimension of the solar system.

21 The Einstein-Hilbert action

The field equations (20.6) can be obtained from a covariant variational principle. The action for the
metric g is

SD[g] =
∫
D

R(g) dv, (21.1)

where D ⊂M is a compact region space-time, R is a scalar curvature and dv a volume element:

dv =
√
|g|d4x (21.2)

(g = det gik, d4x in 4 dimensions). The Euler-Lagrange equations are the field equations in vacuum:

δSD[g] = 0.

We have

δ

∫
D

R(g) dv =
∫
D

δ(gµνRµν
√
−g) d4x =

∫
D

(δRµν)gµν
√
−g d4x+

∫
D

Rµνδ(gµν
√
−g) d4x. (21.3)

Consider first δRµν :
Rµν = ∂αΓαµν − ∂νΓαµα + ΓρµνΓαρα − ΓρναΓαρµ. (21.4)

Let us compute the variation of Rµν at any point p in normal coordinates, whose center is in p itself
(x(p) = 0, then Γαβγ(0) = 0). Thus δRµν reduces (at any such p) to

δRµν =
(
δΓαµν

)
,α
−
(
δΓαµα

)
,ν
. 20 (21.5)

19Note that gµν;σ = 0.
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Without proof one finds that δΓαµν is indeed a tensor although Γαµν is not a tensor. (21.5) is thus a
tensor equation, it holds in every coordinate system and we can also take the covariant derivative:

δRµν =
(
δΓαµν

)
;α −

(
δΓαµα

)
;ν (21.6)

(Palatini identity). Since gµν;σ = 0 we can write (21.6) as

gµνδRµν =
(
gµνδΓαµν

)
;α −

(
gµνδΓαµα

)
;ν (21.7)

= ωα;α

= ωα,α + Γααµ︸︷︷︸
1√
−g

∂
√
−g

∂xµ

ωµ

= 1√
−g

∂(
√
−g ωµ)
∂xµ

. (21.8)

Inserting this into the integral (21.3) and applying (15.21) (Gauss theorem), we get∫
D

(divg ω)η =
∫
∂D

iωη,

where divg ω = ωα;α and thus ∫
D

(δRµν)gµν
√
−g d4x =

∫
∂D

ωα
√
−g d0α.

d0α is the coordinate normal to ∂D and

ωα = gµνδΓαµν − gµαδΓνµν (21.9)

is a vector field. If the variations of δgµν vanish outside a region contained in D, then the boundary
term vanishes as well.

As for the second term in (21.3) (
∫
D
Rµνδ(gµν

√
−g) d4x), we recall that for an n × n matrix A(λ)

we have (see linear algebra):

i) d
dλ detA = detA tr

(
A−1 dA

dλ
)
,

ii) d
dλ (A−1)A = −A−1 dA

dλ .

Thus (δgµν)gνσ = −gµνδgνσ comes from ii) and δg = ggµνδgνµ comes from i) with A−1 = gµν . Hence
we find the desired expressions

δ
√
−g = 1

2
√
−g gµνδgνµ = −1

2
√
−g gαβ δgαβ ,

δ(gµν
√
−g) =

√
−g δgµν − 1

2
√
−g gµν gαβ δgαβ . (21.10)

20variation (with respect to g) δ and normal derivative commute
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And thus

0 =
∫
D

Rµνδ(gµν
√
−g) d4x =

∫
D

√
−g d4x︸ ︷︷ ︸

dv

Rµνδgµν − 1
2 Rµνg

µν︸ ︷︷ ︸
R

gαβδg
αβ︸ ︷︷ ︸

α→µ
β→ν


=
∫
D

dv
(
Rµν −

1
2Rgµν

)
︸ ︷︷ ︸

=Gµν=0

δgµν .

Therefore δSD[gµν ] = 0 ⇒ Gµν = Rµν − 1
2Rgµν = 0. Since δ

∫
D

√
−g d4x =

∫
D

√
−g d4x 1

2 g
µνδgµν =

− 1
2
∫
D

√
−g d4x gµν δg

µν , it follows that if we have a cosmological constant , the Einstein’s vacuum

equations are obtained from the action principle applied on

SD[g] =
∫
D

(R− 2Λ)
√
−g d4x. (21.11)

The variational principle extends to matter described by any field ψ = (ψA) (A = 1, . . . , N), (we include
also the electromagnetic field among the ψA) transforming as a tensor under change of coordinates.
Consider an action of the form

SD[ψ] =
∫
D

L(ψ,∇gψ)
√
−g d4x, (21.12)

where ∇g is the Riemannian connection of the metric g. If we know L in flat space, the equivalence
principle prescribes to replace ηαβ by gαβ and replace ordinary derivatives by covariant ones.

Example: electromagnetic field

L = − 1
16πFµνF

µν = − 1
16πFµν Fσρ g

σµ gρν ,

and the Euler-Lagrange equations in this case (Fµν = Aν;µ − Aµ;ν = Aν,µ − Aµ,ν) for the basic
4-potential Aµ field read:

∂L
∂Aν

−∇µ
∂L

∂∇µAν
= 0, with ∇µAν = Aν;µ;

in this case ∂L
∂Aν

= 0, and ∂L
∂∇µAν = − 1

4πF
µν . The Euler-Lagrange equations are then Fµν ;ν = 0, which

are the Maxwell equations for vanishing current jµ (Fµν ;ν = 4π
c j

µ and L = − 1
16πFµνF

µν − 1
c j
µAµ

with jµAµ = gµνjνAµ).
Variations in (21.12) with respect to the fields ψA lead to the Euler-Lagrange equations, whereas

variations with respect to the metric (which is also a function and is determined by solving Einstein’s
equations) gives (without proof)

δg

∫
D

L(ψ,∇gψ)
√
−g d4x = −1

2

∫
D

Tµνδgµν
√
−g d4x. (21.13)
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This term has to be added to the one proportional to δgµν in Einstein’s action:∫
D

√
−g d4x

(
Gµν

c4

16πG −
1
2Tµν

)
︸ ︷︷ ︸

=0

δgµν

and thusGµν = 8πG
c4 Tµν . For electrodynamics: Tµν = 1

4π
(
FµσF

σ
ν − 1

4FσρF
σρgµν

)
(or Tαβ = −Fαµ Fµβ−

Lgαβ). And similarly for other “matter” fields.

22 Static isotropic metric

22.1 Form of the metric

For the gravity field of Earth and Sun we assume a spherically symmetric distribution of the matter
(rotation velocities vi � c). Thus we need a spherically symmetric and static solution for the metric
gµν(x). We first give the general form of such a metric (static and isotropic) which we then use as an
ansatz to solve the field equations. For r →∞, the Newtonian gravitational potential ϕ = −GMr goes
to zero. Thus, asymptotically, the metric should be Minkowskian: ds2 =

r→∞
c2dt2 − dr2 − r2(dθ2 +

sin2 θdφ2), in spherical coordinates r, θ, φ and t. Thus,

ds2 = B(r)c2dt2 −A(r)dr2 − C(r)r2(dθ2 + sin2 θdφ2). (22.1)

Due to isotropy and time independence, A, B and C cannot depend on θ, φ and t (and no linear terms
in dθ and dφ). Freedom in the choice of coordinates allows to introduce a new radial coordinate in
(22.1): C(r)r2 → r2, thus C(r) can be absorbed into r. We get the standard form:

ds2 = B(r)c2dt2 −A(r)dr2 − r2(dθ2 + sin2 θdφ2) (22.2)

(θ and φ have the same significance as in Minkowski coordinates). Due to our asymptotic requirements
(r →∞) we can assume that B(r)→ 1 and A(r)→ 1.

22.2 Robertson expansion

Even without knowing the solution to the field equations, we can give an expansion of the metric
for weak fields outside the mass distribution. The metric can only depend on the total mass of the
considered object (Earth or Sun for instance), on the distance from it and on the constants G, c. Since
A and B are dimensionless, they can only depend on a combination of the dimensionless quantity GM

c2r .
For GM

c2r � 1 we can then have the following expansion:

B(r) = 1− 2GM
c2r

+ 2(β − γ)
(
GM

c2r

)2
+ . . .

A(r) = 1 + 2γGM
c2r

+ . . .

(22.3)

which is the Robertson expansion. The linear term in B(r) has no free parameter since it is constrained
by the Newtonian limit: g00 ' 1 + 2 φ

c2 , φ = −GMr (Newtonian potential), therefore B → g00. The
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coefficient 2(β − γ) comes from historical reasons, β and γ are independent coefficients. In the solar
system, GMc2r ≤

GM
c2R�

' 2× 10−6, then only linear terms in γ and β play a role. For general relativity:
γ = β = 1 (Newtonian gravity: γ = β = 0).

22.3 Christoffel symbols and Ricci tensor for the standard form

The metric tensor gµν is diagonal.

g00 = B(r) g11 = −A(r) g22 = −r2 g33 = −r2 sin2 θ (22.4)

g00 = 1
B(r) g11 = − 1

A(r) g22 = − 1
r2 g33 = − 1

r2 sin2 θ
(22.5)

The non-vanishing components of Γσλµ = gσν

2

(
∂gµν
∂xλ

+ ∂gλν
∂xµ

− ∂gµλ
∂xν

)
are

Γ0
01 = Γ0

10 = B′

2B Γ1
00 = B′

2A Γ1
11 = A′

2A

Γ2
12 = Γ2

21 = 1
r

Γ1
22 = − r

A
Γ1

33 = −r sin2 θ

A
(22.6)

Γ3
13 = Γ3

31 = 1
r

Γ3
23 = Γ3

32 = cot θ Γ2
33 = − sin θ cos θ

where ′ stands for ∂
∂r . With

− g = r4AB sin2 θ (22.7)

we get (
Γρµρ
)

=
(
∂ ln
√
−g

∂xµ

)
=
(

0, 2
r

+ A′

2A + B′

2B , cot θ, 0
)
. (22.8)

The Ricci tensor can then be calculated as

Rµν =
∂Γρµν
∂xρ

−
∂Γρρµ
∂xν

+ ΓσµνΓρρσ − ΓσρµΓρνσ, (22.9)

and we get as a result

R00 = B′′

2A −
A′B′

2A2 −
B′2

2AB + B′

2A

(
2
r

+ A′

2A + B′

2B

)
,

= B′′

2A −
B′

4A

(
A′

A
+ B′

B

)
+ B′

rA
, (22.10)

R11 = −B
′′

2B + B′

4B

(
A′

A
+ B′

B

)
+ A′

rA
, (22.11)

R22 = 1 + r

2A

(
A′

A
− B′

B

)
− 1
A
, (22.12)

R33 = R22 sin2 θ, (22.13)

The non-diagonal components Rµν with µ 6= ν vanish.
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22 STATIC ISOTROPIC METRIC

22.4 Schwarzschild metric

We assume a static, spherically symmetric, mass distribution with finite extension:

ρ(r)

 6= 0 r ≤ r0

= 0 r > r0
(22.14)

Similarly, the pressure P (r) is thought to vanish for r > r0. The four velocity vector within the mass
distribution in the static case is uµ = (u0 = constant, 0, 0, 0). This way, the energy-momentum tensor
(describing matter) does not depend on time. We then adopt the ansatz for the metric elaborated
in (22.2): gµν = diag(B(r),−A(r),−r2,−r2 sin2 θ). Outside the mass distribution (r ≥ r0), the Ricci
tensor vanishes: Rµν = 0. We have already calculated the coefficients Rµν in equations (22.10) –
(22.13). For µ 6= ν, Rµν = 0 is trivially satisfied while the diagonal components should be set to zero:
R00 = R11 = R22 = R33 = 0 (r ≥ r0).

Consider R00

B
+R11

A
= − 1

rA

(
B′

B
+ A′

A

)
= 0 and thus d

dr (lnAB) = 0 (since rA 6= 0) or AB = constant

(or lnAB = constant). For r → ∞ we require A = B = 1, therefore AB = 1 ⇒ A(r) = 1
B(r) .

Introducing this into R22 (22.12) and R11 (22.11) leads to

R22 = 1− rB′ −B = 0, (22.15)

R11 = −B
′′

2B −
B′

rB
= −rB

′′ + 2B′

2rB = 1
2rB

dR22

dr = 0. (22.16)

With (22.15), (22.16) is automatically satisified (since R22 = 0 also its derivative vanishes). We write
(22.15) as

d
dr (rB) = 1. (22.17)

We integrate it and get rB = r + constant︸ ︷︷ ︸
−2a

= r − 2a. Then

B(r) = 1− 2a
r
,

A(r) = 1
1− 2a

r

,

(22.18)

for r ≥ r0. This solution for the vacuum Einstein’ equations was found in 1916 by Schwarzschild. The
Schwarzschild solution is

ds2 =
(

1− 2a
r

)
c2dt2 − dr2

1− 2a
r

− r2(dθ2 + sin2 θdϕ2) (22.19)

The constant can be determined by considering the Newtonian limit:

g00 = B(r) −−−→
r→∞

1 + 2 φ
c2

= 1− 2GM
c2r

= 1− 2a
r
.

Thus one introduces the so called Schwarzschild radius:

rS = 2a = 2GM
c2
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23 GENERAL EQUATIONS OF MOTION

The Schwarzschild radius of the Sun is rs,� = 2GM�
c2 ' 3 km (M� ' 2× 1030 kg, R� = 7× 105 km) so

rS,�
R�

= 2GM�
c2R�

' 4× 10−6 21. A clock at rest in r has the proper time dτ =
√
B dt, thus dt

dτ diverges
at r → rS . This implies that a photon emitted at r = rS will be infinitely redshifted (t is not a good
coordinate either for events taking place at r ≤ rS). A star, whose radius rstar is smaller than rS , is
a black hole since photons emitted at its surface cannot reach regions with r > rS .

Expanding the Schwarzschild metric in power of rSr and comparing it with the Robertson expansion
(22.3), one finds β = γ = 1 for general relativity.

23 General equations of motion

We now consider the motion of a freely falling material particle or photon in a static isotropic gravi-
tational field (e.g. motion of planets around the Sun). For the relativistic orbit xk(λ) of a particle in
a gravitational field we have:

d2xk

dλ2 = −Γkµν
dxµ

dλ
dxν

dλ (23.1)

and

gµν
dxµ

dλ
dxν

dλ =
(

ds
dλ

)2
= c2

(
dτ
dλ

)2
=

c2 m 6= 0, λ = τ

0 m = 0
. (23.2)

For a massive particle we can take the proper time as a parameter for the trajectory or orbit (dλ = dτ).
For massless particles one has to choose another parameter. For the spherically symmetric gravitational
field, we use the metric (r > r�, radius of the star)

ds2 = B(r)c2dt2 − dr2A(r)− r2(dθ2 + sin2 θdϕ2), (23.3)

with the coordinates (x0, x1, x2, x3) = (ct, r, θ, φ). Equations (23.1) – (23.3) define the relativistic
Kepler problem. Using the Christoffel symbols given in (22.6), we get for (23.1):

d2x0

dλ2 = −B
′

B

dx0

dλ
dr
dλ, (23.4)

d2r

dλ2 = −B
′

2A

(
dx0

dλ

)2

− A′

2A

(
dr
dλ

)2
+ r

A

(
dθ
dλ

)2
+ r sin2 θ

A

(
dφ
dλ

)2
, (23.5)

d2θ

dλ2 = −2
r

dθ
dλ

dr
dλ + sin θ cos θ

(
dφ
dλ

)2
, (23.6)

d2φ

dλ2 = −2
r

dφ
dλ

dr
dλ − 2 cot θ dθ

dλ
dφ
dλ. (23.7)

Equation (23.6) can be solved by
θ = π

2 = constant. (23.8)

Without loss of generality we can choose the coordinate system such that θ = π
2 , this way the trajectory

lies on the plane with θ = π
2 .

d2θ
dλ2 = 0 corresponds to angular momentum conservation. With (23.8)

21Apparently it seems that the Schwarzschild metric is singular for r = rs, but this is not the case. It is only an
artefact of the coordinate choice. To be discussed later.
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23 GENERAL EQUATIONS OF MOTION

we get for (23.7) :
1
r2

d
dλ

(
r2 dφ

dλ

)
= 0, (23.9)

which leads to
r2 dφ

dλ = constant = l. (23.10)

l can be interpreted as the (orbital) angular momentum (per unit mass). Equations (23.8) and (23.10)
follow from angular momentum conservation, which is a consequence of spherical symmetry (rotation
invariance).

Equation (23.4) can be written as (B = B(r(λ))

d
dλ

(
ln
(

dx0

dλ

)
+ lnB

)
= 0, (23.11)

which can be integrated as ln
[(

dx0

dλ

)
B
]

= constant or

B
dx0

dλ = constant = F. (23.12)

In (23.5) we use (23.8), (23.10) and (23.12) and get:

d2r

dλ2 + F 2B′

2AB2 + A′

2A

(
dr
dλ

)2
− l2

Ar3 = 0. (23.13)

We multiply it with 2A
( dr

dλ
)
and get

d
dλ

[
A

(
dr
dλ

)2
+ l2

r2 −
F 2

B

]
= 0. 22 (23.14)

Integration gives

A

(
dr
dλ

)2
+ l2

r2 −
F 2

B
= −ε = constant. (23.15)

Integrating it once more we get r = r(λ). Inserting then this result into (23.10) and (23.12), we obtain
with one more integration φ = φ(λ) and t = t(λ). Next we eliminate λ and get r = r(t) and φ = φ(t).
Together with θ = π

2 , this is then a complete solution (generally it has to be done numerically).
Equation (23.2) becomes

gµν
dxµ

dλ
dxν

dλ = B

(
dx0

dλ

)2

−A
(

dr
dλ

)2
− r2

(
dθ
dλ

)2
− r2 sin2 θ

(
dφ
dλ

)2
= ε, (23.16)

using (23.8), (23.10), (23.12) and (23.15). On the other hand

ε =

c2 (m 6= 0)

0 (m = 0)
.

We are left with two integration constants, F and l.

22Notice:
dA
dλ

= A′
dr
dλ
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23 GENERAL EQUATIONS OF MOTION

23.1 Trajectory

From (23.15) we get

dr
dλ =

√
F 2

B −
l2

r2 − ε
A

, (23.17)

and with (23.10),
dφ
dr = dφ

dλ
dλ
dr = l

r2

√
A

F 2

B −
l2

r2 − ε
. (23.18)

Thus,

φ(r) =
∫ dr

r2

√
A(r)

F 2

B(r)l2 −
1
r2 − ε

l2

. (23.19)

With this we can find the trajectory φ = φ(r) in the orbital plane. (Massive particles: 2 integration
constants F 2

l2 and ε
l2 , massless particles: only F 2

l2 ).

Trajectory in Schwarzschild metric:

Insert Schwarzschild metric: B(r) = A−1(r) = 1− rS
r = 1− 2a

r and write:

ṫ = dt
dλ, ṙ = dr

dλ, φ̇ = dφ
dλ.

Then with (23.8), (23.10), (23.12) and (23.15) we get

θ = π

2 , cṫ

(
1− 2a

r

)
= F, r2φ̇ = l. (23.20)

Multiplying (23.15) with B and using AB = 1, we have

ṙ2

2 −
aε

r
+ l2

2r2 −
al2

r3 = F 2 − ε
2 = constant. (23.21)

The radial component can be written as

ṙ2

2 + Veff(r) = constant, (23.22)

with the effective potential (2a = 2GM
c2 , ε = {c2, 0})

Veff(r) =

−GMr + l2

2r2 − GMl2

c2r3 (m 6= 0)
l2

2r2 − GMl2

c2r3 (m = 0)
. (23.23)

A formal solution r = r(λ) of (23.22) is given through the following integral :

λ = ±
∫ dr√

2(constant− Veff (r))
. (23.24)

Due to the 1
r3 term (relativistic), this is an elliptical integral which has to be solved numerically.

For small values of r, centrifugal potential term dominates (as long as l is not too small), then for
even smaller values of r the attractive relativistic term takes over: 23 24

23l ∼ r × v → l2

r2
∼ v2

24 v
c
∼ 10−4 → v2

c2
∼ 10−8

76



23 GENERAL EQUATIONS OF MOTION

r

Veff collision

scattering

ellipse with precession

circular stable

circular unstable

Figure 11: Effective potential for massive particles in Schwarzschild metric

− GM

r

l2

c2r2 ' −
GM

r

v2

c2
(23.25)

Eq. (23.22) differs from the non-relativistic case by an additional 1
r3 term and ṙ = dr

dτ differs from dr
dt

by terms of order v2

c2 .

Observations:

• Where Veff has a minimum there are bounded solutions, however due to the relativistic effects
there will be small deviations from the elliptical orbits (precession of the perihelion). As a special
case, with ṙ = 0, the circular orbit is a possible solution (in which case the constant in (23.22) is
equal to the value of Veff at its minimum).

• The solution at the maximum of Veff is an unstable circular orbit.

• If the constant is positive one gets non-bounded trajectories (corresponding to hyperbolic solu-
tions in the non-relativistic case).
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23 GENERAL EQUATIONS OF MOTION

• If the constant is larger than the maximum value of the potential, the particle falls into the
center.

• At minimum and maximum we have dVeff
dr = 0. For m 6= 0 we get

c2

l2
r2 − 2 r

rS
+ 3 = 0. (23.26)

In order to have two real solutions, we need 3c2
l2 < 1

r2
S

. That means

l ≥ lcrit =
√

3 rSc. (23.27)

For l → lcrit, the angular momentum barrier gets smaller and smaller until the maximum and
minimum fall together for l = lcrit. For l < lcrit, the potential decreases monotonically for r → 0.

r

Veff collision

scattering

circular unstable

Figure 12: Effective potential for massless particles in Schwarzschild metric
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23 GENERAL EQUATIONS OF MOTION

Here both terms are proportional to l2, thus the shape of Veff does not depend on l. At rmax = 3
2rS

the potential has a maximum. At rmax the photons can move on a circular orbit, which is unstable. If
the constant in (23.22) is smaller than Veff(rmax) then the incoming photon will be scattered, whereas
if the constant is bigger the photon will be absorbed at the center. 25

25for r ≤ rS the Schwarzschild solution is not applicable
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24 LIGHT DEFLECTION

Part VI

Applications of General Relativity
24 Light deflection

The trajectory r = r(φ) of a photon in the gravitational field is given by (23.19) (ε = 0):

φ(r) = φ(r0) +
r∫

r0

dr̃
r̃2

√
A(r̃)

F 2

B(r̃)l2 −
1
r̃2

. (24.1)

Sun

light ray

r0

rφ

∆φ

Figure 13: Deflection of light by the Sun

We will now show that light is deflected by a massive body, carrying through calculations for the Sun.
In fig. 13, the following quantities are defined: light is deflected by ∆φ and r0 is the minimal distance
(or impact parameter) from the Sun. For simplification we assume also r0 � rS .

As starting point of the integration we choose the minimum distance r0, where we set φ(r0) = 0.
Going from r0 till r∞ the angle changes by φ(∞). Along the drawn trajectory the radial vector turns
by 2φ(∞). If the trajectory would be a straight line, then 2φ(∞) = π.
Thus ∆φ = π − π = 0 for a straight line and in general (φ(r0) = 0):

∆φ = 2φ(∞)− π. (24.2)

At r0, r(φ) is a minimum, thus (
dr
dφ

)∣∣∣∣
r0

= 0. (24.3)
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Sun

light ray

φ(r)→ φ(∞) = π
2φ(r)→ φ(∞) = π

2

Figure 14: Non-deflected ray of light

From (24.3) we get with (23.17) and (23.18) the condition

F 2

l2
= B(r0)

r2
0

. (24.4)

This way we can eliminate the constants F and l in terms of r0 with (24.1):

φ(∞) =
∞∫
r0

dr
r

√√√√ A(r)
B(r0)
B(r)

r2

r2
0
− 1

. (24.5)

Let us compute the integral by inserting the Robertson expansion A(r) = 1+γ 2a
r , B(r) = 1− 2a

r (with
a = rs

2 = GM
c2 ). We keep terms up to a

r with

B(r0)
B(r)

r2

r2
0
− 1 ' r2

r2
0

[
1 + 2a

(
1
r
− 1
r0

)]
− 1

=
[
r2

r2
0
− 1
] [

1− 2ar
r0(r + r0)

]
.

We get using
√

1 + x = 1 + x
2 ,

φ(∞) '
∞∫
r0

dr√
r2 − r2

0

r0

r

(
1 + γ

a

r
+ ar

r0(r + r0)

)

=
[

arccos
(r0

r

)
+ γ

a

r0

√
r2 − r2

0
r

+ a

r0

√
r − r0

r + r0

]∞
r0

= π

2 + γ
a

r0
+ a

r0
. (24.6)

With (24.2) we get

∆φ = 4a
r0

(
1 + γ

2

)
= 2rS

r0

(
1 + γ

2

)
. (24.7)
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24 LIGHT DEFLECTION

For general relativity, γ = 1, rS = 2GM
c2 and thus

∆φ = 2rS
r0

For a light ray which just grazes the surface of the Sun (r0 = R� = 7×105 km) we get (π = 180×3600′′):

∆φ = 1.75′′
(

1 + γ

2

)
. 26 (24.8)

On May 29, 1919, an eclipse allowed experimental confirm of this result.

Figure 15: Gravitational lensing in the Abel 2218 galaxy cluster

26“cheating” with Newton’s theory gives half this result that is 0.84′′
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25 PERIHELION PRECESSION

25 Perihelion precession

Consider the elliptical orbit of a planet around the Sun:

x

y

Sun

rminrmax

Mercury

r

φ
p

Figure 16: Non-relativistic elliptical orbit of Mercury around the Sun

We will use the following notations: minimum distance r− = rmin, maximum distance r+ = rmax,
φ± = φ(r±), A± = A(r±), B± = B(r±). The relativistic orbit follows from equation (23.19) for
r = r(φ) with ε = c2. The integral gives for the change in angle between r− and r+:

φ+ − φ− =
r+∫
r−

dr
r2

√
A(r)

F 2

B(r)l2 −
1
r2 − c2

l2

=
r+∫
r−

dr
r2

√
A(r)
K(r) . (25.1)

For a full orbit the angle is 2π, i.e. twice the integral (25.1). The shift of the perihelion (per complete
orbit) is given by

∆φ = 2(φ+ − φ−)− 2π. (25.2)

The integrand in (25.1) is equal to dφ
dr . For r = r± due to dr

dφ = 0,
√
K(r) r2 has to vanish, thus

K(r±) = 0:
F 2

B±l2
= 1
r2
±

+ c2

l2
. (25.3)
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25 PERIHELION PRECESSION

This way we can express F and l through r±:

F 2

l2
=

1
r2
+
− 1

r2
−

1
B+
− 1

B−

=
r2
− − r2

+

r2
+r

2
−

(
1
B+
− 1

B−

) , (25.4)

c2

l2
= −

B+
r2
+
− B−

r2
−

B+ −B−
= −

r2
+
B+
− r2

−
B−

r2
+r

2
−

(
1
B+
− 1

B−

) . (25.5)

This leads us to an expression for K(r):

K(r) =
r2
−

(
1

B(r) −
1
B−

)
− r2

+

(
1

B(r) −
1
B+

)
r2
+r

2
−

(
1
B+
− 1

B−

) − 1
r2 . (25.6)

For A and B insert the Robertson expansion

A(r) = 1 + γ
2a
r

+ . . . , (25.7)

B(r) = 1− 2a
r

+ 2(β − γ)
(a
r

)2
+ . . . , (25.8)

1
B(r) = 1 + 2a

r
+ 2(2− β + γ)

(a
r

)2
+ . . . . 27 (25.9)

With eq. (25.9), K(r) becomes a quadratic form in 1
r . Since

dφ
dr =∞ for r = r±, K+ = K− = 0. This

determines K(r) up to a constant c̃:

K(r) = c̃

(
1
r−
− 1
r

)(
1
r
− 1
r+

)
. (25.10)

c̃ can be obtained by comparing with (25.6) for r →∞. With (25.9) one gets

c̃ = 1− (2− β + γ)
(
a

r+
+ a

r−

)
. (25.11)

We get thus the following integral:

φ+ − φ− = 1√
c̃

r+∫
r−

dr
r2

(
1 + γ

a

r

)
︸ ︷︷ ︸

from
√
A≈ 1+γ ar

[(
1
r−
− 1
r

)(
1
r
− 1
r+

)]− 1
2

. (25.12)

We perform the following substitution:

1
r

= 1
2

(
1
r+

+ 1
r−

)
+ 1

2

(
1
r+
− 1
r−

)
sinψ; (25.13)

27 v2

c2
≈ a

r
; terms g00u0u0 ≈ Bc2 and g11u1u1 ≈ Av2 ≈ Ac2 a

r
show up both and have thus to be expanded to the

same order in a
r
. Therefore B has to be expanded one order in a

r
more than A.
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25 PERIHELION PRECESSION

r+ and r− correspond to ψ = π
2 and ψ = −π2 , respectively. With

d
(

1
r

)
= − 1

r2 dr = 1
2

(
1
r+
− 1
r−

)
cosψ dψ, (25.14)

1
r−
− 1
r

= 1
2

(
1
r−
− 1
r+

)
(1 + sinψ), (25.15)

1
r
− 1
r+

= 1
2

(
1
r−
− 1
r+

)
(1− sinψ), (25.16)

we get for the integral

φ+ − φ− = 1√
c̃

π
2∫

−π2

dψ
[
1 + γ

a

2

(
1
r−

+ 1
r+

)
+ γ

a

2

(
1
r+
− 1
r−

)
sinψ

]
. (25.17)

Now introduce the parameter p of the ellipse (see figure 16):

2
p

= 1
r+

+ 1
r−
. (25.18)

Integration of eq. (25.17) leads to

φ+ − φ− = π√
c̃

[
1 + γ

a

p

]
= π

[
1 + (2− β + γ)a

p

] [
1 + γ

a

p

]
= π

[
1 + (2− β + 2γ)a

p

]
. (25.19)

Precession per orbit for the perihelion is:

∆φ = 2(φ+ − φ−)− 2π = 6πa
p

(
2− β + 2γ

3

)
. (25.20)

In general relativity γ = β = 1 and so 2−β+2γ
3 = 1. Thus,

∆φ = 6πa
p

Consider Mercury: p = 55 × 106 km, 2a� ≈ 3 km, π = 180◦ × 3600′′ which give ∆φ = 6πa
p =

0.104′′ (per full orbit). In 100 years Mercury fulfills 415 orbits around the Sun, this way we get
∆φ = 43′′ (per century). For more distant planets (Venus, Earth,. . . ) ∆φ is at most ∼ 5′′ per century.
Already in 1882, Newcomb found a perihelion precession of 43′′ per century for Mercury. Full perihelion
precession amounts to 575′′ per century of which 532′′ are due to the influence of other planets (this
within Newtonian theory). One finds

2− β + 2γ
3 = 1.003± 0.005, (25.21)

in good agreement with general relativity. So far, the parameters of the Robertson expansion are
constrained to |γ − 1| < 3 × 10−4 and |β − 1| < 3 × 10−3. More recently (radar echoes delay from
Cassini spacecraft): |γ − 1| = (2.1± 2.3)× 10−5.28

28B. Bertotti et al. Nature 425, 374 (2003)
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Sun

Mercury

Figure 17: Illustration of the perihelion precession of Mercury (effect strongly exagerated)

25.1 Quadrupole moment of the Sun

A quadrupole moment of the Sun could also influence a perihelion precession of Mercury, that is why
one has to study it. The mass quadrupole moment of the Sun (due to its rotation) is

Q = J2M�R
2
� with J2 = 2

5
R‖ −R⊥
R�

, (25.22)

and

• R‖: orthogonal (to R⊥) radius,

• R⊥: radius orthogonal to the plane containing the planet orbits and parallel to the rotation axis
of the Sun.

The induced gravitational potential in the planet’s orbital plane (which is also the equatorial plane of
the Sun) is

φ(r) = −GM
r
− GQ

2r3 . (25.23)

The additional term has the same r dependence than the additional relativistic term:

Veff = −GM
r

+ l2

2r2 −
GMl2

c2r3 . (25.24)
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With l ∼ pv and v2 ∼ GM
p we can compare the two terms (their relative strength)

GQ

GM l2

c2

∼
J2R

2
�

p2 v2

c2

∼
J2R

2
�

pGMc2
∼
J2R

2
�

pa
.

We see that the full expression for the perihelion precession is given by

∆φ = 6πa
p

(
2− β + 2γ

3 +
J2R

2
�

2ap

)
. (25.25)

From observations one finds J2 ∼ (1 − 1.7) × 10−7; thus the additional term is J2R
2
�

2ap ≈ 5 × 10−4,
accounting for at most 1/10 of the error given in (25.21) and is thus negligible.

26 Lie derivative of the metric and Killing vectors

Consider the Lie derivative of the metric tensor gµν in the direction of the vector K. According to
equation (14.2) we get:

LKgµν = gµν,κK
κ + gµκK

κ
,ν + gκνK

κ
,µ. (26.1)

To rewrite this expression we observe the identities

Kσ = gσµK
µ,

Kκ
,νgµκ = ∂Kκ

∂xν
gµκ = ∂(Kκgµκ)

∂xν
−Kκ ∂gµκ

∂xν
= ∂Kµ

∂xν
−Kκ ∂gµκ

∂xν
.

Hence eq. (26.1) can also be written as

LKgσρ = ∂Kσ

∂xρ
+ ∂Kρ

∂xσ
+Kµ

[
∂gρσ
∂xµ

− ∂gµσ
∂xρ

− ∂gρµ
∂xσ

]

= ∂Kσ

∂xρ
+ ∂Kρ

∂xσ
− 2KµΓµρσ (26.2)

= Kσ;ρ +Kρ;σ.

An infinitesimal coordinate transformation is a symmetry of the metric if LKgµν = 0, thus if

Kσ;ρ +Kρ;σ = 0 (26.3)

Any 4-vector Kσ(x) satisfying this equation will be said to form a Killing vector. 29

Example: Consider a stationary gravitational field, for which there exists coordinates {xµ} such that the
components of gµν do not depend on ct = x0 (for instance Schwarzschild metric). Let Kµ = δµ0 with
the corresponding vector field δµ0∂µ (→ ∂0). Inserting Kµ into (26.1) one gets LKgµν = gµν,0 +0+0 =
∂
∂x0 gµν = 0 (since gµν does not depend on x0). K is a Killing vector or Killing field or an infinitesimal
isometry.

29Named after 19th century mathematician Wilhelm Killing
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Notice that, due to the properties of the Lie derivative, ifK1 andK2 are Killing vectors, LK1gµν = 0,
LK2gµν = 0 then [K1,K2] is also a Killing vector since

[LK1 ,LK2 ]gµν = L[K1,K2]gµν = 0. (26.4)

We are used to the fact that symmetries lead to conserved quantities: in classical mechanics the angular
momentum of a particle moving in a rotationally symmetric field is conserved. In the present context,
the concept of “symmetries of a gravitational field” is replaced by “symmetries of the metric” and we
therefore expect conserved quantities to be associated with the presence of Killing vectors.

Let Kµ be a Killing vector and xµ(τ) be a geodesic. Then the quantity Kµẋ
µ is constant along the

geodesic. Indeed,

D

dτ
(Kµẋ

µ) = (∇νKµẋ
ν)ẋµ +Kµ (∇ν ẋµ)︸ ︷︷ ︸

=0 geodesic

ẋν

= 1
2 (∇νKµ +∇µKν)︸ ︷︷ ︸

=0 (26.3)

ẋµẋν = 0. (26.5)

Tµν is the covariantly conserved symmetric energy-momentum tensor with ∇µTµν = 0. Then Jµ =
TµνKν is a covariantly conserved current:

∇µJµ = (∇µTµν)︸ ︷︷ ︸
=0

Kν + Tµν∇µKν = 1
2T

µν (∇µKν +∇νKµ)︸ ︷︷ ︸
=0 (26.3)

= 0,

to which we can associate a conserved charge.

27 Maximally symmetric spaces

Maximally symmetric spaces are spaces that admit the maximal number of Killing vectors (which below
will turn out to be n(n+1)

2 for an n-dimensional space). In the context of the cosmological principle
such spaces, which are simultaneously homogeneous (“the same at every point”) and isotropic (“the
same in every direction”), provide a description of space in a cosmological space-time.

From equation (17.2) we had (from definition of Riemann tensor and covariant derivative)

([∇X ,∇Y ]−∇[X,Y ])V λ = RλσµνX
µY νV σ, (27.1)

along withX = Xµ∂µ, Y = Y ν∂ν and∇Y ν∂νV λ = Y ν∇∂νV λ = Y ν∇νV λ,∇X∇Y V λ = Xµ∇µ(Y ν∇νV λ) =
Xµ(∇µY ν)∇νV λ +XµY ν∇µ∇νV λ etc, we get

[∇µ,∇ν ]V λ = RλσµνV
σ. (27.2)

Taking into account the first Bianchi identity, it is possible to find that for a Killing vector Kµ, one
has (no proof here)

∇λ∇µKν(x) = RρλµνKρ(x) (27.3)
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27 MAXIMALLY SYMMETRIC SPACES

for x = x0. Thus a Killing vector Kµ(x) is completely determined everywhere by the values of Kµ(x0)
and ∇µKν(x0) at a single point x0 (think of Taylor expansion). A set of Killing vectors {K(i)

µ (x)} is
said to be independent if any linear relation of the form∑

i

ciK
(i)
µ (x) = 0, (27.4)

with constant coefficients ci; implying ci = 0. Since in an n-dimensional space-time there can be
at most n linearly independent vectors K(i)

µ (x0) at a point, and at most n(n−1)
2 independent anti-

symmetric matrices (∇µKν(x0)), we reach the conclusion that an n-dimensional space-time can have
at most

n+ n(n− 1)
2 = n(n+ 1)

2 (27.5)

independent Killing vectors.

• Homogeneous space is meaning that the n-dimensional space(-time) admits n-translational Killing
vectors.

• Isotropic space: ∇µKν(x0) is an arbitrary anti-symmetric matrix (→ rotation). We can choose
a set of n(n−1)

2 Killing vectors.

• We define a maximally symmetric space to be a space with a metric with a maximal number of
n(n+1)

2 Killing vectors.

The Riemann curvature tensor of a maximally symmetric space becomes simpler. One can show (no
proof) that it becomes

Rijkl = k(gikgjl − gilgjk) (27.6)

for some constant k. The Ricci tensor then becomes

Rij(x) = (n− 1)kgij . (27.7)

The Ricci scalar can be obtained to be

R(x) = n(n− 1)k, (27.8)

and the Einstein tensor
Gik = Rik −

1
2Rgik = k (n− 1)

(
1− n

2

)
gik.

The Bianchi identity implies that k is a constant in order for Gik;k to vanish. We shall deal with
space-times in which the metric is spherically symmetric and homogenous on each “plane” of constant
time. In our case n = 4 and the maximally symmetric subspace has 3 dimensions. Consider first the
metric on the 3-dimensional subspace

dσ2 = A(r)dr2 + r2 dΩ2︸︷︷︸
dθ2+sin2 θdφ2

For the Christoffel symbols, we use the ones for the general form of a static isotropic metric (22.6) with
B(r) = 0. Since the Christoffel symbols are invariant under an overall sign change of the metric, also
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27 MAXIMALLY SYMMETRIC SPACES

the Ricci tensor is and thus one can apply (22.10)-(22.13) with B(r) = 0 for this three-dimensional
space, without caring for the sign in front of A. Hence we get for equation (27.7)

Rrr = R11 = A′

rA
,

Rθθ = R22 = − 1
A

+ 1 + rA′

2A2 .

(27.9)

From eq. (27.7), we have Rrr = 2kA, and Rθθ = 2kgθθ = 2kr2. Thus from equating the two first
equation leads us to

2kA = A′

rA
⇒ A′ = 2krA2, (27.10)

while we get for the second one

2kr2 = − 1
A

+ 1 + rA′

2A2 = − 1
A

+ 1 + 2kr2A2

2A2 = − 1
A

+ 1 + kr2 ⇒ kr2 = − 1
A

+ 1,

which leads to
A = 1

1− kr2 , (27.11)

and solves also (27.10). Then the metric on the 3-dimensional subspace (maximally symmetric) is

dσ2 = dr2

1− kr2 + r2dΩ2. (27.12)

It can be shown that k can have the following values: 0, ±1.

k =


+1 sphere, positive curvature

−1 hyperbola, negative curvature

0 plane, zero curvature

The full metric (with time coordinate) has then the form:

ds2 = c2dt2 − a2(t)
{

dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2)
}

(27.13)

where a(t) is the cosmic scale factor, which has to be determined by solving the Einstein’s equations via
the matter content of the universe. This metric (first discovered by Friedmann, Lemaître, Roberston
and Walker) is a reasonable ansatz for describing the universe. There is good evidence that the universe
(on large scales) is surprisingly homogeneous and isotropic (from redshift surveys of galaxies and cosmic
microwave background radiation).
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28 FRIEDMANN EQUATIONS

28 Friedmann equations

We write the metric (27.13) as follows:

ds2 = c2dt2 − a2(t)g̃ij dxi dxj , (28.1)

where tildes denote 3-dimensional quantities calculated with the metric g̃ij . The Christoffel symbols
are given by (notice Γµ00 = 0):

Γijk = Γ̃ijk, Γij0 = ȧ

a
δij , Γ0

ij = ȧ a g̃ij , (28.2)

where dot denotes derivation with respect to t. The relevant components of the Riemann tensor are:

Ri0j0 = − ä
a
δij , R0

i0j = a ä g̃ij , Rkikj = R̃ij + 2ȧ2 g̃ij (28.3)

We can make use of R̃ij = 2kg̃ij (maximal symmetry of the 3-dimensional subspace) to compute Rµν .
The non-zero components are then

R00 = −3 ä
a
, Rij = (aä+ 2ȧ2 + 2k)g̃ij = −

(
ä

a
+ 2 ȧ

2

a2 + 2 k
a2

)
gij , (28.4)

where gij = −a2g̃ij . The Ricci scalar becomes R = − 6
a2 (aä+ ȧ2 + k) and the non-zero components of

the Einstein tensor are

G00 = 3
(
ȧ2

a2 + k

a2

)
, G0i = 0, Gij =

(
2 ä
a

+ ȧ2

a2 + k

a2

)
gij . (28.5)

Next we have to specify the matter content. We treat here the universe as non-interacting particles or
a perfect fluid. A perfect fluid has energy-momentum tensor (19.8)

Tµν =
( p
c2

+ ρ
)
uµuν − gµνp, (28.6)

where p is the pressure, ρ the energy density and uµ the velocity field of the fluid (uµ = (c, 0, 0, 0) in
a comoving coordinate system). The trace of the energy-momentum tensor is then

Tµµ = ρc2 − 3p. (28.7)

The equation of state is p = p(ρ) and in particular one assumes

p = wρ, (28.8)

where w is the equation of state parameter.

Examples:

• For non-interacting particles we have p = 0, w = 0. Such matter is referred to as dust. The
energy-momentum tensor is Tµν = ρ uµuν .

• For radiation the energy-momentum tensor is (like in Maxwell’s theory) traceless and hence
radiation has the equation of state

p = 1
3ρ, (28.9)

thus w = 1
3 .
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28 FRIEDMANN EQUATIONS

• As we will see, a cosmological constant Λ corresponds to a “matter” contribution with w = −1.

The conservation law T νµ;µ = 0 implies T 0µ
;µ = 0 or ∂µTµ0 + ΓµµνT ν0 + Γ0

µνT
µν = 0. For a perfect

fluid: ∂tρ(t)+Γµµ0ρ+Γ0
00ρ+Γ0

ijT
ij = 0 (with i, j = 1, 2, 3). Inserting the expressions for the Christoffel

symbols (28.2) we get:
ρ̇ = −3(ρ+ p) ȧ

a
. (28.10)

For dust (p = 0):
ρ̇

ρ
= −3 ȧ

a
. (28.11)

Integration gives ρa3 = constant or ρ ∝ a−3. For a radiation dominated universe we get

p = ρ

3 ⇒
ρ̇

ρ
= −4 ȧ

a
. (28.12)

Integration gives ρa4 = constant or ρ ∝ a−4. More generally for (28.8) one gets:

ρa(t)3(1+w) = constant. (28.13)

The Einstein equations with Λ (equation (20.10)) are

Gµν = 8πG
c4

Tµν + Λgµν .

Using (19.8) and that uµ = (c, 0, 0, 0) in a comoving coordinate system, let us write down the 00-
component and the ij-component of this equation:

3
(
ȧ2

a2 + k

a2

)
= 8πGρ+ Λ, (28.14)

(
2 ä
a

+ ȧ2

a2 + k

a2

)
gij = (−8πGp+ Λ) gij . (28.15)

One has in addition equation (28.10) from the conservation law. Using the first equation to eliminate
ȧ2

a2 + k
a2 from the second one, one obtains the Friedmann equations:

ȧ2

a2 + k

a2 = 8πG
3 ρ+ Λ

3 , (28.16)

−3 ä
a

= 4πG(ρ+ 3p)− Λ, (28.17)

ρ̇ = −3(ρ+ p) ȧ
a
. (28.18)

Notice that one could also use the form (20.8) of the Einstein equations to derive the above equations.
Introducing the Hubble parameter : H(t) = ȧ(t)

a(t) and the deceleration parameter : q(t) = −a(t)ä(t)
ȧ2(t) , with

their present day values denoted by H0 = H(t0) and q0 = q(t0), where t0 is the age of the universe;
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28 FRIEDMANN EQUATIONS

we get instead

H2 = 8πG
3 ρ− k

a2 + Λ
3

q = 1
3H2 (4πG(ρ+ 3p)− Λ)

d
dt (ρa

3) = −3Hpa3

(28.19)

In the case of Λ = 0, we define a critical density ρcrit = 3H2

8πG and a density parameter Ω = ρ
ρcrit

. Then
ρ < ρcrit ⇔ k = −1 open universe

ρ = ρcrit ⇔ k = 0 flat universe

ρ > ρcrit ⇔ k = +1 close universe

Let us now assume that the density is a combination of dust (that we shall simply denote as
“matter”) and radiation: ρ = ρm + ρr. Moreover, we assume that ρm ∼ a−3 and ρr ∼ a−4. This is
valid if radiation and matter are decoupled, or if one density is much bigger that the other one (notice
that in today’s universe ρm � ρr). Let us introduce the constants Km = 8πG

3 ρma
3 and Kr = 8πG

3 ρra
4.

Inserting them into equation (28.16) leads to

ȧ2 − Kr

a2 −
Km

a
− 1

3Λa2 = −k. (28.20)

This equation reads as
ȧ2 + V (a) = −k,

where
V (a) = −Kr

a2 −
Km

a
− 1

3Λa2 (28.21)

plays the role of an effective potential, see figure 18.
Consider the solution for a → 0: in that case the terms Kr

a2 and Km
a dominate and the behavior

does not depend neither on k nor on Λ.

ȧ2 ≈ Kr

a2 → a(t) ∼
√
t (28.22)

ȧ2 ≈ Km

a
→ a(t) ∼ t 2

3 (28.23)

For a → 0, ȧ goes to ∞. If Kr 6= 0, then for a → 0 a ∼
√
t. From figure 18 we can discriminate

different types of solutions:

1. For Λ < 0, there is for all k-values a maximal amax. Thus there will be a periodic solution going
between a = 0 and amax.

2. Λ = 0 (Einstein-de Sitter universe): for k = 1 there is a bounded solution as in the case 1. For
k = 0 the expansion velocity goes towards 0, instead for k = −1 it goes towards a constant value.

3. For Λ > 0 there are several cases:
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a) Λ = Λcrit and k = 1. The value of Λcrit is obtained for the horizontal line −k (figure 18)
just going through the maximum of the potential. Assuming Kr ≈ 0 (as in today’s universe)
we get with ȧ = 0, V = −1 → dV

da = 0:

Λ = Λcrit = 4
9K2

m

and a = astat = 3Km

2 . (28.24)

This corresponds to the static Einstein solution. Einstein introduced a cosmological constant
in order to get such a static solution, which is however unstable. Small perturbations lead
either to a contraction or to an exponential growth.

b) Λ < Λcrit and k = 1. The horizontal line −k intercepts the curve V (a) in two points a1 and
a2. We obtain either a periodic solution between 0 and a1 or an unbounded solution with
a > a2.

c) Λ = Λcrit(1 + ε) and k = 1. For 0 < ε � 1 the horizontal line −k lies just above the
maximum value of V (a). Thus the expansion velocity ȧ will be very low in this region
(Lemaître universe).

d) Λ > Λcrit and k = 1. The line −k does not intercept the V (a) curve. Around the maximum
of V (a) the expansion is lowered.

e) Λ > 0 and k = −1, 0 : as in the previous case, but there may be less deceleration in the
region of the maximum of V (a).

a

V

Λ < 0

Λ > 0

Λ = 0

−k

Figure 18: Sketch of the “effective potential” V (a) for different values of Λ.

For Λ > 0, all solutions are unbounded. In the limit a→∞, V (a) is dominated by the Λ-term:

ȧ2 ≈ Λ
3 a

2,
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thus

a(t) ∼ exp
(√

Λ
3 t
)
. (28.25)

The expansion is exponentially accelerated.
According to the currently most accepted model (so-called ΛCDM-model), the main contributions

to the density are

• ordinary matter (baryons) Ωbaryons ∼ 0.05

• dark matter ΩDM ∼ 0.27

• cosmological constant ΩΛ = ρΛ
ρcrit
∼ 0.68 with ρΛ = Λ

8πG (also called dark energy).

Moreover, the universe seems to be almost flat: k ≈ 0. These cosmological parameters would thus
correspond to the case 3e) of the previous discussion.

Finally, H−1
0 is related to the age of the universe. H0 ∼ 67.4 ± 0.5 km

sec/Mpc gives an age of ∼ 13.8
billion years30.

29 Gravitational waves

On 14 September 2015 the two LIGO detectors simultaneously observed a transient gravitational wave
(GW) signal, which has been interpreted as due to the merger of two black holes with masses of
about 36 M� and 29 M�, respectively. This being the first direct detection of GW was announced 11
February 201631 and led to the 2017 Nobel prize in physics for Rainer Weiss, Kip Thorne and Barry
Barish for “decisive contributions to the LIGO detector and the observation of gravitational waves"32.
In the data of the first and second Advanced LIGO observing run 11 GW events have been found, 10
binary black hole mergers as well as a coalescence of two neutron stars33.

Moreover, the satellite LISA Pathfinder, with the aim to test the technology needed to build LISA,
a GW detector in space, was successfully launched on 3 December 2015. On 7 June 2016 the first
results which showed that the performance of LISA Pathfinder was much better than expected and
almost already at the level of the LISA requirements were released34. Thus the year 2016, 100 years
after Einstein’s first paper on GW as a consequence of his theory of General Relativity, has thus seen
dramatic advancements in the field of GW.

30Planck 2018 results. VI. Cosmological parameters, http://arxiv.org/abs/1807.06209
31 LIGO Scientific and Virgo Collaborations (B.P. Abbott (Caltech) et al.), Observation of Gravitational Waves from

a Binary Black Hole Merger, Phys.Rev.Lett. 116, (2016) 061102
32The Nobel Prize in Physics 2017, http://www.nobelprize.org/prizes/physics/2017
33LIGO Scientific and Virgo Collaborations (B. P. Abbot et al.), GWTC-1: A Gravitational-Wave Transient Catalog

of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs, Phys.Rev.X 9,
(2019) 031040

34The LISA Pathfinder collaboration, M. Armano et al. Sub-Femto- g Free Fall for Space-Based Gravitational Wave
Observatories: LISA Pathfinder Results, Phys.Rev.Lett. 116, (2016) 231101
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29 GRAVITATIONAL WAVES

29.1 Linearized Field Equations

In order to find solutions to the Einstein field equations in the weak field regime, one can linearize the
equations. The results of this section will be used to describe gravitational waves.

The field itself is a form of energy and thus also a source of the field. This effect is purely due to
the non-linearities, of course. Considering a weak field, we can work with small deviations from the
Minkowski metric:

gµν = ηµν + hµν with |hµν | � 1. (29.1)

One proceeds as follows. First, Gµν has to be expanded in powers of hµν . The first order terms
will lead to a linear wave equation. Neglecting terms of third order, the second order terms give the
energy-momentum tensor of the gravitational field.

The expansion of the Ricci tensor can be written as

Rµν = R(1)
µν +R(2)

µν + ... (29.2)

with R(0)
µν = 0. In order to compute the first order term of (29.2), we write down the expansion of the

curvature tensor: 35

Rρµσν = 1
2 (gρσ,µ,ν + gµν,ρ,σ − gµσ,ν,ρ − gρν,σ,µ) +O(h2) (29.3)

where the derivatives are non-covariant (the additional terms due to covariant derivatives are of higher
order). We can thus write the first order Ricci tensor in terms of hµν :

R(1)
µν = 1

2 (�hµν + hρρ,µ,ν − hρµ,ρ,ν − hρν,ρ,µ) . (29.4)

The d’Alembert operator can be used instead of ∂µ∂µ because in the approximation (29.1) the coor-
dinates are “almost” Minkowskian, so ∂µ∂µ = � +O(h). The first order Ricci scalar is given by

R(1) = ηλρR
(1)
λρ . (29.5)

We proceed by considering the second order equations. The left-hand side of the field equations
can be written in terms of the quantity tµν which is defined by

R(2)
µν −

(
Rgµν

2

)(2)
=: 8πG

c4
tµν . (29.6)

We take these terms to the right-hand side of Einstein’s equations and find at second order in hµν :

R(1)
µν −

R(1)

2 ηµν = −8πG
c4

(Tµν + tµν). (29.7)

This can be interpreted as a wave equation linear in hµν with source terms

τµν = Tµν + tµν . (29.8)
35Notice that we adopt here a different notation with respect to GR I: we adopt the “minus” convention of the EFE

(i.e. Rµν − R
2 gµν = − 8πG

c4
Tµν), which simply follows from a change of sign of the Riemann tensor. The Riemann tensor

from which (29.3) is derived differs thus from (GR I, 17.4) by a factor −1.
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We have to think of τµν as being the energy-momentum tensor which also includes the contribution of
the gravitational field itself.

We interpret (29.7) as follows: since Gµν ;ν = 0 (Bianchi identity), we find for the left-hand side of
(29.7):

∂

∂xν

(
R(1)
µν −

R(1)

2 ηµν

)
= 0. (29.9)

Therefore the right-hand side satisfies

∂τµν
∂xν

= 0. (29.10)

This gives the momentum

Pµ =
∫
d3r τµ0 = const. (29.11)

which is conserved (in time). We can thus interpret τµ0 as the momentum density and τµν as an energy-
momentum tensor (indeed we know that Tµν ;ν = 0 but so far we did not necessarily conclude τµν ;ν =
0). Since Tµν includes all non-gravitational sources and τµν is interpreted as the “complete” energy-
momentum tensor, tµν clearly describes energy-momentum which is purely due to the gravitational
field:

tgrav.µν = c4

8πG

(
R(2)
µν −

(
Rgµν

2

)(2)
)

(|hµν | � 1). (29.12)

We now turn back to the first order in hµν and write down the field equations using Eq. (29.4) at
first order:

�hµν + hρρ,µ,ν − hρµ,ρ,ν − hρν,ρ,µ = −16πG
c4

(
Tµν −

T

2 ηµν
)
. (29.13)

We use ηµν instead of gµν in this equation because both sides are already of order h. Since the field
equations are covariant, we are free to perform a coordinate transformation. But note that since
|hµν | � 1 we can only perform coordinate transformations which deviate only slightly from Minkowski
coordinates:

xµ −→ x′µ = xµ + εµ(x) with ε� 1. (29.14)

From g′µν = ∂x′µ

∂xλ
∂x′ν

∂xρ g
λρ we infer how hµν transforms. With ∂x′µ

∂xλ
= δµλ + ∂εµ

∂xλ
inserted into g′µν we get

g′µν = ηµν − h′µν

=
(
δµλ + ∂εµ

∂xλ

)(
δνρ + ∂εν

∂xρ

)(
ηλρ − hλρ

)
(29.15)

where we used that from gµν = ηµν + hµν it follows gµν = ηµν − hµν . From Eq. (29.15) we infer

h′µν = hµν − ∂εµ

∂xν
− ∂εν

∂xµ
. (29.16)
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Since this is already a first order equation (in h), we can raise and lower indices with gµν ' ηµν and
gµν ' ηµν . Thus

h′µν = hµν −
∂εµ
∂xν
− ∂εν
∂xµ

. (29.17)

In analogy to electrodynamics this transformation of the “potentials” gµν is called a gauge transfor-
mation. We can choose four functions εµ(x) which give four constraints on the “potentials” hµν . For
instance,

2hµν,µ = hµµ,ν . (29.18)

We insert the gauge condition (29.18) into (29.13) and obtain the decoupled linearized field equa-
tions:

�hµν = −16πG
c4

(
Tµν −

T

2 ηµν
)
. (29.19)

This can easily be seen if we differentiate (29.18) (i.e. hρρ,µ = 2hρµ,ρ) with respect to xν :

hρρ,µ,ν = 2hρµ,ρ,ν = hρµ,ρ,ν + hρν,ρ,µ (29.20)

(we used hµν = hνµ). This implies

−hρµ,ρ,ν − hρν,ρ,µ + hρρ,µ,ν = 0 , (29.21)

which is just another form of our gauge condition from which it can be seen that (29.13) indeed reduces
to (29.19).

Furthermore, it can be shown that from (29.17) it follows that if hµν does not satisfy (29.18), then
we can find a transformed h′µν that does so. This can be done using the coordinate transformation
(29.14) with �εν = hµν,µ − 1

2h
µ
µ,ν .

The linearized field equation Eq. (29.19) has the same structure as the field equations in electrody-
namics. We can therefore immediately write down the well-known solution for the retarded potentials:

hµν(~r, t) = −4G
c4

∫
d3r′

Sµν

(
~r′, t− |~r−~r

′|
c

)
|~r − ~r′|

(29.22)

with Sµν = Tµν −
T

2 ηµν .

The interpretation is the same as in electrodynamics: a change in Sµν at position ~r′ does not affect
the position ~r before some time |~r−~r

′|
c has passed.

For weak gravitational fields (i.e. |hµν | = |gµν − ηµν | � 1) the Einstein field equations read

�hµν = −16πG
c4

(
Tµν −

T

2 ηµν
)
. (29.23)

In the vacuum (Tµν = 0) the equation reduces to

�hµν = 0 (29.24)
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which has plane waves as its simplest solution. The above equation is quite similar to the wave
equation in electromagnetism, �Aµ = 0 with the electromagnetic vector potential Aµ. As we will see,
the solutions are similar, as well. Note that the wave equation in electromagnetism is exact whereas
the general relativistic wave equation arises from the approximate linearized field equations.

29.2 Electromagnetic Waves

Physical fields are invariant under gauge transformations

Aµ → A′µ = Aµ + ∂µχ (29.25)

so that we can choose ∂µAµ = 0 (Lorenz gauge) and get

�Aµ = 4π
c
jµ. (29.26)

Due to the gauge conditions, only three out of four components of Aµ are independent. While
leaving the Lorenz gauge unaltered, we still have the freedom to perform an additional gauge trans-
formation satisfying �χ = 0. Since in vacuum jµ = 0, this allows us to set A0 = 0. Finally we are left
with two degrees of freedom (polarizations). The conditions read then

�Aµ = 0, A0 = 0, ∂iA
i = 0. (29.27)

This is solved by the ansatz

Aµ = eµ exp[−ikνxν ] + c.c. , (29.28)

where kµkµ = 0 and eiki = 0 (polarizations are transverse to propagation direction).

29.3 The Case of Gravity

Due to the symmetry hµν = hνµ, 10 out of 16 components of hµν are independent. With a gauge
transformation of the form (29.18) we can impose four additional conditions. This leaves us with 6
degrees of freedom that are truly independent. If we consider the vacuum case

�hµν = 0, (29.29)

in addition to (29.17) we can perform a further transformation of the form

hµν → h′µν = hµν − ∂µεν − ∂νεµ (29.30)

provided that εµ satisfies

�εµ = 0. (29.31)

Such a transformation leaves Eq. (29.29) and the gauge condition (29.18) invariant (this is in complete
analogy to electromagnetism, of course). With these four additional conditions we are left with two
independent components of hµν . The solution to (29.29) can be written in terms of plane waves

hµν = eµν exp[−ikκxκ] + c.c. (29.32)
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where

ηλνkλkν = kνkν = 0 ⇔ k2
0 = ω2

c2
= ~k2 = k2. (29.33)

The amplitude of the wave eµν is called polarization tensor. Inserting (29.32) into the gauge
condition (29.18) (2hµν,µ = hµµ,ν) leads to

2kµηµρeρν = kνη
µρeρµ. (29.34)

Clearly eµν inherits the symmetry of hµν , thus eµν = eνµ. Let us choose a wave travelling along the
x3-axis. This yields the wave solution

hµν = eµν exp
[
ik(x3 − ct)

]
(29.35)

where we used Eq. (29.33). The components of the wave vector are then

k1 = k2 = 0, k0 = −k3 = k = ω

c
. (29.36)

In this case the gauge condition (29.34) reads

e00 + e30 = 1
2(e00 − e11 − e22 − e33), (29.37)

e01 + e31 = 0, (29.38)

e02 + e32 = 0, (29.39)

e03 + e33 = −1
2(e00 − e11 − e22 − e33). (29.40)

With eµν = eνµ and these four conditions, the polarization tensor is fully determined by six compo-
nents. All the other components can be expressed in terms of the six independent components

e00, e11, e33, e12, e13 and e23. (29.41)

The other components are given by

e01 = −e31 = −e13, e02 = −e32, e22 = −e11, e03 = −1
2(e00 + e33). (29.42)

We can perform yet another transformation (29.14) (x′µ = xµ + εµ) with functions εµ satisfying
�εµ = 0. The functions are solutions of the wave equation, therefore we can write them as

εµ(x) = δµ exp [−ikµxµ] + c.c.. (29.43)

As noted before, such a transformation with arbitrary δµ does not violate the gauge condition (29.18).
We choose kµ in (29.43) equal to the wave vector of a given gravitational wave. Using (29.43) in
(29.16) we obtain a new solution h′µν in which all the terms have the same exponential dependence of
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exp[−ikµxµ]. Thus only the amplitudes transform as

e′11 = e11, (29.44)

e′12 = e12, (29.45)

e′13 = e13 − iδ1k, (29.46)

e′23 = e23 − iδ2k, (29.47)

e′33 = e33 − 2iδ3k, (29.48)

e′00 = e00 + 2ikδ0. (29.49)

We can choose δµ such that e′00 = e′13 = e′33 = e′23 = 0. This new solution is equivalent to the old one.
From the physical point of view, only polarizations corresponding to e′11 and e′12 are relevant.

Neglecting primes in our notation from now on, we get for the gravitational wave propagating in
x3-direction, after gauging away all redundancies

hµν =


0 0 0 0
0 e11 e12 0
0 e12 −e11 0
0 0 0 0

 · exp
[
ik(x3 − ct)

]
+ c.c. (29.50)

The direction of ~k is the x3-axis. We ask now the question how (29.50) transforms under a rotation
around this axis. Since we are in an almost Minkowskian metric we can realize this transformation as
a Lorentz transformation described by the matrix

Λ̄µν =


1 0 0 0
0 cosϕ sinϕ 0
0 − sinϕ cosϕ 0
0 0 0 1

 . (29.51)

Therefore the polarization tensor transforms as

e′µν = Λ̄ρµΛ̄σνeρσ. (29.52)

This yields

e′11 = e11 cos(2ϕ) + e12 sin(2ϕ), (29.53)

e′12 = −e11 sin(2ϕ) + e12 cos(2ϕ). (29.54)

If we consider e± ≡ e11 ± ie12 instead, we thus have

e′± = e±2iϕe±. (29.55)

The vectors e± have helicity ±2, whereas the wave solutions in electrodynamics have helicity ±1.
Generalizing from the electromagnetic field, which is quantized using a spin 1 particle, the photon,
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one can thus expect the quanta of the gravitational field to be spin 2 particles. While there is neither
evidence for their existence nor a closed theory of quantum gravity, the hypothetical quanta of the
gravitational field are commonly dubbed gravitons .

29.4 Quadrupole Radiation

Oscillating charge distributions emit electromagnetic waves. In analogy we expect oscillating mass dis-
tributions to emit gravitational waves. We quickly repeat the case of electromagnetic dipole radiation
before turning to the case of oscillating mass distributions.

In electromagnetism one finds that an oscillating dipole moment

~p(t) = ~p0 exp(−iωt) + c.c. (29.56)

emits electromagnetic waves whose power P per solid angle is given by

dP

dΩ = ω4

8πc3 |~p|
2 sin2 θ (29.57)

where θ is the angle between ~p and ~k where ~k is the direction of propagation. The total emitted power
can be obtained by integrating in θ:

P = ω4

3c3 |~p|
2. (29.58)

The computation of the emitted gravitational radiation is similar to electromagnetism but also
more involved since the source terms are rank 2 tensors. We will proceed with the following steps:

1. Calculate the asymptotic fields emitted by a source Tµν .

2. Reduce the result to spatial components.

3. Apply the long wavelength approximation.

In contrast to the electromagnetic case there is no gravitational dipole radiation. The density is
given by

ρ(~r, t) = ρ(~r) exp(−iωt) + c.c. ⇒ ~p =
∫
d3r ~rρ(~r) = M ~Rc.m. (29.59)

where M is the total mass and ~Rc.m. is the center of mass. If we choose the center of mass system
as the inertial system then ~p = 0. Consequently ~p = 0 in all inertial systems. This is not possible in
electromagnetism.

The following derivation of the quadrupole formula is skipped, it will be presented in full glory in
the consecutive lecture. Instead we directly show the quadrupole formula:

We define the traceless quadrupole tensor of the mass distribution:

Qij(t) =
∫
d3x

(
xixj − 1

3r
2δij

)
ρ(t, ~x). (29.60)
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Then we find for the power emitted in gravitational waves

P = G

5c5 〈
...
Q
kl...
Qkl〉 (29.61)

where 〈·〉 denotes a time average, for instance over one orbital period. The third time derivatives
...
Qij

in the above equation can be easily evaluated for a plane wave Qij ∝ exp [−iωt] and yield
...
Qij ∝ ω3

and thus P ∝ ω6. Note again the difference to electromagnetic radiation, where we found P ∝ ω4.
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