

Effective field theory interpretation of CMS data

Fabian Stäger, Florencia Canelli (CMS Collaboration)

UZH Physik Institut, Open Days, 21–22 November 2024

Indirect searches for physics beyond the Standard Model

SM Effective Field Theory

One way to do this: The Standard Model Effective Field Theory (SMEFT)

- A consistent and model independent way to parametrise deviations in all SM processes

- There are several phenomena the standard model of particle physics (SM) can not explain, such as gravity, dark matter, neutrino masses, ...
- \rightarrow we know there must be *some* unknown theory beyond the standard model (BSM) that can explain these observations
- The LHC at CERN allows us to search for new particles with masses up to a few TeV, but none have been found so far
- Maybe BSM particles are just too heavy to be produced at the LHC? 🦻

 \rightarrow look for indirect evidence of BSM physics via deviations in precision measurements of known SM processes

• Constraints on Wilson coefficients c_i can then be matched to limits on parameters in BSM theories

1) Measurement

- Measure differential cross section of a process that is potentially sensitive to BSM effects
- Compare the measurement to theoretical predictions (assuming the SM)
- For example, pp $\rightarrow W\gamma$ (sensitive to modified triple gauge coupling: $\mathcal{Q}_W = \varepsilon^{ijk} W^{i\nu}_{\mu} W^{j\rho}_{\nu} W^{k\mu}_{\rho}$

2) Parameterization

• SMEFT operators modify the SM cross section

$$\sigma_{\text{total}} = \sigma_{\text{SM}} + \sum_{j} \frac{c_j}{\Lambda^2} \sigma_j^{\text{int.}} + \sum_{j,k} \frac{c_j c_k}{\Lambda^4} \sigma_{jk}^{\text{BSM}}$$

• The terms $\sigma_j^{\text{int.}}$ and σ_{jk}^{BSM} are computed using simulated data (MG5_aMC@NLO + SMEFTsim3)

3) Fit

- Construct a likelihood model based on the number of observed and predicted events in each bin (1), their uncertainties, and the SMEFT parameterization (2)
- $L = \prod \operatorname{Pois}(n_i | s_i(\vec{c}, \vec{\nu}) + b_i(\vec{\nu})) \prod p_k(\hat{\nu}_k | \nu_k)$
 - $-\vec{c}$: Wilson coefficients; $\vec{\nu}$: nuisance parameters corresponding to systematic uncertainties $-n_i$: observed number events in bin i $-s_i, b_i$: predicted number of signal and background events in bin *i*, for given values of \vec{c} and $\vec{\nu}$
- Run a maximum likelihood fit and determine the best fit values of the Wilson coefficients and their confidence intervals

 p_{τ}^{γ} (GeV)

CMS SMEFT Combination

- We combine seven sets of CMS measurements and electroweak precision observables (EWPO) measured at LEP and SLC
- Higgs sector: $H \rightarrow \gamma \gamma$
- Top sector: $t\overline{t}, t\overline{t}X$
- Electroweak sector: $W\gamma$, WW, $Z \rightarrow \nu\nu$, EWPO
- Strong sector: inclusive jet
- Inputs were selected to provide sensitivity to a broad set of SMEFT operators (64 in total), have negligible overlap in event selections, and small background contributions

Which input channel is sensitive to which operators:

Basis rotation

- Not enough data to constrain all 64 Wilson coefficients in a simultaneous fit (many are strongly correlated)
- Use Principal Component Analysis (PCA) to identify linear combinations of Wilson coefficients that can be constrained simultaneously

Future plans

- Add more existing measurements to combination (e.g. other Higgs decay modes, B-physics, ...)
- Dedicated analyses that target specific operators \rightarrow we recently started work on a triple-differential Drell-Yan analysis targetting 2-quark-2-lepton SMEFT operators (indirect sensitivity to Z' models)

Reference: CMS Collaboration, Combined effective field theory interpretation of Higgs boson, electroweak vector boson, top quark, and multi-jet measurements

Contact Information

www.physik.uzh.ch/en/researcharea/cms fabian.staeger@uzh.ch, canelli@physik.uzh.ch

EV41 ($\lambda^{-1/2} = 4.4$) -0.1<mark>0.4 0.5</mark>-0.2<mark>-0.6</mark>-0.20.1 0.1 0.1-0.2 | | | <mark>| 0.3</mark>|0.1| |0.1| |0.1| <mark>|0.2</mark>| | | |0.1| EV42 ($\lambda^{-1/2} = 4.9$)

 $\begin{bmatrix} c_1 & c_2 & c_3 & c_3 & c_3 & c_3 & c_3 & c_4 & c_5 & c$

