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Abstract

We derive an equatorial e�ective potential from the Kerr metric and use it to derive an
analytical expression for the perihelion shift of a slowly orbiting massive object in the gravi-
tational far-�eld limit of a slowly rotating black hole. We then argue, that in the appropriate
limit, this result also holds for planetary motion around the Sun, in particular for the case
of Mercury. We �nd that the contribution of the Sun's rotation to the Mercurian perihelion
shift is −0.002′′/century which is to be compared with the pure Schwarzschild contribution of
42.9′′/century. In the second part we look at the behaviour of the e�ective potential in the
near-�eld regime. We will discuss the ergosphere and frame-dragging e�ects with the help of
numerical solutions. Finally, we compute numerical results for the perihelion shift of massive
test particles orbiting close to the rotating black hole. In particular we examine the dependence
of the perihelion shift on the dimensionless spin parameter a/m of the black hole and the orbit
size via the geodesic constant of motion L.
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1 INTRODUCTION

1 Introduction

The Kerr metric is a generalisation of the Schwarzschild metric and describes the vacuum solution
of the Einstein �eld equations for an uncharged, rotating, axial-symmetric black hole. The Schwarz-
schild solution was discovered shortly after Einstein published the �eld equations in 1915 by Karl
Schwarzschild [1] in the very same year. It was in the following year when Einstein proposed three
possible tests to gather observational evidence for the validity of his general theory of relativity [2].
One of them was addressing the known problem of Mercury and its perihelion, namely an observed
advance of around 43′′/century which could not be explained by Newtonian gravity. The fact that
Einstein's theory was able to explain this deviation was a major step in accepting the general theory
of relativity. Although Einstein did use a di�erent approach, the observed perihelion shift can also
be calculated directly via the Schwarzschild metric, since it describes the unique exterior solution
to any spherical symmetric source (Birkho�'s theorem). The search for other exact solutions of the
�eld equations began, of which a solution to a rotating, axial symmetric source was sought out most
eagerly. It was only in 1963 when Roy Kerr [3] discovered such a solution.
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2 THE KERR METRIC AND GEODESIC MOTION

2 The Kerr metric and geodesic motion

In this section we will derive a radial equation with an e�ective potential term (as known from New-
tonian celestial mechanics) from the Kerr metric. This will help us understand the radial motion of
geodesics in the equatorial plane of the Kerr spacetime and compare it to the Newton/Schwarzschild
case.

2.1 E�ective potential

The Kerr Metric in Boyer-Lindquist coordinates reads [4]

ds2 = (1− 2mr

Σ
)dt2 +

4amr sin2 θ

Σ
dtdφ− Σ

∆
dr2 − Σdθ2 − (r2 + a2 +

2ma2r sin2 θ

Σ
) sin2 θdφ2 (1)

with Σ = r2 + a2 cos2 θ and ∆ = r2 − 2mr + a2.
Note that we have used natural units with c = 1 and G = 1. In particular we have

c2dt2 → dt2

Gm

c2
→ m

The Kerr metric has the property of being asymptocially �at in the limit of r → ∞ which allows
us to identify the parameter m with the mass of our graviational source and a with the angular
momentum J via J = ma.

The Lagragian for geodesic motion reads

L = gµν ẋ
µẋν

We note that the metric (1) possesses the Killing �elds ∂
∂t and

∂
∂φ yielding the following constants

of motion

∂L
∂ṫ

= const. ≡ A

∂L
∂φ̇

= const ≡ B

Moreover the Lagrangian itself is conserved since the Hamiltonian of the system coincides with the
Lagrangian and ∂L

∂τ = 0 with τ being the proper time of the geodesic. In the following we will
restrict ourselves to geodesic motion in the equatorial plane θ = π/2. Such geodesics exist because
of symmetry considerations. Note that in contrast to the Schwarzschild case there is an distinguished
equatorial plane perpendicular to the spin axis of the source. In this case we have

Lθ=π
2

= (1− 2m

r
)ṫ2 +

4am

r
ṫφ̇− r2

∆
ṙ2 − (r2 + a2 +

2ma2

r
)φ̇2

≡ āṫ2 + 2c̄ṫφ̇− b̄φ̇2 − r2

∆
ṙ2

from which we calculate the conserved quantities (multiplied by additional factor of 1/2 for conve-
nience)

A = (1− 2m

r
)ṫ+

2am

r
φ̇ = āṫ+ c̄φ̇

B =
2am

r
ṫ− (r2 + a2 +

2ma2

r
)φ̇ = c̄ṫ− b̄φ̇
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2 THE KERR METRIC AND GEODESIC MOTION

Solving after ṫ and φ̇ respectively yields

ṫ = (b̄A+ c̄B)(āb̄+ c̄2)−1

φ̇ = (c̄A− āB)(āb̄+ c̄2)−1

Noting that [5]

āb̄+ c̄2 = (1− 2m

r
)(r2 + a2 +

2ma2

r
) +

4a2m2

r2

= r2 + a2 − 2mr

= ∆

�nally gives us

ṫ =
b̄A+ c̄B

∆
(2)

φ̇ =
c̄A− āB

∆
(3)

We can use these two expressions two rewrite our Lagrangian

L = āṫ2 + 2c̄ṫφ̇− b̄φ̇2 − r2

∆
ṙ2

= ā(
A2b̄2 + 2b̄c̄AB + c̄2B2

∆2
) + 2c̄(

b̄A+ c̄B

∆
)(
c̄A− āB

∆
)− b̄( c̄

2A2 − 2āc̄AB + ā2B2

∆2
)− r2

∆
ṙ2

=
A2(āb̄2 + b̄c̄2)−B2(āc̄2 + ā2b̄) + 2AB(c̄3 + āb̄c̄)

∆2
− r2

∆
ṙ2

=
b̄A2 − āB2 + 2c̄AB

∆
− r2

∆
ṙ2

Where we have used the identity ∆ = āb̄+ c̄2 in the last line. Inserting the de�nitions for ā, b̄, c̄ and
∆ and rearranging gives us the radial equation

ṙ2 − L2m

r
+
B2

r2
− 2mB2

r3
+
La2

r2
− a2A2

r2
− 2ma2A2

r3
− 4amAB

r3
= A2 − L

In the case of time-like geodesics we have L = 1. We can further identify E = A2−L
2 and L = −B

with E and L being the total energy per mass of the orbiting object and orbital angular momentum
per mass respectively. We thus have in analogy with Newtonian mechanics

ṙ2

2
+ V (r) = E (4)

with

V (r) = −m
r

+
L2

2r2︸ ︷︷ ︸
Newton

−mL
2

r3︸ ︷︷ ︸
Schwarzschild

−a
2E

r2
− ma2(2E + 1)

r3
+

2am
√

2E + 1L

r3︸ ︷︷ ︸
Kerr

(5)

As expected, we recover the Schwarzschild case for a = 0. It is interesting to note, that while the
Schwarzschild correction is of O(r−3) the Kerr metric introduces additional terms of O(r−2). Thus
the rotation of the gravitational source introduces relativistic e�ects which are of the same order in
r as the Newtonian case.
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3 PERIHELION SHIFT IN THE FAR-FIELD LIMIT

2.2 Dimensional and calculational considerations

In order to examine the physical scales of our result we will momentarily restore our units

V (r) = −Gm
r

+
L2

2r2
− GmL2

c2r3
− a2E

r2
− Gma2(2E + c2)

c2r3
+

2aGm
√

2E + c2L

c2r3
(6)

with J = amc and L = c2. We observe that the Kerr terms scale with a
r and Gm

c2r which correspond
to the rotation and gravitational strength of the gravitational source respectively. Since the Schwarz-
schild contribution to the Mercurian perihelion shift is in accordance with the experimental data

(GR: ≈ 43′′/century, Experiment: 42.56 ± 0.94′′/century [6]) we expect a
r � 1 and a2

r2 �
Gm
c2r for

the orbit of Mercury around the Sun1. Using the experimental value of J� = 1.92 · 1041 kg m2 s−1

[7] for the angular momentum of the Sun and using following values

M� = 1.99 · 1030 kg

ãmercury = 5.79 · 1010 m

where ãmercury is the semi-major axis of the orbit we get

a�
ãmercury

= 5.55 · 10−9
Gm�

c2ãmercury
= 2.55 · 10−8

in agreement with our expectations. We also have Emercury/c
2 = −1.28 · 10−8 which indicates that

motion of Mercury is well below the speed of light.

3 Perihelion shift in the far-�eld limit

In this section we derive the perihelion shift of a slowly orbiting object with E � c2 for a slowly
rotating ( a

r � 1) and weak (Gmc2r � 1) gravitational source having the Kerr metric as the exterior
vacuum solution.

We start by rewriting our radial equation (4) as a di�erential equation in φ rather than τ . We have

ṙ =
∂φ

∂τ

∂r

∂φ
≡ φ̇r′

rearranging (4) and de�ning Ṽ (r) = V (r)− E we have

r′2 = −2
Ṽ (r)

φ̇2

=
(3)
−2

∆2

(c̄
√

2E + 1 + āL)2
Ṽ (r)

The full expression for the right hand side is rather complicated but since we are only interested in
the slow rotating limit we will expand it in orders of a

r′2 =
2L2mr − L2r2 + 2mr3 + 2Er4

L2
+

8
√

2E + 1mr3(m+ Er)

L3(2m− r)
a+O(a2)

We further note that the denominator of the second term can be expanded as well since m
r � 1

1

L3(2m− r)
= − 1

L3r
(1 +

2m

r
+O(

m2

r2
))

1As will be discussed below, the metric of the Sun is actually not given by the Kerr metric since it does not describe
an arbitrarily rotating source. However, in the appropriate limiting case the two metrics do in fact coincide.
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3 PERIHELION SHIFT IN THE FAR-FIELD LIMIT

In leading order we thus have

r′2 ≈ 2L2mr − L2r2 + 2mr3 + 2Er4

L2
− 8a

√
2E + 1m2r2

L3
− 8a

√
2E + 1Emr3

L3
(7)

In order to make the solving of this equation more feasible we will introduce u = 1
r with u′ = − 1

r2 r
′

leading to

u′2 = 2mu3 − u2 +
2m

L2
u+

2E

L2
− 8a

√
2E + 1m2

L3
u2 − 8a

√
2E + 1Em

L3
u

Taking the derivative of this equation and dividing by 2u′ 6= 0 gives us the following second order
non-linear di�erential equation:

u′′ + u− m

L2
= 3mu2 − 8a

√
2E + 1m2

L3
u− 4a

√
2E + 1Em

L3
(8)

We recover a similar di�erential equation as in the Newtonian case however with a right hand side
unequal to zero from which we recognize the �rst term from the Schwarzschild treatment of this
problem. We will assume that the deviations from Newtonian orbital motion will be small and we
want to try to �nd a pertubative correction starting from the classical solution. Following a similar
approach as in [8], we will introduce a parameter p ∈ [0, 1] for that purpose and write a family of
di�erential equations

u′′ + u− m

L2
− p(3mu2 − 8a

√
2E + 1m2

L3
u− 4a

√
2E + 1Em

L3
) = 0 (9)

For p=0 we regain the Newtonian equation of motion while for p=1 we get the full expression (8).
We write the exact solution as a series expansion in p

u = u0 + pu1 + p2u2 + ...

where the �rst order correction is expressed via u1. Plugging this expansion back into (9) we get

u′′0 + u0 −
m

L2
+ p(u′′1 + u1 − 3mu20 +

8a
√

2E + 1m2

L3
u0 +

4a
√

2E + 1Em

L3
) +O(p2) = 0

and thus we get the two linear di�erential equations

u′′0 + u0 −
m

L2
= 0 (10)

u′′1 + u1 = 3mu20 −
8a
√

2E + 1m2

L3
u0 −

4a
√

2E + 1Em

L3
(11)

with (10) having the classical solution

u0 =
m

L2
(1 + ε cosφ)

for u0(0) = r−1perihelion, u
′
0(0) = 0 and with ε being the eccentricity of the orbit. Using this solution

for (11) gives us

u′′1 + u1 = 3m
m2

L4
( 1︸︷︷︸

I

+ 2ε cosφ︸ ︷︷ ︸
II

+ ε2 cos2 φ︸ ︷︷ ︸
III

)− 8a
√

2E + 1m2

L3

m

L2
( 1︸︷︷︸
IV

+ ε cosφ︸ ︷︷ ︸
V

)− 4a
√

2E + 1Em

L3︸ ︷︷ ︸
V I

we can solve the di�erent terms separately and get for u1(0) = u′1(0) = 0

I, IV, VI : u1 ∝ (1− cosφ)

II, V : u1 ∝
1

2
εφ sinφ

III : u1 ∝ ε2(2− cosφ− cos2 φ)
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4 PERIHELION PRECESSION OF MERCURY

We note that the only aperiodic contributions come from II and V: u′1(2π) 6= 0. Taking only the
aperiodic part into consideration we write (for p→ 1)

u =
m

L2
(1 + ε cosφ) + (3m

m2

L4
− 4a

√
2E + 1m2

L3

m

L2
)εφ sinφ

To �nally calculate the perihelion shift we simply solve for ∆φ in

u′(2π + ∆φ) = − m

B2
sin ∆φ+ (3m

m2

L4
− 4a

√
2E + 1m2

L3

m

L2
)(sin ∆φ+ (2π + ∆φ) cos ∆φ)

!
= 0

for small ∆φ we get

∆φ =
2π(3m m

L2 − 4a
√
2E+1m2

L3 )

1− 2(3m m
L2 − 4a

√
2E+1m2

L3 )

≈ 2π(3m
m

L2
− 4am2

L3
)

or

∆φ ≈ 6πm2

L2
− 8πam2

L3
(12)

where we have used L2 ∝ mr and E � c2 in the last line.

4 Perihelion precession of Mercury

Contrary to the Schwarzschild metric, there is no Birkho�'s Theorem equivalent for the Kerr metric
[4] [9]. This means that (5) only describes the e�ective potential of a body in the gravitational �eld
of an uncharged, rotating Black hole and not an arbitrary rotating object.
However, in general, the metrics of such rotational objects (e.g. stars, planets) and the Kerr metric
di�er from each other in their respective higher order mulitpole expansion. This implies, that for
large r (weak-�eld regime) the perihelion correction calculated from the Kerr metric is indeed the
leading contribution. We have seen above that the relevant scales in the case of Mercury are much
smaller than unity, so we expect the Kerr correction calculated above to be the leading contribution
to the perihelion shift of Mercury induced by the Sun's rotation after all. A di�erent approach,
starting with a general metric in Post-Newtonian approximation and only considering the relevant
multipole moments leads in fact to the same result (12)[10].

In order to calculate speci�c values for the case of Mercury we will identify L =
√
ãGm(1− ε2) where

ã refers to the semi-major axis of the orbital ellipse. Using εmercury = 0.206 and the numerical values
from section 2.2 we get for the �rst term in (12)

6πG2m2
�

c2L2
≈ 5.01 · 10−7 (≈̂42.9′′/century)

which is the famous result from 1916.
The second term yields

−8πaG2m2
�

cL3
≈ −2.38 · 10−11 (≈̂ − 0.002′′/century)

Thus the calculated Kerr contribution to the Mercurian perihelion shift is well within the error of the
experimental result of 42.56± 0.94′′/century. Furthermore, our result is in agreement with previous
results where the contribution of the rotation of the Sun to the Mercurian perihelion shift has been
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5 REACHING FOR THE HORIZON

calculated directly via the Lense-Thirring precession [11].

We can compare our result with the contribution to the perihelion shift coming from the Sun's
quadrupole moment which is non-trivial due to the Sun's oblateness. It is given by [12]

(∆φ)Q =
6πG2m2

�
L2

J2r
2
�

2L2
≈ 2.97 · 10−10 (≈̂0.025′′/century)

where we have used J2 = 2.0 · 10−7 for the solar quadrupole moment. We thus see, that the Kerr
contribution to the perihelion shift is roughly one order of magnitude smaller then the contribution
from the Sun's quadrupole moment.

5 Reaching for the horizon

In this section we will gain insight into the strong �eld behaviour of time-like geodesics in the equa-
torial plane θ = π

2 . In particular, we want to study the existence and nature of orbits near the
so-called ergosphere. The ergosphere describes the hypersurface at which the time-like Killing �eld
∂
∂t becomes space-like. This is tantamount to gtt in (1) becoming negative. Thus the ergosphere
radius in the equatorial plane is given by re = 2m.

5.1 Innermost stable circular orbits

In order to gain a qualitative understanding of orbits near the black hole we will plot the e�ective
potential (5) for di�erent values of L,E and a.2 We will begin with the Schwarzschild case a/m = 0
and try to understand the orbital behaviour near the Schwarzschild event horizon r/m = 2. Fig. 1
shows a schematic e�ective potential for a �xed L where we can identify possible orbits and their
characteristic radii by varying E. Note that the existence of bound orbits is predicated on the value
of L.
A way to discuss the smallest possible bound orbits is to examine the radius of the innermost stable
cirular orbit (ISCO). Since this orbit will also give us the smallest elliptical orbits, the ISCO will
give us a characteristic length for the closest bound orbits in general. Fig. 2 shows the Schwarzschild
e�ective potential for di�erent L in a close region around the horizon. Stable circular orbits seem
to emerge between L/m = 2 and L/m = 4. We can easily calculate rISCO

dVa=0(r)

dr

∣∣∣∣
r=rISCO

= 0

d2Va=0(r)

dr2

∣∣∣∣
r=rISCO

= 0

getting rISCO = 6m (with L/m = ±2
√

3), as suggested by Fig. 2. In particular, this gives us
the innermost radius of the accretion disk of a Schwarzschild black hole. Only for |L/m| > 2

√
3

the e�ective potential possesses a minimum and therefore allows for stable orbits in general. We
note that the e�ective potential reaches zero from below in the limit of r →∞ since the dominant,
Newtonian term is ∝ O(−r−1). Thus, bound orbits only exist for E < 0. In particular we see from
Fig. 2 that free falling objects with ṙ = 0 at r → ∞ (or equivalently with E = 0) need a speci�c
angular momentum of L ≥ 4 to avoid the singularity. Note that the e�ective potential (5) di�ers
for a photon since we would have L = 0. Repeating the same calculation in that case would give us
rphISCO = 3m .

2In the following we will use dimensionless units by promoting m to a physical constant. Parameters and values

can be restored in their physical dimension by an appropriate combination of G, c and m: L/m→ Lc
Gm

, a/m→ ac2

Gm

, E → E/c2, V → V/c2.
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5 REACHING FOR THE HORIZON

Figure 1: Schematic Schwarzschild e�ective potential which allows for bound orbits showing a pos-
sible elliptical orbit with energy E

2 4 6 8 10
r
m

-2.0

-1.5

-1.0

-0.5

0.5

1.0
V

Schwarzschild effective potential

L/m
0
2
4
6
8

Figure 2: The near-�eld e�ective potential of the Schwarzschild metric for massive particles with
di�erent values of L/m.
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5 REACHING FOR THE HORIZON

We will now look at the case of a/m 6= 0. Note that in this case we have to consider negative
values for L as well since (5) has a linear term in L breaking the angular symmetry of the spacetime.
Fig. 3a and Fig. 3b show the e�ective potentials for a body orbiting with (direct, sgn(a)=sgn(L))
and against (retrograde, sgn(a) 6= sgn(L)) the rotation of the black hole. The Kerr event horizon is
given by r = m +

√
m2 − a2, characterized by a coordinate singularity in grr in (1), such that we

have a ∈ [0,m] for a Kerr black hole. Fig. 3 seems to suggest that the ISCO's di�er for direct and
retrograde orbital motions.
In this case the calculation of rISCO is more involved although it follows the same ideas as above.
It is given by [13]

rISCO = m
(
3 + Z2 ∓

√
(3− Z1)(3 + Z1 + 2Z2)

)
with

Z1 = 1 + (1− a2

m2
)

1
3 [(1 +

a

m
)

1
3 + (1− a

m
)

1
3 ]

Z2 =

√
3
a2

m2
+ Z2

1

where the plus and minus sign refer to orbital motion with and against the rotational direction of
the black hole. Note that in principle the a dependenace of rISCO gives us a way to measure the
angular momentum of a black hole via the measurement of the inner radius of the accretion disk.
Fig. 4 shows the behaviour of rISCO for di�erent values of a/m. As discussed in [13] the fact that is
rISCO coincides with the event horizon for a/m = 1 is to be traced back to the singular behaviour
of Boyer-Lindquist coordinates, in particular since the event horizon is a null hypersurface and thus
doesn't allow for time-like geodesics. The ISCO for a/m = 1 is in fact a �nite proper radial distance
away from the horizon. Contrary to the Schwarzschild case, particles can orbit the Kerr black hole
very close to the horizon (a/m ≈ 1). This leads to interesting new phenomena and considerations
absent in the Schwarzschild case, such as the idea that a rotating black hole can act as particle
accelerator [14].

5.2 The ergosphere as the static limit

Another way of looking at the ergosphere is by realizing that observers with �xed spatial coordi-
nate values (static observer) can only exist outside of it. This can be easily seen by reconsidering
the phenomenon of the time-like coordinate becoming space-like at the ergosphere entry. A static
observer has a four-velocity of uµ ∝ (1, 0, 0, 0) and as such seizes to be time-like at the ergosphere
surface. Consequently, observers within the ergosphere can not be static. By considering an arbi-
trary four-velocity uµ = (ṫ, ṙ, φ̇, 0) within the equatorial plane of the ergosphere and noting that for
time-like geodesics we have

gµνu
µuν = (1− 2m

r
)ṫ2 +

4am

r
ṫφ̇− r2

r2 + a2 − 2mr
ṙ2 − (r2 + a2 +

2ma2

r
)φ̇2

≡ gttṫ2 + gtφṫφ̇− grr ṙ2 − gφφφ̇2

> 0

we see that φ̇ 6= 0 and sgn(φ̇)
!
= sgn(a) from the second term since gtt < 0 and all the other diagonal

terms are strictly negative as well within the ergosphere. The same argument also holds for photons
(gµνu

µuν = 0 in that case) and thus, within the ergosphere, every physical object is dragged along
the rotational direction of the black hole. This phenomenon is known as frame-dragging. Fig. 5
shows the numerical solution3 of the two cases where a particle approaches a black hole which rotates
with and against the initial particle direction.

3All following numerical solutions have been obtained using Mathematica's NDSolve and solving for dimensionless
r(τ) and φ(τ). Eqs.(3) and (4) have been used to obtain a second order di�erential equation in r and a �rst order
di�erential equation in φ. In this case, the automated method selection of NDSolve has chosen LSODA, an integration
procedure which automatically switches between sti� and non-sti� methods [15].

10



5 REACHING FOR THE HORIZON
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(a) direct

2 4 6 8 10
r
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Kerr effective potential for a/m=0.999, E=0
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(b) retrograde

Figure 3: The e�ective potential of the Kerr metric with a/m = 0.999 and E = 0. The vertical inner
and outer dotted lines denote the horizon and erogsphere radius respectively. Note the asymmetric
behaviour for rising positive and negative values of L, exemplifying the dependence of geodesic
motion on the rotational direction of the black hole (see also Fig. 5).

11



5 REACHING FOR THE HORIZON

Figure 4: rISCO (denoted rms in the �gure) in the equatorial plane of Boyer-Lindquist coordinates
for di�erent values of a/m for direct and retrograde orbital motion. rmb and rph denote the closest

unstable circular orbit and rphISCO respectively, whereas r0 and r+ denote the Ergosphere entry and
the horizon [13]
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(a) Infalling direct geodesic with dimensionless parameters E = −0.05, L = 2.3, a/m =
0.9 and τ = 13
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(b) Infalling retrograde geodesic with dimensionless parameters E = −0.05, L = 2.3,
a/m = −0.9 and τ = 6.7

Figure 5: Infalling direct and retrograde geodesics of massive particles approaching a rotating black
hole. In the latter case, the particle is forced on to a path with the same rotational direction as the
black hole before reaching the ergosphere.
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Figure 6: Frame-dragging e�ect for infalling massive particles reaching the ergosphere surface. Dif-
ferent values of a/m illustrate the warping of space in the rotational direction of the black hole.
Dimensionless parameters used: E = −0.05, L = 0, τ = 10.7

In the same manner, we expect a radially falling particle with L = 0 to acquire dφ/dt 6= 0 while
approaching the ergosphere. Using (2) and (3) we have

dφ

dt
=
φ̇

ṫ
=
L=0

2am

r3 + a2r + 2a2m

where sgn(dφ/dt) = sgn(a) is apparent and the dragging is indeed along the rotational direction of
the black hole. Fig. 6 shows a numerical simulation of this case for di�erent values of a/m.

5.3 Numerical perihelion shift

In this section, we will use numerical solutions to calculate the perihelion shift for arbitrary orbi-
tal parameters. In particular, we are interested in the perihelion shift of orbits close to the black hole.

The idea is to consider the numerically solutions of orbital motions (see footnote 3) and calculate
the perihelion shift from the appropriate roots of the derivative of the interpolation function for
r(τ). In order to verify the accuracy of this method we will begin with the case of Mercury and try
to numerical determine the Schwarzschild perihelion shift. Fig. 7 depicts the procedure. We get a
result of ∆φ ≈ 5.01 · 10−7 in agreement with our pertubative calculation from section 4 4. Fig. 8
shows the numerical Mercurian perihelion shift together with results for slightly di�erent L/m.

Next, we look at bound orbits close to the black hole. Fig. 9 shows bound orbits for a/m ∈
{0, 0.999,−0.999} and for L/m = 4.7, E = −0.01 together with the computed numerical perihelion
shift. We note that in the case of a/m = −0.999 the perihelion shifts over 2π which results in "inner
loops" in the orbital motion (see Fig. 9c). We also note that the deviation from the Schwarzschild
perihelion shift is negative for a/m > 0, as in our far-�eld result. Fig. 10 shows the numerical
perihelion shift for L/m ∈ [4, 7] which corresponds roughly to a perihelion/aphelion distance of
rperihelion ≈ 6m − 36m and raphelion ≈ 91m − 61m respectively. Note that the existence of bound
orbits is dependant on the value of a/m, such that bound orbits do not exist for certain parameter
values such as for L/m = 4.5 and a = −0.999.

4For the default settings of NDSolve, the numerical results for the Mercurian perihelion shift show dependence on
the chosen initial conditions. In order to �x this, we have set WorkinPrecision→ 30 in NDSolve.
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Figure 7: Finding the perihelion shift numerically for the case of Mercury using dimensionless
parameters E = −1.28 · 10−8, L = 6130, a/m = 0 and τ = 1.8 · (1.5 · 1012). Numerical simulations of
the Mercurian orbit for 1.8 revolutions are shown in (a). The interpolation function of the numerical
results for r(τ) are shown in (b). In order to determine the perihelion shift we consider the distance
between the relevant roots τ1 and τ2 of the the derivative of the interpolation function r′(τ) which
is shown in (c). Finally, we determine the perihelion shift via φ(τ2)− φ(τ1) = 2π + ∆φ in (d).

15



5 REACHING FOR THE HORIZON

Figure 8: Perihelion shift as a function of L/m in the neighbourhood of the dimensionless speci�c
angular momentum of Mercury (L/m)mercury = 6130
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(a) Orbit around a Schwarzschild black hole with E = −0.01, L/m = 4.7 and τ = 9250 yielding
a numerical perihelion shift of ∆φ = 1.50
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(b) Orbit around a Kerr black hole with a/m = 0.999, E = −0.01, L/m = 4.7 and τ = 15900
yielding a numerical perihelion shift of ∆φ = 0.85
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(c) Orbit around a Kerr black hole with a/m = −0.999, E = −0.01, L/m = 4.7 and τ = 27300
yielding a numerical perihelion shift of ∆φ = 6.80

Figure 9: Time-evolution of closed orbits near a black hole for di�erent values of a/m together with
their numerical value for the perihelion shift per revolution.
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Figure 10: Numerical perihelion shift for orbits near a Kerr black hole with di�erent values of a/m
as a function of L/m. Dimensionless parameters used: E = −0.01
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6 CONCLUSION

6 Conclusion

We have derived an e�ective potential (5) for radial movement in the equatorial plane from the
Kerr metric and examined the Kerr contribution to the perihelion shift. We derived an analytical
expression (12) for the case of slow movements and weak �elds. In the case of Mercury, we have
found that the rotation of the sun contributes −0.002′′/century to the perihelion shift, which is in
agreement with previous results using alternative approaches [10] [11]. We have also established a
numerical method of calculating the perihelion shift in order to discuss near-�eld behaviour. The
main results can be seen in Fig. 9 and Fig. 10 where the relation between direct and retrograde
orbits of di�erent sizes and the perihelion shift is depicted.
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