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In principle, there is no clear definition of what quantum matter is. In a way this is deeply philosophical: All things are quantum at a level (i.e. this poster) because
the underlying interactions are “guantum”. We define ‘guantum matter’ as any state that exhibits macroscopic properties driven by dominant quantum interactions.
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Quantum matter states are already used in current day applications but many recently discovered states are promising for future applications.
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Our group works on revealing the atomic-scale underpinnings of quantum materials. Our research is based on a synergistic loop of making, probing & tuning
guantum materials. We carry out experiments both in conventional laboratories as well as at large-scale research facilities at the Paul Scherrer Institute (PSI).

By using solid state chemistry we grow materials with underlying lattices By using neutron diffraction and spectroscopy, we determine the
and symmetries that support the formation of quantum matter states. underlying magnetic order and atomic scale interactions.
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Finally, we compare our neutron scattering data to already existing " | By using external control parameters, such as strain, we "tune’ the

models. In addition, in collaboration with our theory colleagues, we may underlying interactions to control the behavior of quantum matter.
also create new ones. This allows us to determine the underlying effective
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