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Abstract

Studies of the rare decay B+→ K+π+π−e+e− are performed using proton-proton
collision data, corresponding to an integrated luminosity of about 1 fb−1, collected by
the LHCb experiment at the centre-of-mass energy of 7 TeV. A novel reweighting pro-
cedure based on the boosting technique and decision trees is applied to reduce the sim-
ulation to data differences using the control channels B+→ J/ψ (→ µ+µ−)K+π+π−

and B+→ J/ψ (→ e+e−)K+π+π−. A MVA algorithm is designed to reduce the
combinatorial background. Finally, a preliminary blind fit of the K+π+π−e+e−

invariant mass is performed. To proceed with the analysis, further studies on the
background contamination are proposed.
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1 Introduction

1.1 Standard Model

The Standard Model (SM) of particle physics is a collection of theories describing the
most fundamental laws of nature except of gravity. It is embedded in the theoretical
framework of the quantum field theory and had great success with the prediction and
explanation of particles and their behaviour.

According to the SM, there are three fundamental forces apart from gravity, which is
several orders of magnitude weaker. The forces result from the exchange of mediators.
The weak force interacts with nearly all particles and despite its name, which comes from
the low frequency it appears in our energy scales, it is responsible for particle interactions
with the most non-conserved quantities. It is mediated via the heavy Z and W± bosons.
A prominent example is the β decay which occurs via the weak force. The strong force
keeps the nuclei together and is responsible for nuclei-nuclei interactions. Its mediators are
gluons which interact via three different types of colour charges. The electromagnetic force
is responsible for particle-particle interactions as well as all macroscopic electrodynamic
effects. It acts via the exchange of photons between electrically charged particles.

All of the matter is made up from the following twelve particles. For every particle,
there exists a corresponding anti-particle with the same mass but opposite quantum
numbers. The subatomic particles, which make up the nuclei of atoms, are quarks.
There are three generations of quarks. In each generation, two kind of quarks exist, one
with the electric charge of +2/3, the other one with −1/3. They can interact via the
electromagnetic, weak and the strong force and exist in nature as groups of either two
(quark anti-quark pair) or three (three quarks with different colour charges) quarks1.
Analogous to the quarks, there are three families of leptons. Two different kind per family
exist, a lepton and a corresponding lepton-neutrino, whereas the former carries electric
charge and the latter does not. As leptons do not carry colour charge, the neutrino is left
to interact via the weak force only. The Higgs boson is an excitation in the Higgs-field
which, simplified, is responsible for the fact that the other particles actually have mass.

Heavier quarks decay into lighter ones under the restriction to decay into oppositely
charged quarks. Their transition is described by the GIM-mechanism, which suppresses
such decays naturally [1]. This allows flavour changing neutral currents (FCNC), decays
where a quark changes its family but not its charge, to only occur in higher order diagrams.

1.2 New Physics

Despite the SM being a remarkable theory in its predictive power, it fails to accommodate
elements such as gravity, dark matter, dark energy and neutrino oscillation. Hence, there
is a general agreement on the fact that the SM is not the final description of nature and
the searches for rare or SM forbidden processes are of great interest. Those are usually
summarized as the search for New Physics (NP).

Rare B decays through the b→ s transition via FCNC can only occur at loop-level, as
seen before, via electroweak loop (penguin) and box diagrams. As the decay is strongly
suppressed, it provides an effective way to check the predictions of the SM as they are
sensitive to small corrections contributed from NP. Such could enter the quantum loops
as shown in Fig. 2a and change the branching fraction significantly.

1There exist exotic states as well which are not mentioned here.
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Figure 1: FCNC as in 1a are naturally suppressed by the GIM-mechanism and occur in higher
order diagrams only. Currently forbidden in the SM are transitions as shown in the tree level
diagram 1b.

According to the SM, leptons carry the same weak charge and particles couple equally
to different flavours of leptons – hereafter referred to as lepton flavour universality (LFU).
Measurements of the branching ratio of B+→ K+`+`− with ` either equal e or µ hint a
possible deviation from the SM with a significance of 2.6σ [2], recent results from the
measurement of the branching ratio of B0→ K∗0`` seem to confirm this deviation [3].

Therefore, additional studies of semileptonic b-hadron decays are of great interest. An
interesting final state to consider is the decay channel B+→ K+π+π−`+`−, where only
the muonic channel B+→ K+π+π−µ+µ− has been observed so far [4]. This measurement
can be used for branching ratio tests later on. In this thesis the yet unobserved B+→
K+π+π−e+e− is examined. The current branching fraction of B+→ K+π+π−e+e− is
predicted to be B = (2.7+1.5+0.0

−1.2−0.3) × 10−6 whereas the first error originates from the
uncertainty of the form-factor and the second one from the error of the kaon mixing angle

b
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Figure 2: A penguin diagram of b→ s transition, as it also occurs in the decay under study, is
shown in 2a with possible NP contribution through the new particle as it occurs in the decay
under study. In 2b, the currently measured B of B+→ K+`+`− with ` either e or µ at the
LHCb is consistent with the SM prediction at the 2.6 σ level.
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θK1 (see below) [5].
The decay under study can be accessed via different resonances. The main contribution

comes from the B+→ K1(1270)(→ K+π+π−)e+e− decay. The K1 is a mixture of the
two orbital angular momentum states K1A(13P1) and K1B(11P1) with two physical states,
K1(1270) and K1(1400). The number in brackets refer to their mass in MeV2. Their
mixing is given by (

|K1(1270) 〉
|K1(1400) 〉

)
=

(
cos θK1 sin θK1

− sin θK1 cos θK1

)(
|K1A 〉
|K1B 〉

)
(1)

where θK1 is the mixing angle. Although there is no common agreement on an angle, the
mixing seems to be maximal. Both K1 decay into the same final state of K+π+π−.

The resonant decays B+ → J/ψ (→ µ+µ−)K+π+π− as well as B+ → J/ψ (→
e+e−)K+π+π− have already been observed and the latter is used as normalisation channel.

2Natural units with ~ = c = 1 are used throughout.
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2 LHCb Experiment

2.1 LHC

The Large Hadron Collider (LHC) is a proton-proton synchrotron situated nearly 200 m
below the surface in a tunnel. The ring of superconducting magnets has a total length of
27 km containing two beam pipes filled with protons that are brought to collision at several
points. Those collisions occurred at a total centre-of-mass energy of

√
s = 7 TeV in 2011

and 8 TeV in 2012. After an upgrade, the energy has been increased to the centre-of-mass
energy of 13 TeV in 2015 and 2016. The proton beams interact simultaneously in four
detector points in the LHC ring which experiments built around, ATLAS, CMS, LHCb
and ALICE. Two of them, CMS and ATLAS, are more general-purpose experiments with
a toroidal structure covering the whole space around the interaction point and operating
at the full collision rate. With another goal in mind, there is also ALICE, an experiment
designed to study gluon-plasma and high-density events. For a fraction of the running time,
the LHC is filled with lead-ions in order to create lead-proton or lead-lead interactions.

2.2 Detector

The Large Hadron Collider beauty (LHCb) is one out of four experiments situated at the
LHC at CERN [6]. The LHCb is designed to perform high-precision measurements of
particles containing b and c quarks to study rare decays and CP violation. In contrast to
the other experiments located at the LHC, the LHCb is a single-arm forward spectrometer.
This allows for measurements in the region of the pseudorapidity range 2 < η < 5, the
predominant flight direction of bb-production.

Figure 3: A schematic view of the non-bending plane of the LHCb detector. Particles are
produced in the collision point on the left side inside the vertex locator and are bent by the
magnet afterwards.
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2.2.1 Vertex locator

An important aspect of the b and c physics is the tracking of the particles close to the
interaction point in order to precisely determine the primary and secondary vertices of
heavy mesons. At the LHCb this is achieved with the vertex locator (VELO), a series of
modules with sensors made up of lightweight, radiation-hard silicon-strips. Each sensor is
able to either measure the azimuthal coordinate or the radial distance to the beam axis, a
single module contains both complementary sensors. The tracker is located about 8 mm
from the aligned beam and is placed inside a beam-pipe independent vacuum system.

2.2.2 Tracking system

In addition to the VELO, several other tracking stations measure the tracks and bending
of the particles. In front of the 4 Tm dipole magnets, the Tracker Turicensis is installed. It
consists of four layers of silicon-strip detectors and allows for the detection of low-momenta
particles which will be bent away in the magnetic field.

After the dipole magnet, the three tracking stations T1, T2 and T3 are placed. Each
of them consists of an inner tracker situated close to the beam pipe and an outer tracker,
covering the largest area of the tracker plane. The inner tracker is a silicon-strip detector
covering the area with a high density of tracks. Another detector technique is used in
the outer tracker as it covers a greater area without the need for the same precision as
required in the inner tracker. In this case four layers of straw tubes filled with gas are
used as drift chambers.

2.2.3 RICH

In b physics it is important to have a good discrimination between charged particles, e.g. K
and π. In order to achieve a good particle identification, there is a ring imaging Cherenkov
detector (RICH) on each side of the magnet, which measure the Cherenkov emission
angle θc. The Cherenkov radiation is detected by pixel hybrid photon detectors. As the
angle of the radiation relative to the particles flight direction depends on the velocity of
the passing particle only, using additionally the information about the momentum from
the tracker allows to determine the mass of the particle and therefore its identity. The
Cherenkov angle also depends on the materials refractive index the charged particle is
passing through. In order to cover a large momentum range with a good angle resolution,
the RICH detectors are filled with materials of different refractive indices.

2.2.4 Calorimeter

A calorimeter measures the total as well as the differential energy loss by completely
absorbing it through interactions with the material. For the LHCb, a classical architecture
of an electromagnetic calorimeter (ECAL) in front of a hadronic calorimeter (HCAL)
was chosen. Both are optimized for particle identification, mostly for e/π and π0/γ
discrimination, as well as for a fast readout. The information will be used, among others,
in the first trigger stage (see Sec. 2.3).

In front of the ECAL, a scintillator pad detector is placed to detect the pass-through
of charged particles followed by a pre-shower detector. The ECAL itself is built of a
sampling scintillator/lead structure (shashlik technology) and has a total depth of 25X0.
As the hit density rapidly drops with increasing distance from the beam pipe, the ECAL
is split into three different sections with appropriate cell sizes.
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The HCAL of the LHCb is a sampling calorimeter with a special structure. It consists
of lead/scintillator tiles directed parallel to the beam-pipe. Each thin row consisting of
several tiles has a neighbour-row with inverted lead/scintillator tiles. The scintillation
light is detected by photomultiplier tubes and collected by fibres. The total length equals
to 5.6 hadronic interaction lengths.

2.2.5 Muon system

The muon system is responsible for the identification of muons and provides a standalone,
fast signal to the trigger in case of muons with high transverse momentum (pT) passing
it. The whole system is composed of the five stations M1–M5. M1 is placed in front of
the calorimeters to improve the pT resolution whereas the others are located downstream.
The stations are separated by iron absorbers to prevent any non-muons from passing
through the detectors. All systems provide spatial resolved hit information with decreasing
segmentation scale for increasing distance to the beam pipe. M4 and M5 are mostly used
for penetration testing and offer only sparsely location informations.

2.3 Trigger

At the nominal LHC conditions, the bunch crossing frequency can reach up to 40 MHz
which leaves 25 ns in between two crossings. This high frequency has to be reduced down
to 1 kHz in order to be able to store the data for offline analysis. Two trigger-systems, a
low-level trigger (L0) and a high-level trigger (HLT) consisting of two stages, HLT1 and
HLT2 select which events to keep.

The L0 stage is a hardware implemented trigger and consists of a custom electronics
set-up built with FPGA. It takes information from three different sources into account.
The first is a pile-up system inside the VELO, estimating the number of events that
occurred during the collision. Information from the calorimeter is used to estimates the
transverse energy (ET) of certain particles and decides to keep the event in case of high
ET. The muon system feeds the trigger with information about the pT of muons in order
to trigger on a certain threshold.

The next stage is the HLT1. It reconstructs some parts of the tracks to confirm the L0
decision as well as to further reduce the event rate. This is now low enough to allow the
HLT2 to reconstruct b events and make more refined decisions. The events which pass
HLT2 with a frequency of around 1 kHz are then stored for offline analysis.

A general distinction is made on whether an event passed the trigger because of the
events signature itself (trigger on signal, TOS) or because of some other particles signature
(trigger independent of signal, TIS).

2.4 Software

Once the events are stored, offline tools are used to reconstruct and fit tracks and apply
sets of exclusive selections prior to the data manipulation.

2.4.1 Track reconstruction and fit

For the event reconstruction, information from the tracking system (including the VELO) is
used. First of all, a clustering algorithm determines track seeds by searching for candidates
in a low magnetic field region of the spectrometer. A Kalman filter algorithm is then

6



fitted to the data using the track seeds as initialisation. An advantage of reconstructing
and fitting with this algorithm is that the result is equivalent to a least square fit of the
tracks to the hits. For the particle propagation with the Kalman filter, the inhomogeneous
magnetic field as well as multiple scattering occurring from detector material is taken into
account.

7



3 Dataset

The data used in the analysis was collected at the LHCb experiment in the year 2011,
which corresponds to an integrated luminosity of 1 fb−1 recorded at a centre-of-mass
energy

√
s = 7 TeV.

Three different decay channels are considered in this analysis.

• B+→ J/ψ (→ µ+µ−)K+π+π−: a control channel that is used to correct for the
largest discrepancies between data and simulation.

• B+→ J/ψ (→ e+e−)K+π+π−: the normalisation channel which is used for some
minor kinematic corrections.

• B+→ K+π+π−e+e−: the signal mode under study.

3.1 Signal simulation

The Monte Carlo simulated samples (MC) are generated using Pythia 8 with a specific
LHCb configuration [7]. An average number of pp interactions per bunch crossing3 of 2
is used and a constraint is applied on the generator level to limit the K+π+π− invariant
mass. In order to reduce possible systematic effects from the detector and surrounding,
the magnetic polarity is switched during the data taking. Therefore also both magnetic
polarities are generated and then merged.

3.2 Stripping

For the J/ψ resonant decays Stripping21r0p1 with the Bu2LLK line was used whereas
for the rare decay Stripping20r1 was used. The cuts which are applied to the sample are
listed in Table 1.

3.3 Preselection

For this study, only the central q2 region is analysed corresponding to 1 < m2
e+e− < 6 GeV.

This is chosen in order to reduce the contribution from the resonant mode.
The signal candidates in this analysis are triggered by three different trigger categories

and merged into one sample. The categories are exclusive and are evaluated in the
following order:

• L0 Electron requires events to be TOS with respect to the L0 Electron trigger
line.

• L0 Hadron requires events to be TOS with respect to the L0 Hadron trigger line.

• L0 TIS requires events to be TIS with respect to the L0 Global trigger line and
therefore to be triggered by other particles.

3This also includes the number of not visible (for the detector) interactions and is therefore only used
in the context of simulated events.
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Table 1: Stripping requirements.

Object Requirement
Event NPV > 1

nSPD < 600
K hasRICH

DLLKπ > −5
χ2
IP PV > 9
χ2
track < 3
GhostProba < 0.4

π hasRICH

χ2
IP PV > 9
χ2
track < 3
GhostProba < 0.4

e hasCalo

DLLeπ > 0
pT > 300 MeV
χ2
IP PV > 9

µ isMuon

pT > 300 MeV
χ2
IP PV > 9

`` m < 5500 MeV
χ2
vtx/ndf < 9

origin vertex χ2 separation > 16
B |m−mPDG

B0 | < 1000 MeV
DIRA > 0.9995
χ2
IP PV < 25
χ2
vtx/ndf < 9

PV χ2 separation > 100
K1 0 < m < 6000 MeV

χ2
vtx < 12

sum hadron pT > 800 MeV
sum hadron χ2

IP > 48

It is additionally required that the particle triggering the L0 Electron (L0 Hadron)
trigger line is a lepton (hadron). So events triggered by the L0 Electron and L0 Hadron

trigger line that have been hadrons and electrons, respectively, are removed from the
samples.

Finally, only events passing the HLT1 as well as the HLT2 trigger decision for TOS
are kept.

With those requirements applied, still a sizeable amount of background is in our sample.
To further remove that, a multivariate analysis (MVA) to discriminate between our signal
and the combinatorial background is applied as described in Sect. 5.1. In order to be
able to perform the MVA as well as to get an unbiased yield estimation later on, any
physical background reaching into our region of interest has to be removed. Therefore
strong preselection cuts are proposed as listed in Table 2.
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Table 2: Preselection cuts

Particle Variable Cut Explanation
B+ χ2

vtx/ndf < 6 Reconstruction quality of the vertex per
number of degrees of freedom

AMAXDOCA < 4 Maximum distance of closest approach
with all tracks

pT > 3 GeV Transverse momentum
DIRA > 0.9998 DIRection Angle; the cosine of the angle

between the reconstructed momentum of
the B+ and its direction of flight.

χ2
FD > 150 Significance of the flight distance with

respect to the PV
J/ψ χ2

IP PV > 1 Difference in the vertex-fit χ2 of a given
PV reconstructed with and without the
current track

χ2
vtx/ndf < 6 Reconstruction quality of the vertex per

number of degrees of freedom
K1 χ2

IP PV > 3 Difference in the vertex-fit χ2 of a given
PV reconstructed with and without the
current track

K+ ProbNNk > 0.02 Neural network based particle identifica-
tion probability to be a K

GhostProb < 0.3 Probability obtained from a MVA algo-
rithm that track is a ghost

π+ and π− probNNpi > 0.02 Neural network based particle identifica-
tion probability to be a π

GhostProb < 0.3 Probability obtained from a MVA algo-
rithm that track is a ghost

π+, π− and K+ sum of χ2
IP > 200 Difference in the vertex-fit χ2 of a given

PV reconstructed with and without the
current track

e+ and e− sum of χ2
IP > 200 Difference in the vertex-fit χ2 of a given

PV reconstructed with and without the
current track

GhostProb < 0.3 Probability obtained from a MVA algo-
rithm that track is a ghost
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4 Simulation corrections

Physical intrinsic reasons such as non-converging QCD-calculations, free parameters in the
SM and limited computation resources lead to differences between simulated signals and
events observed in the experiment. One of the problems related to this misalignment is the
possible bias in the attempt to increase the signal-to-noise ratio with a MVA background
rejection. Therefore, the difference is estimated and reduced by adding event-weights to
the simulated events in order to improve the agreement between the two distributions.

4.1 Reweighting techniques

The general concept of the re-weighting examined in this thesis is given as follows:

1. Compare the signal distributions of the data of the normalisation channel in specific
variables with the corresponding MC.

2. Understand their differences and learn which events are likely to occur more often
in the data sample.

3. Correct the generated signal events by applying weights to each event in order to
compensate the differences learnt. So events occurring more often in the real sample
then in the generated sample receive higher weights and vice versa.

To be able to compare the generated signal events and the data signal events, the
sPlot technique is used, which statistically subtracts the combinatorial background from
the sample [8]. Thereby weights are calculated, the sWeights, which requires to perform a
fit to the B+ mass in the data sample as shown in Fig. 4. Throughout this section, data
refers to signal sWeighted data which is handled as the equivalent of generated signal
events.

To learn from the differences, generalise this knowledge and correct the target distri-
bution, several different techniques are available.
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Figure 4: Fit to the B mass of B+→ J/ψ (→ µ+µ−)K+π+π− to obtain the sWeights.
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4.1.1 Binned reweighting

A simple but widely used approach is to bin the two different samples, data and MC, in
the variable which needs to be corrected. Then every bin of one sample is divided by the
corresponding bin of the other sample, which results in a step-function containing the
ratios.

This approach is very easy and fast, but has its limitations and disadvantages. If a bin
has only a few events, the ratio fluctuates greatly and does not provide reliable weights.
This is especially a problem if one considers higher dimension. As the simple approach
only reweights a single variable, this is often not sufficient. Variables are one dimensional
projections of a multi-dimensional distribution and therefore the reweighting does not
properly account for higher order correlations. Binning however can be done in multi-
dimension as well, but without a significant amount of data, the curse of dimensionality
creates sparse bins with only a few events in each, leading to the fluctuations mentioned
above.

4.1.2 Gradient boosted reweighting

An algorithm that tries to overcome those limitations is the gradient boosted reweighting [9].
The main characteristic of this approach is to split both samples using a decision tree
(DT). The optimal split is determined by maximising a binned χ2 fit. The ratio between
the number of events of both samples in each bin is calculated and applied as corrections
to the MC. The same procedure is iteratively repeated by taking the weights from the
previous splits into consideration. From this procedure – discriminate samples, update
data weights, repeat – comes the ”boosting” in the name. Although this allows for
good corrections in higher dimensional spaces due to the DT and low event regions, the
algorithm is sensitive to its hyper-parameters and can often overfit. When using this
approach it is a crucial part to make sure that the latter does not occur.

4.2 Performance

To find the optimal reweighting hyper-parameters and to be able to compare the different
approaches, a metric for the reweighting quality should be established. Unfortunately,
the comparison of two multi-dimensional distributions4 is not so simple. In contrast
to one dimension, no order of events is defined in multidimensional distributions. An
order of events is often used in non-parametric tests like Kolmogorov-Smirnoff, Anderson-
Darling etc. Although certain approaches like density kernels exist for multidimensional
distributions, they are infeasible for our case due to the lack of events and/or high
dimensionality. On the other hand, the question that arises is not whether a certain
statistics test can distinguish our samples, but if the MVA algorithm, which will be used
in the MVA afterwards, can. Therefore it seems natural to rely on its predictions to find
a reliable metric. In the following, three different approaches to investigate this problem
are described.

4A naive approach would be to compare the one dimensional projections, which correspond to
the physical variables. But whereas two different projections imply different distributions, two similar
projections do not imply similar distributions. An illustrative explanation is shown in the Appendix in
Fig. 14.
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4.2.1 Simple discrimination

A classifier5 is trained and tested on the reweighted MC sample and on the real data using
stratified k-folding and the variables that will be used later on in the MVA shown in Table
7. To test the performance of the classifier, a single-valued metric is needed. Therefore,
the receiver operation characteristic (ROC) curve is drawn and the area under the curve
(AUC) is calculated [10]. Notice that the same metric will be used later in the MVA. Here
the idea is that the lower this score is the less the classifier is able to discriminate the
two distributions. Less discrimination power means that the two distributions are more
similar under the assumption that an optimised MVA algorithm is used.

Even tough this approach yields a good idea of the similarity of the two samples, it
can be blind to some kind of overfitting. The problem arises with the event weights and
the randomised training- respectively test-sample drawing. If an event a with an event
weight wa is drawn, what actually is draw is not one event but wa times the event a. This
is then not a randomised, uncorrelated sampling any more as drawing the event a implies
also drawing the event a again, namely wa− 1 times (for wa > 1). So the prerequisition to
make statements, namely the randomised splitting, is not given any more. The effect from
this sample biasing is that the classifier makes incorrect predictions with wrongly gained
strong confidence which in turn lowers the ROC AUC more then we expect it to be. This
effect is further illustrated in the Appendix in Fig. 15. Although the effect decreases for
large samples and is not expected to be too large for our case, it can even lead to ROC
AUC values well below the 0.5 mark, which is usually assumed to be the lowest possible
score.

4.2.2 Label the data

Another possible approach is to train a classifier on the original MC sample without
corrections as well as on the real data. This trained algorithm can be used to make
predictions on three distinct samples and can be used to get hints for possible overfitting.
The number of events that are predicted as real data from the following events are counted
and interpreted:

• MC: The lowest count is expected as most of the events will be predicted as MC.

• reweighted MC: A count as high as possible (but not higher then the real) is aimed
for as higher values mean more events in the sample look like a real event to the
classifier.

• real data: The highest count is expected.

Ideally, the count of the reweighted MC sample lies between the other two counts
as close as possible to the real data. However, this score system should be used only
as a guideline indication, since it only provides information about single events and not
the distribution itself. So a real-like MC event with an extra large weight will wrongly
dominate the score.

5Classifier refers to a MVA algorithm which predicts the class-label (in comparison to regression).
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4.2.3 Count the data

In order to compare the distribution and not single events, a simple but robust approach
is to train a classifier to discriminate between generated and real data, which is basically
the same as described in Sec. 4.2.1 but instead of making predictions on both the
generated and the real sample, only the latter is considered. Then the number of real
events predicted as real is counted. The more the classifier was able to learn from the
distributions, the more real events will be predict correctly6. So the goal is to minimize
that score. Compared to the approach described in sec. 4.2.1, the bias due to weights is
constant and originates only from the weights of the real sample. Therefore, changing the
weights of the generated samples, as a reweighting algorithm does, does not change the
bias. Although this score does not offer informations at the percent level of optimisation,
it is a good indication of overfitting and complementary to the other scores.

4.3 Corrections

To find the optimal reweighting algorithm, the scores described in sec. 4.2 as well as
visual comparisons of the variable distribution are used to estimate a good configuration.
The values obtained for the different parameters are shown in table 3.

Two stages of corrections are applied in order to gain the best results without biasing
the data. The first stage considers the B+ → J/ψ (→ µ+µ−)K+π+π− decay and is

Table 3: Hyper-parameter configurations for the gradient boosted reweighting. Two separated
values means the first one was used for the first reweighting stage and accordingly for the second
one. A single value means the same parameter was used in both stages.

Parameter Value Explanation
n estimators 240/140 Number of boosting rounds to be performed (see com-

ment learning rate)
learning rate 0.05 A factor by which the weights of each boosting stage

are multiplied by. There is a trade-off between the
learning rate and n estimators and the ratio determines
(basically) how complex our model is.

max depth 3 Maximum depth of the DT. Higher values create more
complex models and are able to get higher order corre-
lations but tend to over-fit.

min samples leaf 100 Determines the minimum number of events in a leaf in
order to split. Larger values create more conservative
models and can help to avoid overfitting.

loss regularization 8/10 Adds a regularisation term to the weight inside the
logarithm of the loss-function.

gb args: subsample 0.8 The fraction of the data that is used to train each DT.
Reduces overfitting.

6It has to be noted here that predictions are just a cut on the classifier output. To use the output
for our purpose, equalized class-weights are required. Furthermore, the classifier itself has to generate
probability-like predictions which XGBoost does. This is not per se the case for most algorithms.
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responsible for the largest corrections. All variables are listed in table 4. Mostly nTracks
as well as nSPDHits seem to differ largely between MC and data. The second stage
of corrections uses the B+→ J/ψ (→ e+e−)K+π+π− sample and is less significant. It
corrects the kinematics of the decay products. The variables are listed in table 5.

Table 4: First stage reweighting variables in B+→ J/ψ (→ µ+µ−)K+π+π−

Variable Explanation
nTracks Track multiplicity of the event.
nSPDhits Number of hits in the scintillation pad detector.
B pT Transverse momentum of the B.
B χ2

vtx Quality of the vertex reconstruction.
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Figure 5: Variables used in the first stage of the reweighting procedure.
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Table 5: Second stage reweighting variables in B+→ J/ψ (→ e+e−)K+π+π−

Variable Explanation
min(hpT) Minimum pT of the hadronic decay products
max(hpT) Maximum pT of the hadronic decay products
min(`pT) Minimum pT of the leptonic decay products
max(`pT) Maximum pT of the leptonic decay products
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Figure 6: Variables used in the second stage of the reweighting procedure.
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5 Selection

5.1 MVA

In order to further reduce the background contribution, a multivariate analysis is performed.
The combinatorial background sample used in the training has been selected to be the
upper sideband above 5600 MeV of the vertex constrained B+ invariant mass, whereas
the signal sample is defined as the reweighted MC described above.

5.1.1 Optimize algorithm

Several classifiers are examined. These are trained and tested on the samples using a
cross-validation technique due to the limited amount of events available. A stratified
k-folding strategy is applied. This works as follows:

1. The data (both signal and background) is split into k sub-samples, each containing
the same fraction of a certain class7.

2. A training set consisting of k − 1 sub-samples and a testing set consisting of one
sub-sample are created.

3. The algorithm is trained on the training set and tested on the testing set.

4. Predictions made by the algorithm on the test set are collected.

5. This is done k times, every time with a different sub-sample as testing set, so that
in the end a prediction for every event is made.

For the evaluation and comparison of the performance, the ROC AUC is used with
the goal to maximise it. Before the classifiers are compared against each other, a hyper-
parameter optimisation is performed for each8 classifier.

The best performing algorithm for our case is a boosted decision tree (BDT) implemen-
tation, the extreme gradient boosting (XGB) algorithm with DT as base classifiers [11–13].
Similar performance is obtained by other algorithms such as random forests and deep
neural networks(DNN). The random forest averages the predictions of several DT but
uses for our application critically more memory while not outperforming the XGB. The
DNN is on one hand intrinsically hard and time-consuming to train and to optimise its
architecture. On the other hand they are in general able to outperform most of the other
classifiers but usually only with low-level features and a lot of data available in order to
get the extra correlations and not just pick up noise. As there are only high-level features
and a limited amount of data available, seeing no superior performance from the DNN
was expected.

The final configuration used for the XGB in the selection can be seen in Table 6.

7A class in this context refers to the ”label” or the ”y”; here we have two classes, signal and
background.

8For DNN, several well-performing architectures from other analyses were used as inspiration for the
set-up, then tested and varied.
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Parameter Value Explanation
n estimators 500 Number of base classifiers (DT); equals to number of boosting

rounds to be performed.
eta 0.1 A factor the weights of each boosting stage is multiplied by.

There is a trade-off between eta and n estimators and the ratio
determines mostly how complex our model is. In other boosting
algorithms, this is usually called the ”learning rate”.

max depth 6 Maximum depth of the DT. Higher values create more complex
models which are able to get higher order correlations.

gamma 0 Determines the minimum gain required to perform a split. Larger
values create more conservative models

subsample 0.8 The fraction of the data that is used to train each DT. Reduces
over-fitting.

Table 6: Hyper-parameter configuration of the XGB classifier used for the selection.

5.1.2 Feature selection

To achieve a good discrimination power, it is crucial to use the appropriate input variables.
Badly simulated features are not used in order to avoid training of MC against real data
instead of signal against background. In addition, any direct correlation of the features
with the B+ mass has to be avoided in order to perform an unbiased yield estimation
later on.

Particle Variable Explanation
B+, J/ψ , K1 log(pT) Transverse momentum

log(χ2
vtx) Quality of the vertex reconstruction

log(χ2
IP) Difference in the vertex-fit χ2 of a given PV

reconstructed with and without the current
track

log(χ2
FD) Significance of the flight distance with respect

to the PV
B+ log(DIRA) DIRection Angle; the cosine of the angle be-

tween the reconstructed momentum of the B+

and its direction of flight.
log(AMAXDOCA) Maximum distance of closest approach with

all tracks
log(χ2

V TXiso one track) Measure for the isolation of the reconstructed
track by removing the track under considera-
tion and repeat the reconstruction.

log(χ2
V TXiso two track)

K1, J/ψ log(1− cos(θ)) The angle θ is between the particles flight di-
rection and the beam axis

π+, π− log(pT) Transverse momentum

Table 7: Variables used in the training of the XGB classifier.
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5.1.3 Prediction and performance

In order to get reliable predictions from the classifier, a k-folding strategy is used on the
data sample. Therefore, the data is split into k folds and the right sideband of the training
sample is trained against the MC signal. The algorithm makes predictions on the full
data, not just on the right sideband, of the fold not used in the training.

To apply an optimal cut based on the predictions, there are several Figure of Merits
(FoM) available. Depending on the goal of the analysis, a different one may be chosen. As
this study aims for the first detection, the Punzi FoM

FoMPunzi =
S√

B + σ/2
(2)

with σ = 5 is selected and maximized [14]. This yields the highest sensitivity for an
observation with a significance of 5 σ.

5.2 Efficiencies

Not all particles produced in a collision are captured by the detector. There is a limited,
geometrically determined detector acceptance range. To determine how many events
are lost outside this range, the efficiency of the remaining events is calculated using
generated events. For the B+→ K+π+π−e+e− sample used in this thesis the efficiency is
0.148 +O(10−4).

An overview over the cuts applied so far as well as their respective efficiency is given
in Table 8. Applying all cuts yields a total efficiency of εtot = 0.0557%.

Table 8: Efficiencies of the different cuts. For every cut, the above ones are applied as well. The
relative efficiency refers to the loss because of this cut with respect to the previous cut.

Number of events Cut added Relative efficiency
2, 065, 330 Geometrical 14.8%

66, 185 Stripping 3.20%
25, 622 HLT 38.7%
14, 192 q2 region 55.4%
11, 254 Preselection 79.3%
7789 MVA 69.2%

19



24 22 20 18 16 14 12 10 8
log(1−B DIRA ownPV)

0.00

0.05

0.10

0.15

0.20

0.25

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

8 6 4 2 0
log(1− J/ψ cos(θ))

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

7 6 5 4 3 2 1 0 1
log(1−K1 cos(θ))

0.0

0.2

0.4

0.6

0.8

1.0

1.2

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

6 5 4 3 2 1 0 1 2
log(B AMAXDOCA)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

2 1 0 1 2 3 4
log(B χ2

VTX)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

5 6 7 8 9 10 11 12 13 14
log(B χ2

FD ownPV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

8 6 4 2 0 2 4
log(B χ2

IP ownPV)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0
log(B pT)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

10 5 0 5 10 15
log(B χ2

VTXISO ONETRACK)

0.00

0.05

0.10

0.15

0.20

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

2 0 2 4 6 8 10 12 14 16
log(B χ2

VTXISO TWOTRACK)

0.00

0.05

0.10

0.15

0.20

0.25

pr
ob

ab
ilit

y 
de

ns
ity

B+→K+π+π−e+e−

MC sig - gb double reweighted
Real data

Figure 7: Features used in the training of the BDT.
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Figure 7: Features used in the training of the BDT.
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Figure 8: The output of the XGB for the performance evaluation is shown in 8a resulting in
a ROC AUC of 0.986. Background (bck) refers to the right sideband. In 8b, the optimisation
of the cut is determined. The Punzi FoM is plotted against the cut applied on the predictions.
The optimal cut is at 94%.
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6 Mass fit

6.1 Yield estimation

To know the order of magnitude of how many events are expected to be found in the fit,
two different estimations are calculated. The first one is a standalone estimation, which
involves the theoretical predictions of the branching fraction B (B+→ K+π+π−e+e−).
The number of events that are in our sample can be estimated

nevents =

∫
L dt · σbb · εtot/εgeo · f(B+) · 2 · B(B→ K1e

+e−), (3)

with an integrated luminosity
∫
L = 1.11 fb−1, a bb production cross section in the accepted

η region of σbb = 72.0± 0.3 (stat)± 6.8 (syst)µb [15], an efficiency of εtot/εgeo = 0.377%
as the geometric efficiency is already taken into account in the production cross section
σbb, the hadronisation factor of f(B+) = 0.377 ± 0.005%, which is obtained using the
methods described in [16] with the fs/fd ratio from [17] under the assumption that fu ≈ fd,
and the branching ratio B(B→ K1e

+e−) = (2.7+1.5+0.0
−1.2−0.3)× 10−6. This estimation yields

nevents ≈ 602± 341 where the total uncertainty is dominated by the statistical uncertainty
on B(B→ K1e

+e−).
The second estimation uses the already measured ratio of the B0→ K∗0`+`− decays

with ` equal to either e or µ. Together with the B(B+→ K+π+π−µ+µ−), we can estimate
the yield for our mode. As several factors are the same between our mode and the µ+µ−

final state, only the yield, the different integrated luminosities and parts of the efficiency
have to be taken into account. The estimated number of events is given by

nevents =
B(B0→ K∗0e+e−)

B(B0→ K∗0µ+µ−)
· nevents(B+→ K+π+π−µ+µ−) · εtot

e+e−

εtotµ
+µ−
· L

e+e−

Lµ+µ− (4)

with the ratio RK∗0 =
B(B0→ K∗0µ+µ−)

B(B0→ K∗0e+e−)
= 0.69+0.11

−0.07 (stat)± 0.05 (syst) [3], the number

of events obtained from the fit to the µ+µ− final state nµ
+µ−

events = 144.80+14.89
−14.31, the efficiency

of the µ+µ− final state εtot
µ+µ−/εgeo = 1.062 [4] and the efficiency for our mode obtained

in Sec. 5.2 εtot
e+e−/εgeo = 0.377, both without the geometric acceptance, the integrated

luminosity for the e+e− mode Le+e− = 1.11 fb−1 and for the µ+µ− mode Lµ+µ− = 3.19 fb−1.
This yields an estimated number of events of nevents ≈ 19.0+3.6

−2.8.
Both estimations do not agree well with each other. Comparing with the measured

branch ratio and the predictions of B+→ K+π+π−µ+µ−, the measured one is lower by a
factor of about six, a similar deviation is expected here. Also the uncertainties on the
predicted branching ratio of B+→ K+π+π−e+e− is comparably large. This considerations
favour the second estimation, which still would yield enough events for an observation, at
least if the data taken in 2012 is used as well.

6.2 Fits

To determine the number of events, a fit to the vertex constrained B invariant mass is
performed. From the Root software package, the RooFit library with python bindings
is used.
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The probability density function (pdf) for the fit is constructed using a linear combina-
tion of an exponential pdf as background shape and a double crystal-ball (CB) function9

for the signal shape [18]. A double CB function is a linear combination of two CB functions,
the ratio of the two normalisations is a fit parameter. An extended unbinned maximum
likelihood fit is performed, leaving the number of the background and signal events as
free parameters to the fit.

Four fits are performed in total to fix certain parameters and to correct for simulation
differences. First, the fit is performed on the J/ψ samples and the ratio between the MC
and data mean is taken to correct the mean obtained in the non-resonant mode with that
factor.

1. Fit to the B invariant mass with vertex and J/ψ mass constrained of B+→ J/ψ (→
e+e−)K+π+π− MC as shown in Fig. 9

• Fit without background.

• All parameters are floating freely including the ration between the two CB
functions.

2. Fit to the B invariant mass with vertex and J/ψ mass constrained of B+→ J/ψ (→
e+e−)K+π+π− data as shown in Fig. 10

• Fit with background.

• Exponential tail parameters and fraction are fixed from MC fit.

• Free parameters are the mean, width and the scaling.

3. Fit to the B invariant mass with vertex constrained of B+→ K+π+π−e+e− MC as
shown in Fig. 11

• Fit without background.
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Figure 9: Fit to B+→ J/ψ (→ e+e−)K+π+π− MC

9A CB function is a Gaussian distribution with exponential tails.
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Figure 10: Fit to B+→ J/ψ (→ e+e−)K+π+π− data

• All parameters are floating freely.

4. Blind-fit to the B invariant mass with vertex constrained of B+→ K+π+π−e+e−

data blinding the region 5100− 5380 MeV around the B mass of 5279 MeV as shown
in Fig. 12.

• Fit with background

• All signal parameters are fixed from the previous MC fit. The mean is corrected
by the ratio of the mean between the fits to the MC and data of the J/ψ .

For an unblinding of the fit, a clean signal region is required. As can be seen in Fig.
12 at the lower bound of the blinded region, there seems to be a peak, most probably
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Figure 11: Fit to B+→ K+π+π−e+e− MC
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Figure 12: Fit to B+→ K+π+π−e+e− data with the region 5100− 5380 MeV blinded.

originating from physical background and reaching into our signal region. This background
would bias our yield and has to be further investigated before an unblinding of the fit is
possible.
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7 Discussion

In this thesis the yet unobserved rare B-decay B+→ K+π+π−e+e− at LHCb was studied
using a total amount of 1 fb−1 of data. The same mode with µ+µ− in the final state has
already been observed and could be used for ratio tests of the lepton flavour universality.

First, the stripping lines have been applied to the sample. A strong preselection is then
applied in order to remove physical contributions to the background. This is necessary
to further reduce the combinatorial background in our signal region with a MVA and to
have an unbiased yield. The yield is estimated and a blind fit to the vertex constrained B
invariant mass is performed successfully.

It turned out that the cuts were insufficient as peaks are occurring in the data right
next to the blinded region, which most probably come from physical background and
reaches into our signal region. It is further to note that the classifier used in the MVA
showed an unexpected high performance. This can happen if the classifier actually trains
on the signature of physical background which differs much more from the signal then
combinatorial background does. Another reason for this could be the differences between
generated and real events which leads to the classifier being trained to distinguish those
two instead of signal versus background. On one hand the generated and real sample
do not seem to differ too large for this decay and on the other hand a multidimensional
reweighting procedure has been applied in order to further reduce the differences.

To continue with this analysis and to perform a first detection, it would be a possible
step to perform a more in-deep study of the background and to remove any remaining
physical contributions from it.
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A Appendix

A.1 Preselection
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Figure 13: Variables used in the preselection as described in Sect. 3.3
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Figure 13: Variables used in the preselection as described in Sect. 3.3
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A.2 Reweighting

Figure 14: A two dimensional distribution and its projections. Even tough the distributions can
be easily discriminated by looking at their higher order – second order here – correlations, there
projections do not reveal that.

MC

real data

reweighting
5

5Train data
of the clf

Fold 1
Fold 2Clf is very sure that here is green

Clf sees more blue 
→ predicts blue

5 Test data

5 false / 1 true 1 false / 0 true~ 50% true  
   50% false

Figure 15: ROC AUC bias with weights visualized. The reweighter works quite well for this
example and assigns a weight of 5 to the single blue point. Then the data is split in two different
ways (Fold 1 and 2) into training and test data in order to compare two possible outcomes. The
total outcome can be thought as an average of both cases.
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A.3 Selection
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Figure 16: ROC curve of the XGB trained on the MC against the right side band (B mass
vertex constrained > 5600 MeV) of B+→ K+π+π−e+e−.
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