
Bachelor’s thesis
Physics

Numerical integration of single variable
functions using TensorFlow

Mohammad Alminawi

Supervisors:
Prof. Nicola Serra

Jonas Eschle

July, 2020



Abstract

Integration of single variable functions is needed in many branches of physics.
Python implementations of numerical integration methods are available, but none
have utilized TensorFlow, which allows for parallelized computing, as well as be-
ing able to operate on GPU to increase efficiency. Seven integration methods have
been implemented using TensorFlow, including two historically untested meth-
ods. Results for tests of these methods against one another and against similar
implementations from the library scipy.integrate using a range of different inte-
grals are presented. The primary goals are: Determining whether TensorFlow
yields a boost in performance compared to currently available options, compar-
ing the performance when running the methods using a CPU or a GPU, identify-
ing which method is best suited for which case and determining whether there is
merit to using the historically untested methods. This project is the initial step of
developing a single variable integration library based on TensorFlow.
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1. Introduction

We frequently study physical quantities through their rate of change with respect
to a variable, this yields differential equations that are commonly solved through
integration.

A key example of the need for integration is the probabilistic nature of quantum
mechanics. Rather than looking for exact answers from individual cases, quantum
mechanics is understood through calculation of the expectation value and vari-
ance for a given problem, this is accomplished through integration of operators
and wave functions [9].

A large number of modern physics branches are rooted in quantum mechanics to
a certain extent, thus it is not surprising that integration plays a key role in those
fields as well, for example, in high energy physics (HEP) we can study particle
interactions through Fermi’s golden rule, which requires us to evaluate the magni-
tude of the matrix elements of the transition matrix through integration [6].

To showcase the importance of integrals in high energy physics, let us consider a
scattering experiment consisting of a particle beam and a fixed target. As the par-
ticle beam collides with the target, the particles will scatter at different angles. In-
tegrating over the angular distribution allows us to identify and study the events,
despite the individual events providing no information on their own.

We have shown that the integrals contain valuable information, yet we have not
outlined any methods to obtain this information. Functions arising in high energy
physics are generally difficult or impossible to integrate using analytic methods,
this can be due to a plethora of different reasons, such as the integrand containing
too many independent functions or containing functions, whose integrals cannot
be expressed in terms of elementary functions. [2]

Since analytical solutions are not an option, we turn our attention to numerical
integration methods. For multidimensional integrals the most important method
is Monte-Carlo integration, in contrast it is at best mediocre when considering
single dimensional integrals, which are the focus of this thesis.
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The error for the Monte-Carlo method is given by ε ∝ 1/
√
N where N is the to-

tal number of points, which is equal to the number of points in one dimension n
raised to the number of dimensions d; N = nd, for single variable integrals this
yields an error of ε ∝ 1/

√
n for the Monte-Carlo integration method, which is sig-

nificantly worse than the standard methods: Mid-point rule ε ∝ 1/n, trapezoidal
rule ε ∝ 1/n2, Simpson’s rule ε ∝ 1/n4.

We are interested in three types of integration methods: Newton-Cotes meth-
ods, Gaussian quadrature rules and Romberg methods. These methods are
commonly used nowadays as they approach the task of approximating an integral
from different angles.

We aimed to explore whether implementing the methods using the Python library
Tensorflow would yield any benefits. Despite machine learning being the primary
purpose for the development of Tensorflow, it provides a powerful infrastructure
for mathematical operations, especially for more complex functions that can be
sped up through utilizing the compiling feature of TensorFlow, which constructs a
computational graph to improve efficiency.[11]

While TensorFlow provides the infrastructure for numerical integration, the li-
brary does not contain any implementations that could fulfill the requirements of
high energy physics experiments. Hence a primary goal of this thesis is the imple-
mentation of well known single dimensional numerical integration algorithms using
TensorFlow.

Since the methods differ fundamentally from one another, it is likely that they do
not benefit equally from being implemented using Tensorflow. To examine this we
compare the implementations in Tensorflow with native Python and Scipy imple-
mentations.

The integral being approximated is also likely to affect the performance of the
methods, thus we need to test them using a range of different integrals, in order
to determine the ideal conditions for each method.

The methods, as well as the theoretical benefit of implementing them using Ten-
sorflow are explored in chapter 2, the progress of the Tensorflow implementations,
comparisons with different implementations and comparisons of the individual
methods are discussed in chapter 3 and a review of the results and an overview
of future plans are given in chapter 4.
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2. Computing and numerical integration

Numerical integration, formerly called quadrature, has a history extending all the
way back to the invention of calculus, with the term ”numerical integration” first
appearing in 1915 in the publication A Course in Interpolation and Numeric In-
tegration for the Mathematical Laboratory by David Gibb [8]. We will be using
“numerical integration” as an umbrella term to refer to the use of different algo-
rithms in order to obtain numerical approximations of definite integrals.

2.1 The importance of numerical integration

Before diving into numerical integration we must first recall the first fundamental
theorem of calculus.[17]

Theorem 2.1.1 (First fundamental theorem of calculus) Let f be a contin-
uous function on the interval [a, b] and let F be its anti-derivative, then:

∫ b

a

f(x)dx = F (b)− F (a)

Applying the theorem to the appropriate intervals we can deduce the existence of
the integrals of elementary functions. However, the integrals of elementary func-
tions could not, in general, be computed analytically.

In the absence of the exact solutions obtained analytically, the approximate solu-
tions yielded by numerical integration become more appealing. Nonetheless, the
effort required to use these methods by hand could not be understated, which sti-
fled the progress of the field during the 18th and 19th centuries.

The field experienced a resurgence due to the invention of automatic computing;
running a hundred or even a thousand iterations of an algorithm became possi-
ble. Numerical methods became capable of obtaining results within a very small
margin of the exact results.

Automatic computing changed the goals of numerical integration methods: The
aim was no longer to find methods that are possible for humans to utilize, rather,
the aim was to develop algorithms such that computers could approximate inte-
grals very precisely, which revived interest in methods that were rather inefficient
for human use such as the Newton-Cotes formulas.
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2.2. NEWTON-COTES FORMULAS

2.2 Newton-Cotes formulas

Newton-Cotes formulas refer to a class of numerical integration algorithms that
are based on evaluations of the integrand function at equally spaced points.

There are two main categories of Newton-Cotes formulas, closed formulas and
open formulas. The terms “open” and “closed” refer to the interval on which the
formula is applied, with closed formulas containing the end points of the interval
in the evaluation and open formulas neglecting said points as shown in Figure 2.1.

Figure 2.1: Comparison of closed and open Newton-Cotes formulas [2]

Newton-Cotes formulas are a quintessential part of the history of numerical inte-
gration, they revolutionized the field and are surely elegant, which makes their ir-
relevance in modern times quite disheartening. Indeed, there are only two Newton-
Cotes formulas that are regularly used nowadays, those being the “extended trape-
zoidal formula” and the “extended mid point rule”. Although far less popular, the
“extended Simpson’s rule” also makes appearances from time to time.

Before showcasing some Newton-Cotes formulas, an explanation for why these for-
mulas fell out of favor is in order. The Newton-Cotes formulas function through
the use of polynomial interpolation, with higher order formulas being needed for
higher order integrand functions, the formulas function exceptionally well for low
order polynomials 1. However, the dependence on polynomial interpolation some-
times results in catastrophic Runge’s phenomena for the closed formulas, in which
the error grows exponentially with the degree of the polynomials used, leading to
oscillations at the edges of the interval which prevent convergence. The open for-
mulas are just outdone by Gaussian quadrature rules in all regards.

1up to degree 5
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2.2. NEWTON-COTES FORMULAS

Figure 2.2: Runge’s phenomenon for interpolation of 1
1+25x4+80x6

using 5th, 9th
and 13th degree polynomials

The failures of the Newton-Cotes formulas could be mitigated to a certain extent,
but the effort needed to do so far outweighs the reward: The open formulas re-
main inferior to Gauss quadrature formulas and cannot be chained together to
make extended formulas. The closed formulas can be substantially improved, but
they are still outdone by other methods such as Romberg integration, which will
be shown later.

There are four historically important closed Newton-Cotes formulas, using these
formulas one could obtain exact results for polynomials of up to degree 5.

Trapezoidal rule

The trapezoidal rule evaluates the integrand at 2 points, approximating the inte-
gral using a linear function, therefore it is exact for degree one polynomials.

∫ x2

x1

f(x)dx = h

[
1

2
f(x1) +

1

2
f(x2)

]
+O(h3f

′′
) (2.1)

The error term depends on some coefficient multiplied by the cube of the step size
h and the second derivative of the integrand evaluated at some point in the do-
main, this point is unknown, so we can only obtain an upper bound on the error.
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2.2. NEWTON-COTES FORMULAS

Simpson’s rule

Simpson’s rule evaluates the integrand at 3 points and due to cancellation of coef-
ficients due to left-right symmetry, the formula is exact for polynomials up to and
including degree three.

∫ x3

x1

f(x)dx = h

[
1

3
f(x1) +

4

3
f(x2) +

1

3
f(x3)

]
+O(h5f (4)) (2.2)

Once again the error is unknown, although it is now dependent on the fourth
derivative and the fifth power of the step size, leading to a lower upper bound in
most cases.

Simpson’s 3/8th rule

Using four points instead of three yields no direct benefit as there is no cancella-
tion of coefficients and the error term does not change in any significant way. The
main benefit of this formula is that it allows for the derivation of Boole’s rule.

∫ x4

x1

f(x)dx = h

[
3

8
f(x1) +

9

8
f(x2) +

9

8
f(x3) +

3

8
f(x4)

]
+O(h5f (4)) (2.3)

Boole’s rule

As a result of left-right symmetry, this formula is exact for polynomials up to and
including degree five.

∫ x5

x1

f(x)dx = h

[
14

45
f(x1) +

64

45
f(x2) +

24

45
f(x3) +

64

45
f(x4) +

14

45
f(x5)

]
+O(h7f (6))

(2.4)

The error term now depends on the sixth derivative and seventh power of the step
size, further decreasing the upper bound in most cases.

It is possible to derive higher order formulas, but this is the point at which it be-
comes likely to encounter Runge’s phenomenon, thus it is a good point to stop
and search for alternative approaches.

8



2.2. NEWTON-COTES FORMULAS

2.2.1 Extended Formulas

Extended formulas refer to the use of an equation such us (2.1) N − 1 times on
intervals [x1, x2], [x2, x3], ..., [xN−1, xN ] to obtain a composite rule of sorts such as
the following.

∫ xN

x1

f(x)dx =
(xN − x1)

N

[
fN + f1

2
+

N−1∑
k=1

fk
2

]
+O

(
(xN − x1)3f

′′

N2

)
(2.5)

The error term being inversely proportional to the square of the number of in-
tervals provides us with a clear method to obtain more accurate results. Naively
one might assume that we could obtain arbitrarily accurate results through di-
viding the interval into more and more sub-intervals, this can be efficient as in
Figure 2.3, but due to the dependence on the second derivative, the error is signif-
icantly larger around peaks, hence simply adding intervals uniformly would result
in a substantial amount of unnecessary computing as shown in Figure 2.4.

(a) 5 point rule (b) 9 point rule

(c) 17 point rule

Figure 2.3: Simpson’s rule approximations for sin(x) on the interval x ∈ [0, 1]
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2.2. NEWTON-COTES FORMULAS

(a) 5 point rule (b) 17 point rule

(c) 65 point rule (d) 257 point rule

Figure 2.4: Simpson’s rule approximations for 1

1+8
√
|x|

on the interval x ∈ [−1, 1]

There are a few ideas that one could implement in an attempt to improve upon
the results obtained through using the extended trapezoidal rule, the simplest is
to start with a higher order method in the first place, such as Simpson’s rule.

∫ xN

x1

f(x) =
(xN − x1)

N

[
fN + f1

3
+

(N−1)/2∑
k=1

4

3
f2k+

(N−1)/2∑
k=0

2

3
f2k+1

]
+O

(
(xN − x1)5f (4)

N4

)
(2.6)

Using Simpson’s method results in a significant performance improvement in the
majority of cases when compared to the trapezoidal method, but it remains ineffi-
cient when compared to currently used integration methods.

As mentioned previously, one of the biggest obstacles one faces when using these
methods is the unnecessary computing when adding sub-intervals uniformly, it is
then natural to ponder what would happen if we were to add intervals in a non-
uniform manner.

The idea described in the previous paragraph is known as an “adaptive” approach,
instead of treating all integrands in the same manner, the method now adapts to
the specific problem at hand. An appealing idea, but it is not immediately evident
how one would go about implementing such a concept.
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2.2. NEWTON-COTES FORMULAS

2.2.2 Adaptive integration methods

The first step to an adaptive method is establishing a criterion which would be
used to determine where an interval should be split. The most common approach
is to assign a tolerable absolute error and to split the interval in half if the abso-
lute error is above the tolerance.

As mentioned previously, the absolute error from Newton-Cotes formulas is un-
known, thus we use the difference between the results of consecutive iterations of
the algorithm as an estimate of the error.

Once an interval is split we apply the method on each of the smaller intervals un-
til an interval converges; its absolute error drops below the tolerance. Then the
method terminates for that interval.

As explained earlier, the error term is largest near peaks, so the majority of in-
terval splits will be occurring in that region. Utilizing this method, we can im-
prove the precision of the result at a significantly lower computing power cost
when compared to uniformly adding intervals, which is illustrated in the figures
2.4 and 2.5.

(a) 5 point rule (b) 9 point rule

(c) 13 point rule (d) 25 point rule

Figure 2.5: Adaptive Simpson’s rule approximations for 1

1+8
√
|x|

on the interval

x ∈ [−1, 1]
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2.2. NEWTON-COTES FORMULAS

Recursion is a powerful tool for the implementation of such methods when it is
supported by the programming language being used. Alternative approaches are
possible, although they typically require different logical flow and different inter-
val splitting criteria. An example of such an implementation can be found in sec-
tion A.2.

These methods can mitigate the flaws of the Newton-Cotes methods greatly, but
the initial number of intervals plays a major role in determining their effective-
ness.

(a) 4 iterations (b) 4 iterations

(c) 6 iterations (d) 6 iterations

Figure 2.6: Adaptive trapezoidal rule approximations for 1

1+8
√
|x|

on the interval

x ∈ [−1, 1], starting with 3 points (Left) vs 4 points (Right)
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2.3. ROMBERG INTEGRATION

2.3 Romberg Integration

A fascinating aspect of the extended trapezoidal rule is that its error term not
only begins with a 1/N2 dependence, rather it depends on only even powers of N ,
a property that is not shared by most higher order Newton-Cotes formulas.

If we were to evaluate an integral using the trapezoidal rule once with N steps
and once with 2N steps to obtain the results SN and S2N , then the leading error
term for S2N would be 1/4 the size of the leading error term for SN , thus we could
remove the leading error term using the combination.

S =
4

3
S2N −

1

3
SN (2.7)

Where we divide by 3 since all terms other than the leading error term would have
been amplified by a factor of 4− 1.

It should be relatively simple to see that the above equation is in fact the ex-
tended Simpson’s rule, with terms alternating between 2/3 and 4/3. This implies
that we could replace the trapezoidal rule with Simpson’s rule. We wil explore
whether there is a benefit in this thesis, as this possibility has historically been
ignored or avoided.

Naturally, we can generalize the previous procedure to any number of iterations
that we would like, this is known as Romberg’s method and it is an application
of a more general idea known as Richardson’s deferred approach to the limit or
Richardson extrapolation.

The main premise of the Romberg’s method is to use the result from k successive
iterations of the trapezoidal method in order to cancel the leading error terms up
to but not including O(1/N2k). This routine is referred to as sequence accel-
eration, in which the rate of convergence is improved through use of a sequence
transformation.

Romberg’s method enjoys a few additional benefits when it comes to computation;
when doubling the number of points used by the trapezoidal rule, half of the new
points will be the ones that had already been evaluated. Through reusing these
points we can significantly reduce the computation cost. Additionally, we can eas-
ily obtain an estimate for the error by comparing entries in different columns or
rows, which provides us with a range of termination criteria to choose the ideal
one from.

Theorem 2.3.1 (Romberg’s method) Let R be an n × n matrix, Tm be the
trapezoidal rule evaluated using m points and j, k indices such that j, k ≤ n, then
Romberg’s method is defined by the following equations.

Rk,0 = T2k

Rk,j =
1

4j − 1
(4jRk,j−1 −Rk−1,j−1) (2.8)
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2.4. GAUSSIAN QUADRATURE

2.4 Gaussian quadrature

The Newton-Cotes formulas we have seen up until this point all used equally spaced
points within an interval in combination with variable weights for the evaluation
of the integral, the adaptive methods allowed us the freedom to choose these inter-
vals, but the evaluation was still performed using equidistant points. In compari-
son Gaussian quadrature rules aim to approximate an integral by picking optimal
points to evaluate the integral at, often referred to as “abscissa” or “nodes”, and
pairing them with the appropriate weights, thus doubling the degrees of freedom.

Doubling the degrees of freedom essentially allows for the derivation of quadrature
formulas that are of twice the order of the Newton-Cotes formulas for the same
number of function evaluations. Gaussian quadrature are open rules, thus they are
not susceptible to Runge’s phenomenon

While the Gaussian quadrature rules improve upon the Newton-Cotes rules in
some notable ways, they are not without fault. Since they are typically of signif-
icantly higher order, their precision is directly tied to the smoothness 2 of the in-
tegrand over the interval of interest. The derivation of Gaussian quadrature rules
requires calculation of weights and abscissa, which is a very demanding task and
there is a constant need for higher order rules to obtain better approximations.

There is, however, one additional feature of Gaussian quadrature formulas. We
can arrange the weights and abscissa to make the methods exact for a different
class of integrands, namely “polynomials times some weight function w(x)” in-
stead of the usual class of polynomials, allowing for exact calculation of integrands
that could be factorized into a polynomial and the weight function w(x).

∫ b

a

g(x) =

∫ b

a

w(x)f(x)dx ≈
N∑
j=1

wjf(xj) (2.9)

The abscissa are chosen according to the fundamental theorem of Gaussian quadra-
ture. [18]

Theorem 2.4.1 (Fundamental theorem of Gaussian quadrature) The ab-
scissas of the N-point Gaussian quadrature formula are precisely the roots of the
orthogonal polynomial for the same interval and weight function.

For commonly used weight functions, the weights and abscissa have already been
calculated and tabulated in various books and online sources, in such a case we
can simply use the quadrature without understanding the underlying theory. Nonethe-
less, it is instructive for us to familiarize ourselves with a calculation process, in
case we are interested in an uncommon weight function.

2Smoothness is a measure of the number of continuous derivatives that a function has over
some interval
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2.4. GAUSSIAN QUADRATURE

2.4.1 Calculation of abscissa and weights

The key to the calculation of abscissa and weights lies in the properties of orthog-
onal polynomials. Monic orthogonal polynomials fulfill a three term recurrence
relation. [3]

pn(x) = (x− an)pn−1(x)− bnpn−2(x), n = 2, 3, ...

p0(x) = 1

p1(x) = x− A1.
(2.10)

The coefficients are given by the following equations, where (, ) represents the
scalar product 3 and pk is the kth order polynomial .

an =
(pn, xpn)

(pn, pn)

bn =
(pn, pn)

(pn−1, pn−1)

(2.11)

The zeros of orthogonal polynomials are the eigenvalues of a particular tridiagonal
matrix, the matrix is generated by the coefficients as follows.

Tn =


a1

√
b2 0 0

. . .
√
b2 a2

√
b3 0

. . .
. . . . . . . . . . . . . . .

0 0 0
√
bn−1 an−1

 (2.12)

The characteristic polynomial Pn satisfies the same recursion relation as the monic
orthogonal polynomials pn, in fact Pi = pi for all i.

The matrix Tn can be diagonalized Tn = V DV T , where D = diag(λ1, ..., λn)
with V = [v1]...[vn] then the nodes xj and weights wj are given by the following
equations.

xj = λj , wj = 2(vj)
2
1 , j = 1, 2, ..., n (2.13)

3(a(x), b(x)) =
∫ b

a
a(x)b(x)dx
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2.4. GAUSSIAN QUADRATURE

2.4.2 Gauss-Legendre and Gauss-Kronrod quadrature

The Gauss-Legendre quadrature is perhaps the most commonly used Gaussian
quadrature, this is due to the Legendre polynomials being orthogonal with respect
to the weight function w(x) = 1, thus allowing this method to be applied to any
choice of integral without any manipulation of the integrand.

The Gauss-Legendre quadrature is exact for polynomials of degree 2N − 1 where
N is the number of evaluation points. Hereby, it is key to obtain the evaluation
points to a large number of significant figures as the small number of evaluations
results in each point significantly affecting the final result.

The points of different N-point Gaussian quadrature never coincide, this means
that we would require N + 1 new points and weights for a small improvement in
accuracy, this motivated the derivation of nested quadrature rules.

A nested quadrature method combines two quadrature rules, such that all the
points of the first are incorporated into the second, thus allowing for a larger im-
provement in the order for the same increase in the number of evaluations. In
the case of the Gauss-Legendre quadrature, we can combine it with the Gauss-
Kronrod quadrature to obtain a nested quadrature formula.

The Gauss-Legendre and Gauss-Kronrod quadrature rules are related by a 2N + 1
relation where N is the number of points. All the points of an N order Gauss-
Legendre quadrature are incorporated into a 2N + 1 Gauss-Kronrod quadrature,
meaning that with N + 1 new points we can increase the order significantly4. A
common example is a 7 point Gauss-Legendre quadrature combined with a 15
point Gauss-Kronrod quadrature.

It is worth noting that for the same number of points the Gauss-Kronrod quadra-
ture is typically less accurate than the Gauss-Legendre quadrature. However,
when we compare the number of new evaluations needed, then an improvement
in accuracy is observed for the nested quadrature rule.

(a) Equal number of points (b) Equal number of new evaluations

Figure 2.7: Gauss-Legendre quadrature vs Gauss-Kronrod quadrature for∫ −0.02
−0.5

−1
x2

cos( 1
x
)

4Increase in order from 2N − 1 to 3N + 1 instead of 2N + 1
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2.5. GAUSS-ROMBERG METHOD

2.5 Gauss-Romberg method

Since Gaussian quadrature methods have an edge in precision over the extended
Newton-Cotes formulas, one natural development is to try and implement them
within the Romberg integration framework, thereby gaining an improvement over
the traditional Romberg integration methods using the trapezoidal rule or Simp-
son’s rule.

It was shown in 1972 by J.N.Lyness that the algorithm for Gauss-Romberg inte-
gration is actually identical in form to that of the traditional Romberg integration
method.[1]

Theorem 2.5.1 (Gauss-Romberg method) Let G be an n × n matrix and
Lm the Gaussian quadrature evaluated using m points with j, k indices fulfilling
j, k ≤ n, then the Gauss-Romberg method is given by the following equations.

Rk,0 = Lk

Rk,j =
1

4j − 1
(4jGk,j−1 −Gk−1,j−1) (2.14)

This method is largely untested and is often seen as excessive, with potentially un-
foreseen complications arising when combining two powerful integration methods.
In this thesis we will explore its efficiency when compared to other, better estab-
lished methods.
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2.6. IMPLEMENTATION IN TENSORFLOW

2.6 Implementation in Tensorflow

Our choice to implement the methods in Tensorflow is motivated by a desire to
examine whether Tensorflow’s compiling feature and its ability to run on GPU
could result in improvements in performance when compared to implementations
of the methods in other libraries.

The compiling feature refers to Tensorflow building a computational graph of the
various operations prior to execution. This feature is particularly valuable when
we have repeating tasks, as the program could then identify them and carry them
out before evaluation instead of going through them one by one, thereby reducing
the run-time.

Tensorflow’s compiling feature places a few constraints on the permitted code:
Any variables must be created before creating the graph, assignment for non-
variables is not supported and the data types need to remain the same through-
out the graph. This can lead to some inefficiencies when running individual func-
tions, which is why this feature is mainly intended for large functions that consist
of multiple smaller parts.

Recursion is not supported when using the compiling feature of Tensorflow, the
reasoning for this is rooted in the evaluation only taking place at the end. The
parameters of one function cannot be used as inputs for another function until the
run is completed, this results in the code being stuck at the recursion step.

Losing the ability to use recursive code seems catastrophic initially, but as proven
by the Church-Turing thesis, any recursive function can be converted to an it-
erative function, which is supported by Tensorflow’s graph framework through
tf.while_loop.

Tensorflow can also run on GPU, which provide superior processing power and
memory bandwidth when compared to CPU [10]. CPUs are better adjusted for
general computing purposes, while GPUs excel at handling multiple functions at
the same time. Consequently, running on GPU can result in significant perfor-
mance improvements when running a large number of operations and evaluations
[7], although it can also lead to decrease in efficiency when the number of evalua-
tions is small as shown in Figure 3.13.
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3. Tests and results

The testing of our implementations was carried out in three phases, the prelimi-
nary and secondary testing phases shared similar goals which can be summarized
as follows:

• Verify that all the methods are operating correctly for a range of different
functions.

• Identify the shortcomings of our implementations and potential ways to mit-
igate them.

• Examine whether the implemented adjustments addressed the shortcomings,
or if further adjustments are needed.

The final testing phase commenced after satisfactory results were obtained from
the prior testing phases. Since the methods were fully operational at this point we
had a different set of goals:

• Benchmark the performance of each method according to agreement between
absolute error and desired tolerance, then according to run-time.

• Examine the performance of our methods running on CPU compared to run-
ning on a GPU.

• Compare our implementations with pure python implementations as well as
well established integration libraries such as scipy.integrate.

The preliminary and secondary testing phases were carried out only on the first
CPU testing device, while the final testing phase was run on all four available
testing devices to ensure that the observed patterns were not dependent on the
testing device. Only results from the first CPU testing device and the GPU test-
ing device are shown to preserve visual clarity.
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3.1. PRELIMINARY TESTING

3.1 Preliminary testing

Following the initial implementation of the previously mentioned integration meth-
ods, a few tests were run to probe the methods for any deficiencies.

The following set of integrals was one of the two sets used for the tests.

1.
∫ 1

0
sin(x)

2.
∫ 3

0
exp(x)

3.
∫ 9

5
x3 + x2 + 9

4.
∫ 2

−2 x
5 − 2x6 cos(x) + 7

5.
∫ 10

5
1

x+5
− 3

2x−1

These integrals were chosen due to their simplicity, they could be well approxi-
mated using the Newton-Cotes methods within a few iterations as shown in the
following figures.

(a) Tolerance 10−2 (b) Tolerance 10−4 (c) Tolerance 10−6

Figure 3.1: Simpson’s rule approximations for
∫ 3

0
exp(x)

By choosing simple functions we could check the reliability of our methods with-
out having to worry about any strange behavior being caused by the nature of the
integrals.
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3.1. PRELIMINARY TESTING

A vital criterion for determining the quality of the implementations of the meth-
ods was the comparison between the absolute error, defined as the absolute differ-
ence between the approximate result and the exact value of the integral, and the
tolerance, which we define as the desired absolute error. A method would be de-
clared to work ideally if the tolerance and absolute error are equal for any choice
of tolerance.

The test consisted of comparing the numerical results obtained by the methods
with the analytic result according to a range of tolerance values from 10−12 to 5 ·
10−4 as well as recording the run-time for each of the methods. The run-time was
obtained through running each of the methods 30 times and averaging the results.

At the time of testing, the Newton-Cotes formulas were allowed a maximum of 15
iterations, the Romberg methods were allowed a maximum of 20 iterations and
the quadrature methods were implemented up to 25 points for the Legendre-Gauss
quadrature and up to 21 points for the Kronrod-Gauss quadrature.

(a)
∫ 1
0 sin(x) (b)

∫ 3
0 exp(x)

(c)
∫ 2
−2 x

5 − 2x6 cos(x) (d)
∫ 10
5

1
x+5 −

3
2x−1

Figure 3.2: Error vs tolerance plots for the preliminary testing functions, linear
blue line represents perfect agreement
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3.1. PRELIMINARY TESTING

For a tolerance of 10−6 or greater, the absolute error showed acceptable agreement
with the tolerance, with the Romberg methods and the trapezoidal method show-
ing better agreement than the other methods.

For a tolerance of 10−7 or less, the agreement was quite poor, this becomes more
noticeable as the tolerance decreases. For the majority of the methods, this man-
ifested through the methods obtaining results that are less accurate than desired,
conversely the adaptive Simpson’s method consistently obtained results that were
more accurate than requested.

We attributed the disagreement to two factors:

• The methods were not allowed enough iterations to achieve greater accuracy
which can be seen for the trapezoidal method by comparing Figure 3.2(a)
and Figure 3.4(a) as well as for the quadrature methods through comparing
Figure 3.2(d) with Figure 3.4(d).

• The termination criteria which consisted of comparing the absolute differ-
ence of the last two outputs of any method with the tolerance was too naive
at greater accuracy. This is illustrated for the Romberg method through
comparing Figure 3.2 with Figure 3.4 and noting that maximum number
of iterations was not reached in either test.

The run-time of the individual methods was the second aspect of interest. During
this phase the run-time was not used as a criterion for comparing the methods,
but rather as way to examine the efficiency of the individual implementations to
determine whether changes were needed.

Through observing the run-time we could see the downside of the adaptive Simp-
son method overachieving in terms of precision, in particular this can be seen in
the plot for the fourth integral.
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3.1. PRELIMINARY TESTING

(a)
∫ 1
0 sin(x) (b)

∫ 3
0 exp(x)

(c)
∫ 9
5 x

3 + x2 + 9 (d)
∫ 2
−2 x

5 − 2x6 cos(x)

(e)
∫ 10
5

1
x+5 −

3
2x−1

Figure 3.3: Run-time vs tolerance plots for the preliminary testing functions

The two main takeaways from the preliminary tests were that the methods needed
more precise error to tolerance matching, a process for doing so is described in
section A.3, and that they needed a higher limit on the number of iterations to
allow for greater accuracy to be achieved.
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3.2. SECONDARY TESTS

3.2 Secondary tests

After addressing the issues mentioned in the previous section and changing the
implementation for the Romberg-Simspon method, the Newton-Cotes and Romberg
methods were allowed the maximum number of iterations possible for the testing
device, which was 25, while the Legendre-Gauss and Kronrod-Gauss methods were
implemented up to 40 and 43 points respectively.

To verify the effectiveness of the adjustments, the methods were tested once more
using the following integrals:

1.
∫ 1

0
sin(x)

2.
∫ 2

1
ln(x) + sin(x)2

3.
∫ 2

−2 x
5 − 2x6 cos(x) + 7

4.
∫ 10

5
1

x+5
− 3

2x−1

5.
∫ π/4
−π/4 cos(2x) + 2 cos(x) sin(x) + tan(x)

A remarkable improvement can be seen in the error-tolerance matching for all
the method by comparing Figure 3.2 with Figure 3.4. We also observe a clear en-
hancement in the accuracy of the Romberg-Simpson method, although it left a lot
to be desired at higher precision.

Increasing the maximum number of iterations for the Newton-Cotes and Romberg
methods as well as supporting a larger number of points for the quadrature meth-
ods allowed for lower absolute error values to be achieved on a regular basis, com-
paring Figure 3.2 with Figure 3.4 we see that the methods are now consistently
capable of achieving an absolute error of 10−12 or lower.
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3.2. SECONDARY TESTS

(a)
∫ 1
0 sin(x) (b)

∫ 10
5

1
x+5 −

3
2x−1

(c)
∫ 2
1 ln(x) + sin(x)2 (d)

∫ 2
−2 x

5 − 2x6 cos(x)

(e)
∫ π/4
−π/4 cos(2x) + 2 cos(x) sin(x) +

tan(x)

Figure 3.4: Error vs tolerance plots for the secondary testing functions
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3.2. SECONDARY TESTS

The goal of these tests was to examine whether the methods were ready to be
compared with one another, as well as with other integration methods. The data
was promising but a few things stood out:

• The Kronrod-Gauss quadrature seemed rather unresponsive to the approach
used to improve the matching between the error and the tolerance, this is
likely due to two factors working in unison. The first being the simplicity of
the functions used in the test, while the second is the fact that this quadra-
ture only uses an odd number of points, so the change in the absolute error
between iterations may be significantly larger than the requested tolerance;
for example, the first integral is approximated to an error of 1 · 10−1 with 5
points, and to an error of 1 · 10−11 with 7 points.

• The adaptive Newton-Cotes methods showed some volatility, which resulted
in some integrals being approximated slightly better than required, while
others were approximated marginally worse than required. This volatility
is a result of our chosen interval splitting which indicated that adjustments
were needed.

• The Romberg-Simpson method was still performing significantly worse than
the Romberg method, this was expected to a certain extent, but the differ-
ence was extreme enough for another change to the algorithm to be consid-
ered.

• The Romberg-Gauss method performed well, particularly in comparison to
the Gauss-Legendre quadrature upon which it is based. It allowed for better
error-tolerance matching in most cases, likely due to the variation between
iterations being more marginal than for the Gauss-Legendre quadrature.

• In the case of the second integral we can see the quadrature methods strug-
gling at the lowest tolerance values, which indicated that it may be benefi-
cial to support an even larger number of points for the implementation.

• The fifth integral highlights a problem that one may face when using a Romberg
implementation of any integration method. If the base method can get a
reasonable approximation, then the Romberg implementation will further
improve it. This can be seen by comparing the Legendre-Gauss quadra-
ture result with the Romberg-Gauss result. On the other hand, if the base
method fails, then the Romberg implementation will also fail, as seen for
both the Romberg method and the Romerg Simpson methods at low accu-
racy.
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3.2. SECONDARY TESTS

Improving the matching took a small toll on the run-time, thus a few tweaks were
made to improve it. For the quadrature based methods this was done through im-
porting and processing their nodes and weights in advance before the integration
process, while for the Newton-Cotes methods, the main improvement came from
increasing the number of sub-intervals at the start of the process, this allowed for
quicker convergence as it was less likely to miss curves and peaks in the earlier
iterations. The Romberg methods did not have much room for improvement with-
out a complete rewrite, so they remained unchanged.

The Romberg and Romberg-Simpson methods use the largest number of evalu-
ations for high precision results, this is also the case for simple functions, which
suggests that they may be sub-optimal in comparison to quadrature methods or
the adaptive Simpson’s method when handling simple functions.

The run-time tests showed an interesting but unsurprising result as the adaptive
trapezoidal method and the Romberg-Simpson method ran far slower at higher
precision than any of the other methods. The adaptive trapezoidal method is
known to converge slowly, so it was expected to require a longer time to obtain
accurate results. The Romberg-Simpson suffered from a different problem, it could
not achieve the desired precision in many cases, which resulted in it running for
the maximum number of iterations, coupled with its inability to reuse points,
unlike the Romberg method, this inflated the run-time. This is indicated by the
run-time plot for the first integral, where its speed matches that of the remaining
methods as it can achieve the desired precision.

Comparing the run time for the Romberg-Gauss method with the Gauss-Legendre
quadrature we see that the improved error-tolerance matching comes at a compa-
rably small cost, which hints at the Romberg-Gauss method being a viable option
for numerical integration applications.

The Gauss-Kronrod quadrature regularly ran slower than the Gauss-Legendre
quadrature, this is likely due to it being less accurate at the same number of points,
thus requiring more iterations.
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3.2. SECONDARY TESTS

(a)
∫ 1
0 sin(x) (b)

∫ 2
1 ln(x) + sin(x)2

(c)
∫ 2
−2 x

5 − 2x6 cos(x) + 7 (d)
∫ 10
5

1
x+5 −

3
2x−1

(e)
∫ π/4
−π/4 cos(2x) + 2 cos(x) sin(x) +

tan(x)

Figure 3.5: Run-time for secondary testing functions (Logarithmic scale)
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3.3. FINAL TESTS

3.3 Final tests

After further upgrading the quadrature methods by allowing up to 100 points
for the Legendre-Gauss quadrature and up to 991 points for the Kronrod-Gauss
quadrature [14] [15] [16], we were ready to run a final round of tests, these tests
aimed to accomplish the following:

• Benchmark the methods when applied to difficult integrals.

• Benchmark the methods running on a CPU in comparison to running on a
GPU.

• Compare the Tensorflow adaptive Newton-Cotes methods with equivalent
simple python implementations.

• Compare the implemented methods with the scipy.integrate library.

• Identify the upsides and shortcomings of the methods.

3.3.1 Benchmark using difficult integrals

The goal of this test was to identify whether the methods could accurately ap-
proximate rapidly oscillating functions or functions with sharp peaks, for that rea-
son, the following functions were chosen.

1.
∫ 1.99

0.01
(x+1)

(x3+x2−6x)

2.
∫ pi
0

(2 sin(x))7

3.
∫ 9

5
cos(exp(x)) exp(x)

4.
∫ −0.02
−0.5

−1
x2

cos( 1
x
)

1Only defined for odd numbers of points.
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3.3. FINAL TESTS

Additionally an approximation of the branching fraction of the decay B → K∗0µ+µ−

as a function of momentum transfer q2 was used to test the methods, the distribu-
tion has the following form. [12]

(a) Logarithmic scale (b) Linear scale

Figure 3.6: Approximate distribution of branching fraction as a function of q2

During these tests, two limitations were frequently encountered. The available
testing devices could not evaluate more than 7 · 107 points in a reasonable amount
of time, which restricted the Newton-Cotes formulas and the Romberg methods
based upon them. The second limitation relates to the quadrature methods, in
a few cases the maximum available amount of points was insufficient for conver-
gence. However, most sources for calculating the nodes and weights only go up to
100 points and the computation of more points using the method mentioned in
subsection 2.4.1 requires an inordinate amount of time and computing power, thus
we are restricted to no more than 100 points.

As mentioned in section 2.4, the quadrature methods are only well suited for the
integration of smooth functions, thus it is unsurprising that they failed to con-
verge for rapidly oscillating functions Figure 3.7(c) and functions with sharp peaks
Figure 3.7(e).

The implemented Newton-Cotes and Romberg methods are of lower order than
the quadrature methods, this results in smoothness being far less important, which
allowed for reasonable approximations to be obtained.
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3.3. FINAL TESTS

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ π
0 (2 sin(x))7

(c)
∫ 9
5 cos(exp(x)) exp(x) (d)

∫ −0.02
−0.5

−1
x2

cos( 1x)

(e) B → K∗0µ+µ−

Figure 3.7: Error vs tolerance for the final testing integrals
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3.3. FINAL TESTS

We consistently observe the Romberg-Gauss method providing better error-tolerance
matching than the Legendre-Gauss method whenever the initial approximation is
reasonable. This comes at the cost of a slower run-time, the improvement in accu-
racy relative to run-time seems to be worthwhile at lower tolerance values.

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ −0.02
−0.5

−1
x2

cos( 1x)

Figure 3.8: Run-time vs tolerance for the three quadrature methods

The third and fifth integrals were the least smooth of the set. Only the Newton-
Cotes and Romberg methods converged to the correct result. Based on the run-
time, we deduce that the Romberg method is ideal for most tolerance ranges, with
the adaptive Simpson’s method trailing, the Romberg-Simpson method and the
trapezoidal method can provide reasonable results, but they pale in comparison to
the previously mentioned methods.

(a)
∫ 9
5 cos(exp(x)) exp(x) (b) B → K∗0µ+µ−

Figure 3.9: Run-time vs tolerance for the Newton-Cotes and Romberg methods
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3.3. FINAL TESTS

3.3.2 Benchmark of the methods running on CPU vs GPU

Tensorflow supports GPU usage, which can lead to improvements in performance.

The Newton-Cotes and Romberg methods were allowed the same maximum num-
ber of iterations on both devices, this meant that the error obtained would be the
same regardless of the processing unit. The quadrature methods were only run-
ning up to 40 and 43 points respectively. The quadrature methods ran at similar
speeds on GPU as on CPU, but run-time is not a major concern for quadrature
methods as they are implemented up to 100 points only.

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ π
0 (2 sin(x))7

Figure 3.10: Run-time vs tolerance for the quadrature methods running on CPU
vs GPU (Logarithmic scale)
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3.3. FINAL TESTS

A far more interesting comparison would be the Newton-Cotes and Romberg meth-
ods as they are based on the repetition of a large number of simple steps, which
are theoretically ideal processes for a GPU.

The results were surprising, running on CPU was faster initially, but for higher
precisions operating on GPU yielded a noticeable improvement.

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ π
0 (2 sin(x))7

(c)
∫ 9
5 cos(exp(x)) exp(x) (d) B → K∗0µ+µ−

Figure 3.11: Run-time vs tolerance for the Newton-Cotes based methods running
on CPU vs GPU

The run-time experienced an improvement of a factor 10 for large numbers of
evaluations. However, the program requires a large amount of memory when run-
ning on GPU, these tests were performed using a graphics card with 8 GB of GDDR6
memory, running for the maximum number of iterations required all the avail-
able memory. Running for about 20 iterations, which corresponds to using 2 · 106

points, required only 2GB, which should allow a tolerance of 10−8 to be achieved.

The testing was performed using an Nvidia RTX 2070, which has poor double pre-
cision performance, thus it is possible to further reduce the run-time through us-
ing a graphics card that is better suited to the task at hand.
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3.3. FINAL TESTS

3.3.3 Newton-Cotes: Tensorflow vs Numpy

In this section we aim to examine whether there is a benefit to implementing the
methods using Tensorflow in comparison to native python and Numpy.

The underlying methods are the same, thus any difference in error is either due to
the number of evaluations or the libraries being used to evaluate the input func-
tion.

Figure 3.12: Error vs Number of evaluations for
∫ 5π/6

4π/6
sin(x) tan(x) + 3

x2
+ ln(x3)

As we can see from the graph, the error plots are similar for both Tensorflow and
Numpy, this is better showcased by the trapezoidal method, where it is clear that
both have the same gradient. The cause for the separation between the two im-
plementations is not clear, but it is not a major concern as the minimum relevant
absolute error of 10−12 can be achieved by both methods using either library.
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3.3. FINAL TESTS

Although the Numpy implementations starts out as the fastest, this is only the
case for a small number of evaluations, it falls behind in terms of run-time at
about 103 evaluations and remains the slowest at larger numbers of evaluations.
Interestingly, the CPU implementation of the methods is faster than the GPU
version up to about 105 points, beyond that point we see a rapid increase in run-
time.

Figure 3.13: Run-time vs Number of evaluations for
∫ 5π/6

4π/6
sin(x) tan(x)+ 3

x2
+ln(x3)

The improvement in run-time indicates that with proper optimization, it may be
possible for a Tensorflow based integration library to surpass currently available
python integration libraries.
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3.3. FINAL TESTS

3.3.4 Performance test against scipy.integrate

The scipy.integrate library provides three methods of integrating a single variable
function up to a certain tolerance. Those being scipy.integrate.quad which
utilizes the Fortran library QUADPACK to compute a definite integral, which will
be referred to as ”the default Scipy method”, the second method is scipy.integrate.quadrature

which is simply a Gaussian quadrature method and lastly scipy.integrate.romberg;
an implementation of the Romberg method.[13]

The results from the quadrature integration were rather unsurprising, as the Scipy
implementation is only accurate up to 100 points as well, hence the error results
were quite similar and the run-time did not show any significant difference be-
tween the two approaches.

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ π
0 (2 sin(x))7

Figure 3.14: Error vs tolerance for the quadrature methods

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ π
0 (2 sin(x))7

Figure 3.15: Run-time vs tolerance for the quadrature methods
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3.3. FINAL TESTS

The comparison of Romberg methods yielded some compelling results, the error-
tolerance matching of the Scipy implementation was worse than for the methods
we implemented, but it almost exclusively obtained results that were too accurate,
thus this is a minor downside at most.

(a)
∫ 1.99
0.01

(x+1)
(x3+x2−6x) (b)

∫ −0.02
−0.5

−1
x2

cos( 1x)

Figure 3.16: Error vs tolerance for the Romberg methods

The refinement procedure seemed to be improved in the Scipy implementation as
it required two or three fewer iterations to converge than our implementations,
this led to an improved run-time whenever the maximum number of iterations was
not needed. However, in the case of the third integral the method required all 25
iterations, which resulted in it requiring a far longer run-time than our implemen-
tations. This highlights an avenue for improving our algorithms.

(a)
∫ π
0 (2 sin(x))7 (b)

∫ 9
5 cos(exp(x)) exp(x)

Figure 3.17: Run-time vs tolerance for the Romberg methods
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3.3. FINAL TESTS

The default Scipy integration method is incredibly quick, it easily matched or sur-
passed all of our methods whenever it could obtain a correct result within a few
iterations. There are two caveats however, the first being that the method sim-
ply failed to achieve a reasonable result in some cases and the other being that it
seemed far better adjusted to integrals of elementary functions as it slowed down
considerably when applied to the approximate distribution shown in Figure 3.6.

(a) Error vs tolerance (b) Run-time vs tolerance

Figure 3.18: Comparison between default Scipy method and the three fastest non-
quadrature methods for

∫ 1.99

0.01
(x+1)

(x3+x2−6x)

(a) Error vs tolerance (b) Run-time vs tolerance

Figure 3.19: Comparison between default Scipy method and the three fastest non-
quadrature methods for

∫ 9

5
cos(exp(x)) exp(x)
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3.3. FINAL TESTS

(a) Error vs tolerance (b) Run-time vs tolerance

Figure 3.20: Comparison between default Scipy method and the three fastest non-
quadrature methods for B → K∗0µ+µ−

The run-time for
∫ 1.99

0.01
(x+1)

(x3+x2−6x) and
∫ 9

5
cos(exp(x)) exp(x) indicates that the de-

fault Scipy method utilizes a quadrature method when provided with an elemen-
tary input, which would explain its failure to obtain a reasonable result for the
latter.

The poor error-tolerance matching observed for the default Scipy method is due
to the library QUADPACK, the library supports a large number of points for
quadrature rules, but the increase in the number of points between each rule is
large, thus providing poor error-tolerance control.

When applied to a non-elementary function it seems like the QUADPACK rou-
tine QAGS is used, which is intended to be used when inefficient computing can
be tolerated and when the problem at hand cannot be analyzed further, which ex-
plains the significant slowdown observed in Figure 3.20(b).
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4. Conclusion and outlook

Based on the results presented in chapter 3 we can see that the implementations
of the various integration algorithms using Tensorflow match or surpass the li-
brary scipy.integrate when applied to difficult integrals, which are common in
HEP. These results indicate that Tensorflow may be ideal for building a powerful
single variable integration library suited for HEP applications.

Methods depending on Newton-Cotes formulas experienced a large improvement
in performance, particularly for large numbers of evaluations. These methods
are typically constrained by the computing power available and the efficiency of
the implementation, thus the improvement from Tensorflow at large numbers of
evaluations, especially when running on GPU is very noticeable as shown in Fig-
ure 3.13.

It is difficult to identify one method as ideal when it comes to single variable inte-
grals. Nonetheless we can draw the following conclusions based on the results from
chapter 3:

• Legendre-Gauss-quadrature This method was quite successful at approx-
imating simple functions as well as a few difficult ones, its run-time is among
the lowest of any of the tested methods as shown in Figure 3.5, which makes
it optimal when dealing with common integrals. When faced with pathologi-
cal integrals1 this method failed completely as shown in Figure 3.7.

• Kronrod-Gauss-quadrature This method is quite similar to the Legendre-
Gauss-quadrature, they can achieve comparable precisions, although the
Legendre-Gauss-quadrature has a slight edge when using a large number of
evaluations as shown in Figure 2.7. The Kronrod-Gauss quadrature is only
defined for an odd number of points, which results in worse error-tolerance
matching when compared to the Legendre-Gauss-quadrature, it also ran
marginally slower, making it an inferior option overall.

• Romberg-Gauss-quadrature Despite this method being unconventional
and rather untested throughout history, it performed remarkably well in
comparison to the Legendre-Gauss-quadrature upon which it is based. It
was regularly able to achieve more precise results as in Figure 3.7, while only
running marginally slower than the other quadrature methods as shown in
Figure 3.5.

1Integrals possessing irregular features such as rapid oscillations or extremely sharp peaks
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• Adaptive trapezoidal method Despite its simplicity, this method was
quite potent. It was capable of achieving a sufficiently high accuracy for
most applications regardless of the type of integral as shown in Figure 3.7.
This method is ideal for double exponential decay functions and performs
significantly better than expected for periodic functions, but it is generally
outdone by similar methods.[4]

• Adaptive Simpson’s method The development of this method was moti-
vated by a desire to improve upon the adaptive trapezoidal method, in that
regard it is undeniable that it is successful, regularly obtaining better ac-
curacy as seen in Figure 3.7. Individual iterations of the Simpson’s method
are slower than those of the trapezoidal method Figure 3.13, but it requires
fewer iterations to achieve a certain accuracy, resulting in a shorter run-time
Figure 3.5.

• Romberg method This is perhaps the most well rounded of all the meth-
ods that have been tested. It is perfectly capable of achieving the desired
accuracy for the majority of the tested integrals 3.7 and 3.4 while running at
a reasonable speed 3.5.

• Romberg-Simpson method This method was intended to improve upon
the Romberg method, but it falls behind both in terms of accuracy Fig-
ure 3.7 and run-time Figure 3.17. The slower run-time is explained through
this method being unable to reuse points as the Simpson’s rule evaluates are
four points within an interval instead of two, but the worse accuracy is un-
explained and could be worth exploring in detail. While this method was
interesting to test, it is never ideal.

While none of the methods is always optimal , some methods outperformed the
rest for specific integrals and tolerance ranges, the results are summarized in the
following table.

Table 4.1: Optimal methods and processors for different types of integrals and
tolerance

Type of integral Desired tolerance Optimal method Optimal processor
Simple 10−8 ≤ Legendre-Gauss quadrature CPU
Simple ≤ 10−8 Romberg-Gauss quadrature CPU

Difficult 10−8 ≤ Romberg-Gauss quadrature CPU
Difficult ≤ 10−8 Romberg method CPU/GPU

Pathological 10−8 ≤ Romberg method CPU
Pathological ≤ 10−8 Romberg method GPU
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While the Newton-Cotes and Romberg methods enjoyed significant enhancements
in performance due to Tensorflow’s special features, the implementations are not
optimized. The scipy implementation of the Romberg method could regularly best
our implementation when the maximum number of iterations was not needed,
which indicates that there is room for improvement.

The quadrature methods are the unlikely to see an improvement in terms of eval-
uation speed from Tensorflow. However, the determination of weights and abscissa
is a computationally demanding task which could benefit significantly from Ten-
sorflow, thereby allowing us to accurately determine more than 100 points. New
algorithms for calculating the weights and abscissa have emerged which could aid
with this process have emerged in the last decade.[5]

Supporting variable transformations that make the integrals easier for the meth-
ods to approximate is a direct path to improving efficiency. The implementation
of such transformations would also allow for integration over infinite domains,
which is not currently supported by the Tensorflow versions of the methods, thus
it is a priority for future development.

An algorithm similar to scipy.integrate.quad which analyzes the integral to
identify and apply the ideal method would be required to build a complete inte-
gration library, this is likely to be the end goal of the project once the methods
are optimized.
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A. Appendix

A.1 Code and testing devices

The code for each of the shown methods can be found at https://github.com/
M-AlMinawi/Integration-of-single-variable-functions-using-TensorFlow

along with the plots and .csv files containing the data used for the production of
said plots for the following 10 integrals.

•
∫ 1.99

0.01
x+1

x3+x2−6x

•
∫ π
0

(2 sin(x))7

•
∫ 9

5
cos(exp(x)) exp(x)

•
∫ 1

−1
1

(1+2500x2)

•
∫ −0.02
−0.5 −

1
x2

cos( 1
x
)

•
∫ 1

−1 x
2 cosh(x) exp(exp(x2)) sinh(x)

•
∫ 35

0
x6 exp(−x)

•
∫ 0.04

−0.04 250 exp(−15000x2)

•
∫ 7

1
exp(cos(exp(x)))− x exp(cos(exp(x)) + x) sin(exp(x))

•
∫ 5

0.1
B → K∗0µ+µ−
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A.1. CODE AND TESTING DEVICES

Testing was performed using 4 devices, one of which used a graphics card that is
supported by Tensorflow, thus it was used exclusively for GPU testing.

Table A.1: Testing devices

CPU Device 1 CPU Device 2 CPU Device 3 GPU Device
CPU Intel Core i7-

7500U
Intel Core i7-
4770

Intel Core i7-
4770

AMD Ryzen
Threadripper
1920x

GPU AMD R5 M430 Nvidia GTX
770

AMD R9 390 Nvidia RTX
2070

RAM 8GB DDR3 8GB DDR3 16GB DDR3 16GB DDR4
Operating sys-
tem

Windows 10 Windows 10 Windows 10 Windows 10

Python version 3.6 3.8 3.8 3.7
Tensorflow ver-
sion

2.2.0 2.2.0 2.2.0 2.2.0

The difference in specifications across the CPU testing devices did not result in
significant performance differences, with the results for devices 2 and 3 being simi-
lar to the results for device 1 that have been presented throughout the thesis.

Figure A.1: Run-time vs Number of evaluations comparison of the testing devices

for
∫ 5π/6

4π/6
sin(x) tan(x) + 3

x2
+ ln(x3)
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A.2. IMPLEMENTATION OF ADAPTIVE METHODS

A.2 Implementation of adaptive methods

As mentioned in subsection 2.2.2 recursion is a powerful option for the implemen-
tation of these methods, below is an example of a recursive Simpson’s rule imple-
mented in Python.

1 import numpy as np

2

3 def simpsonarea(function ,a,b):

4 h = (b-a)

5 area = (2*h*function ((a+b)/2)+h/2*( function(a)+function(b)))/3

6 return area

7

8 def adaptintsimp(function , a, b,max , tol ,iter =1):

9 h = (b - a)

10 m = (b + a) / 2

11 area = 0

12 areatot = simpsonarea(function , a, b)

13 nextareatot = simpsonarea(function , a, m) + simpsonarea(

function , m, b)

14 err = np.abs(areatot - nextareatot)

15 if iter <max:

16 iter += 1

17 if err < tol:

18 return areatot

19 else:

20 arealeft = adaptintsimp(function , a, m, max ,tol ,iter)

21 arearight = adaptintsimp(function , m, b, max ,tol ,iter)

22 area = area + arealeft + arearight

23 return area

24 else:

25 return areatot

The implementation is quite elegant, we simply check whether the difference be-
tween the results of two iterations is below our tolerance. If it is not, then we split
the interval in half and run the function for each sub-interval until we obtain the
desired result.
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A.2. IMPLEMENTATION OF ADAPTIVE METHODS

To implement a similar method in Tensorflow we need to convert to iteration,
which makes using the difference between two iterations as a criterion for splitting
inefficient. However, from Equation 2.1 we could see that the error is dependent
on the derivative and by extension the absolute difference between the value of the
function evaluated at two points.

The relation between the absolute error and the absolute difference is not known
exactly, thus we have to determine suitable values through trial and error.

1 import tensorflow as tf

2

3 @tf.function(autograph=False)

4 def integrate(func , lower , upper):

5 return (func(lower) + 4*func(( lower+upper)/2) + func(upper)) /

6 * (upper - lower), func(lower),func(upper)

6

7 @tf.function(autograph=False)

8 def diff_body(integral ,increase ,tol ,lower ,upper ,plot_points ,

rejected_points ,iterations):

9 integrals ,low ,up = integrate(integrand ,lower ,upper)

10 abs_diff = tf.abs(up-low)

11 abs_diff_bound = tf.cond(tf.math.greater(tol ,tf.cast(1e-10,

dtype=tf.float64))

12 ,lambda :tf.cond(tf.math.greater(tol ,1e-6)

13 ,lambda: tf.abs((tf.cast(16, dtype=tf.float64) * tol **(1/4))),

lambda : tf.abs (1250 * ((tol ** (1 / 2)))))

14 ,lambda :tf.abs (5000* ((tol ** (2 / 3)))))

15 too_big = tf.greater(abs_diff ,abs_diff_bound)

16 points = tf.where(too_big)[:, 0]

17 integral += tf.reduce_sum(tf.boolean_mask(integrals , mask=tf.

logical_not(too_big)), axis =0)

18 increase = tf.reduce_sum(tf.boolean_mask(integrals , mask=tf.

math.equal(too_big ,True)), axis =0)

19 lower_to_redo = tf.gather(lower , points , axis =0)

20 upper_to_redo = tf.gather(upper , points , axis =0)

21 new_middle = (upper_to_redo + lower_to_redo) / 2

22 new_lower = tf.concat ([ lower_to_redo , new_middle], axis =0)

23 new_upper = tf.concat ([ new_middle , upper_to_redo], axis =0)

24 iterations += 1

25 return integral , increase ,tol ,new_lower , new_upper ,iterations

26 @tf.function(autograph=False)
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A.3. IMPROVING ERROR-TOLERANCE MATCHING

The previous code is responsible for the evaluation process, it needs to be placed
in a loop with a termination condition to form a complete algorithm.

1 def cond(integral ,increase ,tol ,lower ,upper ,plot_points ,

rejected_points ,iterations):

2 cond = tf.cond(tf.equal(integral ,tf.cast(0,dtype=tf.float64))

3 ,lambda: tf.constant(True)

4 ,lambda :tf.greater(tf.abs(increase),tol))

5 return cond

6

7 @tf.function(autograph=False)

8 def adaptive_simpson_diff(l,u,tol ,iter):

9 initial_points = tf.linspace(tf.constant(l,dtype=tf.float64),

tf.constant(u,dtype=tf.float64), num =75)

10 result = tf.while_loop(cond=cond , body=diff_body , loop_vars =[tf

.constant (0., dtype=tf.float64),tf.constant(0, dtype=tf.float64),

tf.constant(tol ,dtype=tf.float64),initial_points [:-1],

initial_points [1:],tf.constant(1,dtype=tf.float64) ],

11 shape_invariants =[tf.TensorShape (()),

12 tf.TensorShape (()), tf.TensorShape (()),

13 tf.TensorShape ((None ,)),tf.TensorShape ((None ,)),tf.TensorShape ((

None ,)),tf.TensorShape ((None ,)),tf.TensorShape ((None ,))],

maximum_iterations=iter)

14 integral = result [0] + result [1]

15 iterations = result [7]

16 return integral ,iterations

A.3 Improving error-tolerance matching

The precision of the error-tolerance matching is dependent on the termination cri-
terion. Through evaluating the integral at different tolerance ranges and observing
the agreement between the error and the tolerance, we can obtain weights that
allow us to improve the matching.

Obtaining optimal matching in all cases is a time consuming task and was not
one of our goals during the development of this project. An ad-hoc solution was
implemented to allow for proper testing of the methods. Below is a comparison
between the initial termination condition and the improved one.

1 @tf.function(autograph=False)

2 def romberg_cond(l,u,tol ,a,min_iter):

3 k = tf.shape(a)[0]

4 cond = tf.cond(tf.less(tf.shape(a)[0], min_iter),

5 lambda: tf.constant(True),

6 lambda:tf.cond(tf.math.greater_equal(tf.shape(a)

[0] ,25),

7 lambda: tf.constant(False),

8 lambda: tf.math.less(tol ,tf.abs(

tf.subtract(a[k-1,k-1],a[k-2,k-2])))

9 ))

10

11 return cond
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A.3. IMPROVING ERROR-TOLERANCE MATCHING

12 @tf.function(autograph=False)

13 def romberg_cond(l,u,tol ,a,min_iter):

14 k = tf.shape(a)[0]

15 cond = tf.cond(tf.less(tf.shape(a)[0], min_iter),

16 lambda: tf.constant(True),

17 lambda:tf.cond(tf.math.greater_equal(tf.shape(a)

[0] ,25),

18 lambda: tf.constant(False),

19 lambda:tf.cond(tf.math.

greater_equal(tol ,1e-8),

20 lambda:tf.cond(tf.

math.greater_equal(tol ,1e-6),

21

lambda:tf.math.less(tol ,tf.abs(tf.subtract(a[k-1,k-1],a[k-2,k

-2]) /200)),

22

lambda: tf.math.less(tol ,tf.abs(tf.subtract(a[k - 1, k - 1], a[

23

k - 2, k - 2]) ))),

24 lambda: tf.math.

less(tol ,tf.abs(tf.subtract(a[k-1,k-1],a[k-2,k-2]) /20))

25 )))

26

27 return cond

It is possible to substantially improve the criterion. The current approach is flawed
when applied to integrals with small numerical values, thus adjusting the crite-
rion to account for the size of the integral is a priority. Furthermore, the approach
is only split at three tolerance values, namely 10−6, 10−8 and 10−10. Running
tests at more tolerance values may allow for the derivation of a general condition,
which would improve the error-tolerance matching and the run-time of the meth-
ods.
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