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1 Introduction

By the end of the XXth century the ΛCDM model had imposed itself as the standard model of
cosmology due to its power to explain the accelerating expansion of the Universe and the observed
formation of structure. With this model two physical elements were broadly accepted by the physics
community: cold dark matter and Dark Energy. Despite the lack of a consensual explanatory model
these entities were adopted for their phenomenological properties. Dark Energy expands space and
is therefore responsible for a Universe in accelerated expansion. Cold dark matter is matter which
we know interacts gravitationally and participates in the formation of structure while not inter-
acting with particles of the Standard Model in any significant proportion. The “Cold” nature of
Dark Matter refers to its mass, or more accurately its velocity. From the structure formation his-
tory it seems that a Dark Matter component which was non-relativistic at very-early times and
therefore quickly got trapped in gravitational structures provided the best match to observations
[Blumenthal et al., 1984].
Once this paradigm was established direct detection experiments and accelerator experiments started
looking for a viable dark matter candidate which would be found through a very rare interac-
tion with Standard-Model particles. While these probes are ongoing [Aprile and Aalbers, 2018]
[ATLAS, 2021], there are more indirect methods of determining Dark Matter properties. In par-
ticular when looking at the gravitational impact of Dark Matter in cosmological and astrophysical
observations no interaction with Standard Model particles is necessary.
In addition to the importance of investigating which Dark Matter properties are potentially allowed
by its phenomenological effects, a few discrepancies in the ΛCDM structure formation formalism
motivate to test scenarios which go beyond the cold dark matter paradigm. One particular prob-
lem is the “core-cusp” problem [de Blok, 2010], which is the discrepancy between simulations which
predict a very cored halo-profile, with a very steep density profile in the halo-center, while observa-
tions tend to prefer a more cuspy profile, which is more flattened-out at small halo-radii. A second
long-standing problem is the “missing satellite” problem [Moore et al., 1999] which indicates that
ΛCDM simulations predict far more Satellite galaxies than observed in current observations. While
more recent observations [Nadler et al., 2021] find more satellite galaxies, the discrepancy remains.
These considerations pushed the investigation of a “mixed dark matter” model [Boyarsky et al., 2009]
composed of a Cold and a Hot/Warm part. While not necessarily meant to be physically exact, this
model tries to work out the impact of a fraction of hot/warm matter on the formation of structure.
In particular with enough cold dark matter the predicted down-top structure formation, with grav-
itational structures starting small and progressively growing, would still be allowed.
A very important probe to investigate the mixed dark matter model (MDM) are observations of
the Lyman-α forest [Baur et al., 2017]. These observations look at the 1-D flux power spectrum of
Lyman-α photons emitted by distant quasars and then infer the hydrogen density along the line
of sight. This allows to probe the matter power spectrum at high redshifts and relatively low-k,
meaning small scales, which is where the effects of a mixed dark matter scenario on structure forma-
tion differ strongest from the ΛCDM scenario. These Lyman-α observations are difficult due to the
many systematic errors such as baryonic effects and uncertainties on the reionization history. While
previous bounds for a pure warm dark matter scenario where mTR > 2.1 keV and mTR > 4.65keV
respectively, [Boyarsky et al., 2009] [Baur et al., 2017], recent work taking into account larger un-
certainties on the reionization history bring this bound to mTR ≥ 1.5keV [Garzilli et al., 2021] The
TR subscript stands for the Thermal Relic mass definition. This results strengthen our motivation
to independently probe the MDM scenarios using cosmic shear measurements.
Weak lensing surveys like KiDS, DES and CFHTLens [Heymans et al., 2021], [DES collab. et al., 2019],
[Van Waerbeke et al., 2013] imposed themselves as a strong cosmological probe in the past decade
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and future surveys like Euclid and LSST [Sartoris et al., 2016] [LSST collab., 2018] will improve
these constraints through wider and more precise observations. The prospect of precise upcoming
surveys represents a motivation to test constraining MDM scenarios using cosmic shear measure-
ments.
In this work we will use data from the KiDS-1000 survey [Asgari et al., 2021] and the Planck-
18 TTTEEE spectra [Planck col. et al., 2020] to constrain a mixed dark matter scenario with
mwdm ∈ [0.01, 1.5keV].
We will start by quickly reviewing the theoretical aspects of warm/hot dark matter in cosmology
and its particle physics motivation. We then briefly present the modelled observations before de-
scribing the tools used to produce a prediction. We finally present the constraints obtained on the
MDM scenario, before turning our attention to the impact on the S8 tension.

2 Theory

2.1 The Standard Model of Cosmology

The structure we use to explain the evolution of our universe today was developed in the first
decades of the 20th century. It originated with Einstein’s formulation of General Relativity, in
which space and matter are connected through the Einstein equation:

Gµν ≡ Rµν −
1

2
gµν = 8πGTµν − Λgµν (1)

with:

• gµν the metric. This is the central quantity in General relativity which gives the causal-structure
of a given space-time

• Rµν and R the Ricci Tensor and Ricci scalar, defined by derivatives of the metric

• Tµν the stress-energy tensor of all matter species in the universe

• Λ the Cosmological Constant

To define the metric of our universe two principles were assumed. The first one is the Copernican
principle, meaning that our universe is assumed to be spatially homogeneous. The second assump-
tion is isotropy, meaning that physical conditions are independent of direction.
These assumptions give rise to the Friedman-Robertson-Walker(FRW) metric, defining our universe
as:

gµνdx
µdxν = −dt2 + a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

)
(2)

• t the physical time

• r,θ,ϕ the spatial comoving coordinates which are not sensitive to the dynamics of expansion

• k the spatial curvature, assumed to be 0 throughout this work, meaning the universe is flat

• a(t) the scale factor weighting the distances

The scale factor is a central object of study in Cosmology as it describes the expansion of our
Universe. Its evolution is determined from the content of our universe, by inserting the FRW metric
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into the Einstein equations. Doing that one gets the description of the evolution of the scale factor
given by the first Friedman equation: (

ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
(3)

The energy density ρ scales differently based on the considered component, in particular

ρmatter ∼ a−3 , ρradiation ∼ a−4 , ρvacuum ∼ 1 (4)

We define the Hubble parameter H ≡ ȧ
a and the normalised densities Ωi using the critical density

ρcrit =
3H2

8πG . The subscript 0 denotes the quantites at present time. We therefore get the relations:

Ωi =
ρi
ρcrit

;
∑
i

Ωi = 1 (for flat universe) (5)

And the remodeled Friedman equation:

H(a) = H0(Ωra
−4 +Ωma

−3 +ΩΛ)
1/2 (6)

The dynamics in the early universe are described using a thermodynamical equilibrium. Starting
from a very dense and hot state, the universe progressively cools down due to expansion and particles
are said to “decouple" ones they do not interact sufficiently with the rest of the particles to stay in
equilibrium. The decoupling moment occurs when the interaction rate Γ is of the same order as the
Hubble parameter:

Γ(adec) ∼ H(adec) (7)

with Γ ∼ σvn, where v is the velocity, n the number density and σ the interaction cross section of
the particle. Heavier particles will decouple before lighter ones.

2.2 Structure Formation with Hot/Warm thermal relics

In the ΛCDM paradigm, the dark matter contribution is composed of cold matter. The nature of
dark matter was debated in the 1980’s and 1990’s. The terms of hot, warm and cold dark matter
were coined to categorize the differences produced on structure formation of these different particles.
In the 1990’s the cold dark matter was widely accepted due to its explanation of structure formation
in a bottom-top way as described in [Blumenthal et al., 1984].
Hot, warm and cold dark matter are distinguished by their thermal velocities vt at matter-radiation
equality. For cold dark matter this velocity is null and it does not prevent the gravitational collapse
of matter at any scale. In the hot and warm dark matter scenarios, the particles have a thermal
velocity:

⟨vt⟩ =
⟨p⟩
m

∼ 3Tν
msterile

(8)

This velocity decreases with the expansion of the Universe and vt scales with vt ∼ a−1. As the
hot/warm dark matter particles have a greater velocity, they do not get trapped in a gravitational
potential to form bound systems in early times [Schneider, 2012].
The physically relevant parameter is the Jean’s length presented in Equ.9. This predicts the length
at which pressure forces resist gravitational collapse and we have a system in equilibrium. For
smaller wavelength/bigger k’s, the gravitational forces are stronger than pressure forces and the
perturbations with λ > λJ collapse.
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kJ ≡ kfs = a

√
4πGρm
⟨v⟩2

∣∣∣∣∣
t=teq

= 14/Mpc
(mwdm

0.5keV

)4/3( 0.5

fwdm

)5/6

(9)

The time teq is the time at matter-radiation equality, where Ωm(zeq) = Ωrad(zeq).
The Jeans length therefore gives us the free-streaming length, which is the largest scale at which
warm dark matter suppresses the formation of structure. One can define an associated free-streaming
mass which gives a threshold value below which Halo formation is suppressed. We write it:

Mfs(ωwdm,mwdm) =

(
Ωwdm

0.3

)1.45( h

0.65

)3.9( 1keV
mwdm

)
3.45M⊙/h (10)

Where M⊙ is the unit of solar mass. This suppression was a strong motivation in the 1990’s and
2000’s for warm dark matter as it solved the "missing satellite" problem [Moore et al., 1999]: simu-
lations were predicting small companion galaxies to our Milky Way but these were not detected at
that time. While some companions have been discovered today [Nadler et al., 2021], the abundance
of small-scale clustered matter remains an open question. This point is beautifully shown in N-body
simulations, as in Fig.1, where one can see that the abundance of small clusters is stronger in the
cold dark matter Scenario, while only the larger structures exist in the MDM and WDM cases.
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Figure 1: Simulations of a cold dark matter, mixed dark matter and warm dark matter Universe re-
spectively. One can see going from left to right that the structure gets smoothed out and only the big-
ger structure remains due to suppression from the thermal velocities, source: [Parimbelli et al., 2021]

2.3 The S8 Tension

Towards the end of the XXth century, multiple ways of probing the cosmological scenario were
developed. While ΛCDM eventually imposed itself as the most explicative theory, the precision
reached by observations today allow to probe if the measured values of the cosmological parameters
agree between very high and low redshift.
While the tension on the Hubble rateH0 has gained a lot of attention recently [Abdalla and Abellán, 2022],
another tension which has come under scrutiny is the S8 tension, a parameter defined as:

S8 = σ8

√
Ωm

0.3
(11)

The quantity σ8 is the parameter σ defined in Equ.21, evaluated on a radius of r = 8h/Mpc. It
measures the amount of clustering of matter on 8h/Mpc spheres predicted from the linear theory.
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This parameterization of S8 was introduced to break the degeneracy between σ8 and Ωm. The
degeneracy is caused by the incapability of weak lensing measurements to distinguish between a
very clumpy Universe which has little matter density and a very smeared out universe which has
a very high matter density, as both these scenarios would produce the same lensing potential. In
Fig.2 one can see the discrepancy between measurements of high redshift probes at the top of the
plot and all the low redshift probes at the bottom. A clear trends appears for very diverse types of
probes.
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Figure 2: The values of S8 for the probes: WL-Weak Lensing, GC-Galaxy Clustering,
CMBL-CMB Lensing, CC-Cosmic Chronometer, RSD- Redshift Space Distortions, source:
[Abdalla and Abellán, 2022]

2.4 Weak Lensing Theory

Since Einstein established his theory of relativity, we know that massive objects bend the space-time
surrounding them and therefore light does not go in "straight" lines but follows geodesics that can
be warped in the vicinity of heavy object. Different lensing phenomena are classified as strong,
micro and weak-lensing. The strong-lensing case is the most telling and the best illustration of the

7



process. Strong-lensing occurs when light from a far placed background object gets distorted by a
massive foreground object placed on its path. The resulting bending of space acts exactly as a lens,
bringing light-rays to the observer which would otherwise have never reached him. The most elegant
illustration of this phenomena are Einstein-rings, shown in Fig.3, where the perfect alignment of a
background source and a foreground lens create a ring the observer on earth can see.

Figure 3: Einstein-ring from a red-galaxy capture by the Hubble telescope, source:NASA

While less photogenic, weak lensing measurements have gained a lot of attention in recent years
as a cosmological test. In this case, the background sources are always galaxies and the lens is
the matter placed between the source and the observer. As we know that dark matter interacts
gravitationally, it will act as a lens if placed in proximity of the path of the light, distorting the
shape of the galaxy. This offers the interesting prospect of producing a dark matter distribution
map on the sky.
In this section we want to review the Cosmic Shear theory presented in [Bartelmann and Schneider, 2001],
as it forms the basis of our modeling pipeline.

In Fig.4 one can see β being the direct angle to the observed system, and Θ the observed angle
which takes into account the deflection by the lens. The distortion of the light is quantified by the
Jacobian matrix:

A =
∂β

∂θ
= (δij −

∂2ψ(θ)

∂θi∂θj
) =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
(12)

with:

• ψ the deflection potential

• κ the dimensionless surface mass density

• γ the shear with γ ≡ γ1 + iγ2

The deflection potential obeys the Poisson equation in two dimensions

∇2ψ = 2κ (13)

The shear is the observable quantity, it is decomposed into a tangential and a cross-component as:
γt = −ℜ[γe−2iφ] and γx = −ℑ[γe−2iφ]. In the weak lensing regime the shear can be understood
as the elliptical deformation of the image, as shown in Fig.5. The tangential and cross-components
are the decomposition of the shear relative to the distortion angle φ.
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Figure 4: Image distortion of a gravitational Lens, source: [Bartelmann and Schneider, 2001]

Figure 5: Distortion of an image in direction φ

The shear produced by the deformation of the light path can not be measured for a single galaxy as
the true galaxy shape is unknown. Instead it is assumed that over a very large number of galaxies
the intrinsic orientations are randomly aligned and that the galaxies close to each other can present
a coherent deformation as their light is lensed by the same structure. This can be quantified by the
correlation functions defined as:

ξ± = ⟨γtγt⟩(θ)± ⟨γxγx⟩(θ) (14)
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where θ is called the separation vector and represents the angle between two galaxies.
Now that we have some understanding of the observable quantity, we need to understand how it
can be used as a cosmological probe.

In the cosmological theory, a key prediction is the evolution of the inhomogeneities in time. These
are quantified by the power spectrum P (k) defined as:

⟨δ̃(k⃗)δ̃(k⃗′)⟩ = (2π)3P (k)δ3(k⃗ − k⃗′) (15)

where δ(x⃗) gives the deviation of the field from a mean in position space, and δ̃(k⃗) is the Fourier
transform of that deviation. The power spectrum has been measured by a variety of probes at
different scales which are presented in fig6.

Figure 6: The matter power spectrum measured by different methods, source: [Niemi, 2011]

In a weak lensing photometric survey, the goal is to measure the shape of a large number of galaxies,
in the order of millions, with only an approximate information on their distance. The challenge is
then to measure an initially 3-dimensional quantity (the power spectrum), using limited information
on the distance along the line-of-sight.
We consider two bent light rays that reach an observer as presented in Fig.7. From the lensing
formalism we get a lensing potential ϕ, related to the newtonian potential Φ via:
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ψ(Θ, w) =
2

c2

∫ χ

0
dχ′ fκ(χ− χ′)fκ(χ

′)

fκ(χ)

∂2

∂xi∂xj
Φ(fκ(χ

′)Θ, χ′) (16)

Here fκ represents the comoving angular diameter distance. This allows to express the Jacobi matrix
from the lensing diformation as: Aij = δij − ∂i∂jψ
The surface density κ is related to the lensing potential via κ = ∇2ψ/2 and for a matter distribution

Figure 7: Two light rays originating at distance χ with a lens at χ′, ϕ is a Bardeen gravitational
potential, source: [Kilbinger, 2015]

along the line of sight we can find:

κ(Θ) =
2H2

0Ωm

2c2

∫ χlim

0

dχ

a(χ)
q(χ)fκ(χ)δ(fκ(χ)Θ, χ) (17)

where q(χ) is the lens efficiency. The cosmological quantities Ωm, H0, a and δ therefore play a
role here due to the 3-D Poisson equation of the newtonian gravitational potential Φ in comoving
coordinates:

∇2Φ =
3H2

0Ωm

2a
δ (18)

We can use the Fourier transform of the correlation to obtain the convergence power spectrum Pκ,
which is the central quantity in cosmic shear measurements. The variable giving the separation of
the correlation is the multipole moment ℓ approximately given by ℓ ∼ 2π/θ with θ the separation
angle in the sky. The Fourier transform therefore is:

⟨κ̃(ℓ)κ̃∗(ℓ′)⟩ = (2π)2δD(ℓ− ℓ′)Pκ(ℓ) (19)

The 2-dimensionsal convergence power spectrum can finally be related to the 3-dimensional matter
power spectrum via the Limber equation, using particular weight functions gi(Θ) =

∫
dχqi(χ)δ(fκ(χ)Θ, χ).

This weighting comes from [Limber, 1953] where it was used to compute the distribution of extra-
galactic nebulae. It encodes the fact that the 2D projection of a 3D random field (projection along
the line of sight) still represents the realization of an isotropic random field.
Therefore the convergence power spectra can be expressed as:

Pκ(ℓ) =
9H4

0Ω
2
m

4c4

∫ χlim

0
dχ
g2(χ)

a2(χ)
Pδ(k =

ℓ

fκ(χ)
, χ) (20)
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While one could believe that this quantity is sensitive to H0, due to the power 4, a change in H0

would only rescale the angular diameter distance and the mass density, which would have little
impact on the shear correlation functions, for a detailed discussion see [Hall, 2021].
While cosmic shear is not sensitive to H0 it is particularly sensitive to Ωm,0 and to the clumpiness
of matter represented by the parameter σ8: the variance of the density contrast field over a radius
of 8Mpc. This parameter gives the integral of the linear power spectrum with a top hat-function
W (kR) in Fourier space.

σ2(R) =

∫ ∞

0

dk

k

k3P (k)

2π2
|W (kR)|2 (21)

where the value of R = 8Mpc/h has been historically chosen for σ8 to be close to unity. As the
integration runs over all k’s it is often seen as a normalization of the matter power spectrum at
present time. For a given cosmological scenario there is a direct mapping with another parameter
As that we will introduce in Sec.3.2, but we can already note that the correspondence between As

and σ8 depends on the considered cosmological scenario as the first one gives the normalization at
initial time, while the latter gives the normalization today.
Cosmic shear measurements can be modeled from the Non-linear matter power spectrum using the
Limber approximation, which will be the main objective of our modeling pipeline.

2.5 A right handed neutrino in the Electro-Weak Standard Model of Particle
Physics

For the hot/warm component of our mixed dark matter model, our preferred candidate is the
Dodelson-Widrow (DW) sterile neutrino, presented in [Dodelson and Widrow, 1994]. The DW neu-
trino is a right-handed sterile neutrino. It therefore forms a natural extension of the Standard Model
of particle physics. In the Electro-Weak Standard Model of particle physics, the left-handed neu-
trino is massless, which we know to be incorrect from oscillation experiments [Fisher et al., 1999].
In the Standard Model the lepton masses are produced by Yukawa coupling with the Higgs Field.
The necessity to produce masses via Yukawa coupling is due to the fact that a Majorana or Dirac
mass term would break SU(2) gauge invariance for a particle which is an SU(2) doublet, such as
the left handed leptons. The Lagrangian term of the Yukawa coupling is given by:

LY uk = −v + η√
2

∑
i=1

3ml,i(l̄
i
Ll

i
r + h.c.) (22)

where the Higgs doublet is expanded around its vacuum expectation value v and expressed in the
unitary gauge:

ϕ =
1√
2

(
0

v + η

)
(23)

and ml,i is the mass of the lepton flavor i and is expressed ml,i =
λl
iv√
2

The right-handed neutrino is not an anomaly in the Standard model, it is simply sterile which means
it has 0 quantum number in all gauge groups:
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νl el νr er
I3 1

2 −1
2 0 0

Q 0 -1 0 -1
Y -1 -1 0 -2

Table 1: Quantum Numbers for the Electro-Weak Standard Model

With the quantum numbers:

• I3 the third component of the Isospin I, which gives the transformation in the gauge group SU(2)L

• Y the hypercharge which gives the transformation in the gauge group U(1)Y

• Q which is not a quantum number of the standard model, but the conventional electric charge
expressed Q = I3 + Y/2, which gives the transformation for U(1)E.M.

2.6 Sterile neutrinos in cosmology

From Tab.1 it is clear that the right-handed neutrino is sterile under SU(2)L×U(1)Y transformations
and a Majorana mass term for νr will therefore not break any gauge invariance.
This lead Dodelson Widrow to propose for their sterile neutrino candidate:

L = µ

(
ϕ

v

)
ν̄LνR +Mνrνr + h.c (24)

In this Lagrangian only one generation of leptons is considered for simplicity, µ is the Yukawa
mass of the left-handed neutrino called active neutrino and the right-handed neutrino called sterile
neutrino who has both the Yukawa mass µ and a Dirac mass M . In the seesaw model M ≫ µ.
At tree level, the right-handed neutrino is produced through mixing with the active neutrino, the
Boltzmann equation for the sterile neutrino is:(

∂

∂t
−HE

∂

∂E

)
fs(E, t) =

(
1

2
sin2[2θm(E, t)]Γ(E, t)

)
fA(E, t) (25)

The parameter sin2(2θm) is the mixing angle between active and sterile neutrinos. Here fs and
fa represent the distribution functions of the active and sterile neutrino. This is a very important
quantity as one can infer the density of a species i through:

ni = 2

∫
d3p

fi
2π2

(26)

In previous efforts, a normal assumption was that the sterile neutrino would constitute the totality
of dark matter. As this scenario is not favored by observations due to the way structure seems to
be forming in accordance with the cold dark matter scenario, it is interesting to investigate if a
fraction of dark matter is warm/hot.
From Fig.8 one can see that the entirety of the parameter space has been excluded by astrophysical
observations. We are therefore probing the grey band below where Ωsn < ΩDM but at masses
smaller than those probed in this parameter space.
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Figure 8: Exclusion plot for sterile neutrino from [Schneider, 2016]: The brown exclusion zone comes
from Milky-Way satellite counts, the green and yellow zones are excluded by Lyman α observation,
the shaded region comes from X-ray constraints. The red line indicates a signal coming from a
7.1keV unidentified spectral line of galaxy clusters

The considered warm/hot dark matter candidate which makes up a fraction of the dark matter is
characterized by its impact on structure formation. As explained in [Acero and Lesgourgues, 2009],
there are multiple proposed hot dark matter models that present degenerate cosmological signatures.
The equivalent models can be mapped to one another through their impact on the 3 parameters
[∆Neff , ωs, ⟨vs⟩]. We will first present these parameters in detail, then the values for our main
candidate the Dodelson-Widrow sterile neutrino and finally see conversions to the other equivalent
models.

Neff :The effective number of neutrino species Neff is a parameterization dating back to the 1980’s
where it was unclear from accelerator physics how many neutrino species existed. Today the number
of neutrino species is well established to be 3 (νe, νµ, ντ). Therefore Neff quantifies the relativistic
effective degrees of freedom populating the universe:

ρR = ργ

(
1 +

7

8

(
4

11

)4/3

Neff

)
(27)

The factor 4
11 comes from the neutrinos decoupling before photons, which stay in equilibrium longer

due to there interactions with the protons and electrons. The number Neff coming from neutrinos
has been quite precisely calculated to be 3.0440 ± 0.0002 according to [Bennett et al., 2021]. The
small deviation from 3 comes from the fact that decoupling is not instantaneous. The measurement
of Neff today is quite restrictive, with [Planck col. et al., 2020] measuring: Neff = 2.99±0.17 . For
a comparison of results between different likelihoods see: [Henrot-Versillé et al., 2019]. With this
rather stringent bounds it is quite clear that from cosmological considerations, a fourth neutrino in a
mass range similar to its 3 cousins is discarded, as its contribution to Neff would be too large. Nev-
ertheless a lot of particle physics predictions which go beyond the standard model would contribute
to Neff , as for example the QCD axion, the QCD Majoron or light fermions. Recently, measure-
ments of Neff have come under scrutiny as they could help to alleviate the Hubble tension as done
in [Nunes and Bonilla, 2018], who combine CMB and Large scale structure measurements which
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indicate a departure from Neff given as ∆Neff = 0.614±0.26. Any supplementary source of radia-
tion at electron-positron annihilation would produce a contribution ∆Neff = Neff−Neff,SMneutrino.

Our sterile neutrino candidate with a phase-space distribution f(p) contributes a supplementary
source of dark radiation :

∆Neff =
ρrels

ρν
=

1
π2

∫
dp p3f(p)

7
8
π2

15T
i
νd

4
(28)

The contribution of our sterile Neutrino to ∆Neff in our probed parameter space is shown in Fig.10.
The id superscript on Tν stands for the instantaneous decoupling limit, which is a reasonable ap-
proximation to take.
The phase space distribution is an important thermodynamical quantity representing how the mo-
menta of the particles are distributed. For a fermion in equilibrium, or equivalently a thermalized
fermion, the phase space distribution is a Fermi-Dirac distribution.

f(p) =
1

e(ϵi−µ)/T + 1
(29)

with ϵi the energy of a particle and µ the chemical potential.
ωs: the current energy density of the additional massive free-streaming particle ωs can be related
to the phase space distribution: .

ωs = Ωsh
2 =

(
m

π2

∫
dp p2f(p)

)
h2

ρ0c
(30)

With ρ0c the critical density today. It is interesting that there is a dependence between ωs and m
which is not necessarily surprising, as the heavier our additional massive particle is, the greater
its energy density will be. Furthermore, while here we consider the energy density at present
times, which should be constant in time up to background evolution, in more complex models with
interactions the respective energy densities can change with time.
⟨vs⟩: finally the parameter⟨vs⟩ which is particularly linked to structure formation, is the average
velocity of the particles today. The quantity is related to the free-streaming length presented in
Equ.9 and indicates the scale at which structure formation (quantified by the power spectrum) is
suppressed.

⟨vs⟩ =
∫
p2dp p

mf(p)∫
p2dp f(p)

=
7

8

π2

15

(
4

11

)4/3 T 4
CMBh

2

ρc

∆Neff

ωs
= 5.618× 10−6∆Neff

ωs
(31)

From this equation it is clear that the 3 physical parameters only give rise to two degrees of freedom,
which in our model are captured by [mwdm, fwdm].

In our parameterization, the phase-space distribution of our sterile neutrino is scaled with χ to give
the correct energy density, we therefore have:

f(p) =
χ

ep/Tν + 1
(32)

Which means the temperature of our sterile neutrino follows the temperature of the active neutrino.
For the three parameters which dictate the behavior of our model according to [Acero and Lesgourgues, 2009]:

∆Neff = χωs =
ms

94.05eV
χ⟨vs⟩ =

0.5283meV

ms
(33)
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While we used this sterile neutrino mass in our calculation of the linear power spectrum, we had to
convert from the thermal mass for the use of the non-linear emulator and the comparison to other
works. To convert we use the formula in equation (6) of [Schneider, 2012] :

m(νs) = 3.90keV
(mthermal

1keV

)1.294(fwdmΩDMh
2

0.1225

)−1/3

(34)
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Figure 9: The modification in σ8 in the selected mixed dark matter parameter space
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Figure 10: The modification ∆Neff in the selected mixed dark matter parameter space

2.7 Equivalent parameterization

In the thermal mass picture the temperature of the sterile particle decouples from that of the active
particle T act

ν ̸= Tsterile. The particle distribution function is therefore:

f(p) =
1

ep/Ts + 1
(35)

And the previously described phenomenological parameters in the Thermal mass case are:

∆Neff =

(
Tsterile
T act
ν

)4

; ωs =
ms

94.05eV

(
Tsterile
T act
ν

)3

; ⟨vs⟩ =
0.5283meV

ms

(
Tsterile
T act
ν

)
(36)

The two parametrizations we presented are both fully thermalized and follow Fermi-Dirac particle
distribution functions. Non-thermally produced species can present very similar phenomenological
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signatures as shown in [Bhattacharya et al., 2021].

3 Observations

3.1 The Kilo Degree Survey

We use the gold sample of weak lensing and photometric redshift measurements from the fourth data
release of the Kilo-Degree Survey ([Kuijken et al., 2019], [Wright et al., 2020] , [Hildebrandt et al., 2020],
[Giblin et al., 2021]), hereafter referred to as KiDS-1000. Cosmological parameter constraints from
KiDS-1000 have been presented in [Asgari et al., 2021] (cosmic shear), [Heymans et al., 2021] (3x2pt)
and [Tröster et al., 2021] (beyond ΛCDM), with the methodology presented in [Joachimi et al., 2021].
The Kilo Degree Survey is, as its name suggests, a photometric survey of 1000-degrees, therefore
covering 1/42th of the sky, recorded in the southern hemisphere using the Very Large Telescope.
The data gathering took place from 2011 to 2019. The survey’s goal was to produce images of
galaxies using 4 successive color filters: ultraviolet, green, red, infrared (u, g, r, i). The goal of
the color filters is to give an estimate of the distance at which the galaxies are located by getting
the spectrum of each galaxy and assigning a distance based on how the galaxy’s spectrum seems
redshifted. The golden standard for distance estimation is the use of spectrometry where absorp-
tions lines of different elements allow a precise determination of the redshift, but these require more
precise observations which take more time to make in a wide-sky survey. Spectroscopic surveys are
used by the KiDS team in the case of overlapping sky-coverage for calibration purposes.

Fig.11 gives a representation of the sky coverage with the VLT in the foreground. The colors in the
map represent the dark matter density as inferred from the cosmic shear signal.
The KiDS-survey is shallower then other surveys like the CFHTLens or UNIONS, with ranges in
redshift z ∈ [0.1; 1.25], but it covers a wider portion of the sky while having high resolution allowing
to accurately determine the galaxy shapes. The redshift distribution of the KiDS survey is presented
in Fig.28. To model the KiDS-1000 data we follow the methodology laid out in [Asgari et al., 2021].
We present our exact methodology in section 4.1
Our goal is to model the angular power spectra C(ℓ) and compare it to the data published in the
mentioned paper. This allows us to estimate a log-likelihood:

L(θtheo|p) = −1

2
((θtheo − θdata)

T Cov −1(θtheo − θdata)) (37)

with θtheo our prediction vector and p the priors.
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Figure 11: The dark matter map produced by KiDS in the night sky, source:KiDS

3.2 The Cosmic Microwave Background

As the evolution of the universe was debated between a static state and one in expansion, the cosmic
microwave background provided the most conclusive evidence for the Big-Bang theory. Up to this
day it remains our most precise observation to constrain cosmological scenarios. The physical prin-
ciple is as follows: while the Universe was in a hot and dense state, space was opaque to photons.
This means that photons could not travel very far before colliding into atoms or electrons and being
absorbed and reemited. After 300 000 years, the Universe had cooled down enough due to its expan-
sion to become transparent and the photons which were initially trapped in the primordial "soup"
suddenly started free-streaming. The photons reach us form all directions of the sky indicating that
the whole universe shared a single initial state. The photons one detects in a Cosmic Microwave
Background measurement have therefore been travelling to us for 14 billion years. The temper-
ature spectrum they produce is a black-body with a temperature TCMB = 2.72548 ± 0.00057K
[Fixsen, 2009].
Beyond the homogeneous Black-body spectrum, the cosmological information is encoded in the
anisotropies of the temperature and polarisation map, the temperature map (which is a 2D projec-
tion of the whole sky) is presented in Fig.12. The departure from TCMB are of the order 10−4 and
yet they are very rich in cosmological information.

For our cosmological prediction we model the temperature anisotropies Θγ = δT/T̄ which follow a
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Figure 12: The CMB map of temperature anisotropies, source: Planck collaboration

set of Boltzmann equations. The correlation of the temperature can form a spectrum:

⟨Θγℓ((η, k⃗)Θ
∗
γl((η, k⃗

′)⟩ = 2π2

k3
PR(k)[Θγℓ((η, k)]

2δ3(k⃗ − k⃗′) (38)

Where η stands for a conformal time and the initial power spectrum is:

PR(k) = As(k/k0)
ns−1 (39)

The constant k0 is the pivot scale, As is the primordial amplitude and ns the initial tilt. The two
last parameters are free parameters in our analysis while k0 is fixed.
The observed C(ℓ)’s are produced by decomposing the sky map of temperature into spherical har-
monics. The modeling of the angular correlation function is then:

C(ℓ) =
1

2π2

∫
dk

k
[Θγℓ(η0, k)]

2PR(k) (40)

To obtain the predictions we use the CLASS module presented in [Lesgourgues and Tram, 2011a]
and [Lesgourgues and Tram, 2011b] and retrieve the lensed CTT (ℓ), CTE(ℓ), CEE(ℓ) where E indi-
cates the E-polarization of the photons and TE is the Temperature-E-polarization cross-correlation.
The effect on the linear theory of a warm dark matter species is described in [Ma and Bertschinger, 1995].
One parameter which we require in our analysis is the optical depth τ . The optical depth comes
from free electrons generated during reionization which scatter and damp CMB anisotropies, pro-
ducing a suppression for ℓ > 10 of e2τ . It is given by:

τ = nH(0)cσT

∫ zmax

0
dz
nreione (z)

nH(z)

(1 + z)2

H(z)
(41)

with:

• σT the Thomson cross section
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• nH(z) the total number of hydrogen nuclei

• nreione the number density of free electrons of free electrons from reionization

• zmax a redshift chosen to be sure that all scattering is taken into account ∼ 50

4 Modeling tools

4.1 Intrinsic Alignment

A key assumption in cosmic shear measurements is that the the orientation of intrinsic ellipticities
of galaxies is random, so that a statistical alignment observed in neighbouring galaxies can be
attributed to cosmic shear. It appeared clearly in the 2000’s that while this picture is not wrong,
there was a serious caveat to be introduced which was coined "Intrinsic Alignment". Intrinsic
Alignment, as its name indicates, is the alignment of neighbouring galaxies due to Tidal Forces
coming from the structure in which they formed. The structures producing an Intrinsic Alignment
can be filaments, halos or the border of voids as represented in the pictures Fig.13, Fig.14 and Fig.15.
While the Intrinsic Alignment signal can contain a lot of physical information on the formation and
configuration of structure, it is treated as a systematic error, which has to be taken into account in
the modeling of the signal.

Figure 13: The galaxies in red are subject to forces that make them point towards the structure (in
green), this is the Intrinsic-Intrinsic component of the signal, which results in a positive correlation of
the alignments. The Galaxy-Galaxy signal is due to the distortion of the light of the blue galaxies by
the structure, which produces a positive correlation in the alignment. Finally the Intrinsic-Galaxy
component is the anti-correlation between the red galaxy "pointing" towards the structure, while the
light of the blue galaxy is compressed tangentially by the structure. source: [Joachimi et al., 2015]

For a review of different modeling approaches of Intrinsic Alignment see [Krause et al., 2016] or
[Jagvaral et al., 2022] for an astrophysical subtle distinction. Here we used the strategy of [Hildebrandt et al., 2017],
with the decomposition as in Equ.(1) from [Heymans et al., 2021]:

C(ij)
ϵ,ϵ (ℓ) = C

(ij)
G,G(ℓ) + C

(ij)
G,I (ℓ) + C

(ij)
I,G (ℓ) + C

(ij)
I,I (ℓ) (42)
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Figure 14: Intrinsic Alignment in a cluster, satellite galaxies tend to point towards the center of the
cluster, source: [Joachimi et al., 2015]

Figure 15: The filament (in green) produces an alignment as galaxies around it will be subject to
its tidal forces, source: [Joachimi et al., 2015]

The ij subscript denote the correlation between two redshift bins. The G and I stand respectively
for "Galaxy" and "Intrinsic". The GG term is the one carrying the cosmological information, as
it represents the correlation due to lensing distortions from the matter field. The II term is the
correlation coming from the alignment of two galaxies with the structure, in the case of Fig.13 it is
the alignment of the two red galaxies that point towards the bulk of the halo. This contribution is
positive as it will have a tendency to correlate the alignment of galaxies.
The IG term on the other hand gives a negative contribution to the C(ℓ), it models the anti-
correlation coming from the alignment of a galaxy with the halo which is perpendicular to the
lensing of the light produced by the halo. In Fig.13 it can be understood by the fact that the light
of the blue galaxy gets most strongly distorted along its minor axis which is perpendicular to the

22



alignment of the red galaxy with the halo center.
The weight of the GI, IG and II terms are modelled using:

F (z) = −AIAC1ρcrit
Ωm

D+(z)

(
1 + z

1 + z0

)η ( L̄

L0

)β

(43)

The parameters are:

• AIA the Amplitude of the Instrinsic alignement

• C1 a constant factor to fit simulations

• D+(z) the linear growth factor

• L the luminosity and L0 a pivot luminosity

This formula takes into account the Tidal Forces acting on galaxies in haloes as presented in
[Hirata and Seljak, 2010]). We would like to give a brief outline of the origin of this formula.
When placed in a field with a newtonian potential Ψp, the tidal force in the {x, y} plane produces
the mean ellipticity presented in [Catelan et al., 2001]:

ϵ+ = C(∂2x − ∂2y)Ψp , ϵ× = 2C∂x∂yΨp (44)

One takes the second derivatives as it changes the shape of the galaxy, while the first derivative
g⃗ = ∇Ψp only shifts the galaxy uniformly. The modification of the shape is presented in Fig.16. It
is interesting to note that this deformation acts both on halos and galaxies. Higher order derivative
terms are neglected.

Figure 16: (a) represents the elongation of a halo, (b) shows a compression of the halo from tidal
forces

In [Hirata and Seljak, 2010] the intrinsic shear of the galaxy is therefore:

γI = − C1

4πG
(∇2

x −∇2
y, 2∇x∇y)S[Ψp] (45)
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Where S is a smoothing filter which cuts-off fluctuations on galactic scales.
The primordial gravitational potential in Fourier space can be written:

Ψp(k) = −4πG
ρ̄(z)

D̄(z)
a2k−2δlin(k) (46)

It is this linear evolution of the gravitational potential which allows for the simple form of this mod-
eling. Taking the correlation function of the intrinsic shear is what produces the F 2(z) contribution
in CI,I(ℓ) and the presence of the growth factor, the matter density and the multiplication by the
linear or non-linear matter power spectrum. As the corellation function are in Fourier space the
derivatives become simple factors of k.
In our analysis we use AIA as the free parameter and fix η = 0 and β = 0 in accordance with
[Hildebrandt et al., 2017]. We fit AIA using:

CI,G(ℓ), CG,I(ℓ) ∝ F (z) ; CG,G(ℓ) ∝ F (z)2 (47)

Which should appear clearly from the discussion above.
We plotted the contribution of the different components in Fig.17 using a standard cosmology.
From the figure it appears clearly that the Intrinsic-Intrinsic contributions are quite small, while
the Galaxy-Intrinsic contribution has an impact, in particular in the low-redshift bins where the
tidal field has an effect on the bending of the light as well as the distortion of the foreground lens
galaxy.
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Figure 17: The decompostion of the angular power spectrum in GG,GI, II and the KiDS-1000 data
points

In this work we only model the E-modes contributions to the angular power-spectrum. The difference
between E and B-modes are analogous to the Electromagnetical divergence and curl. The difference
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between E-mode and B-mode distributions of galaxies in the sky is presented in Fig.18. The B-mode
contributions to the C(ℓ) is theoretically 0, and therefore represents an interesting test to determine
the presence of unaccounted systematic errors in the cosmic shear correlation functions.

Figure 18: The E and B modes in distributions of galaxies

4.2 N-body simulations

When studying the formation of the Universe and the Large Scale Structure, the main tool to ac-
count for gravitational interactions producing a departure from linear perturbation theory has been
the use of N-body code simulations. These codes simulate the clustering of very large particles that
are only subject to Newtonian gravitational forces in an expanding space-time. They are used to ac-
count for the modification of the power spectrum coming from the gravitational interaction of matter
and the resulting formation of structure in the matter-dominated era. The gravitational effect in the
cold dark matter paradigm produces an excess in the power spectrum starting at k ∼ 0.1h/Mpc and
going down to smaller scales. The use of simulations is therefore an expensive but precise method
to get a prediction of the observed correlation functions on smaller scales. While these simulations
are numerically and computationally very involved we can lay-out their functioning structure.
I) As an input the user has to provide a Transfer function, referred to as T (k) coming from the
linear theory which gives the amount of clustering at the starting redshift, which is in the matter-
dominated era and can broadly go from zini = 100 to zini = 5. The velocities of the particles must
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be non-relativistic at zini.
II) The particles are initialized according to the transfer function to match the clustering described
by the linear Transfer function. The particles are provided with peculiar initial velocities calcu-
lated using Lagrangian Perturbation theory at first or second order. These velocities reflect local
gravitational flow and are distinct from the thermal velocities vtherm ∼ ⟨p⟩/m ∼ T/m which are
particularly relevant for light dark matter particles.
III) The particles are then evolved forward step by step with the gravitational force either calculated
between two close particles or between a particle and the center of a cell in which the masses of the
particles have been summed over for particles that are further away. Note that different N-body
code algorithms are mainly distinguished by the way the cells are partitioned and averaged over.
IV) The positions of the particles are then updated based on their new velocity resultant of the
gravitational acceleration they received. The underlying space is not a constant frozen lattice but
it evolves based on the specified cosmology, which is referred to as the "background evolution".
V) When the desired redshift of the observation has been reached, the power spectrum can be
quite easily computed by producing a distribution of the distance between particles. Note that the
particles in a N-body simulation have a mass of the order 109 solar masses and therefore represent
a cluster of stars or a large dark matter quantity.
The N-body codes therefore allow to understand the increase of the non-linear power spectrum in
smaller ranges due to the gravitational clumping of matter. By considering that all matter only in-
teracts gravitationaly, the physical picture is simplified as the electromagnetic interaction of baryons
and the different astrophysical process they produce are unaccounted for.

4.3 Baryonification and the Baryonic Emulator

To correct for the effect of baryons on the simulation, a lot of effort has been devoted in recent
time, using hydrodynamical simulations to get a better quantification of the induced suppresions.
One approach developed in Teyssier and Schneider [Schneider and Teyssier, 2015] has been the
baryonification process.
In this framework the particles in N-body simulations are slightly shifted in their final position to
match a corrected halo profile. The correction is physically motivated to contain the ejection of gas
by Active Galactic Nuclei (AGN) and stellar feedback.
The standard halo profile is the dark matter only case:

ρdmo(r) = ρnfw(r) + ρ̄bg (48)

where NFW stands Navarro-Frenk-White profile, which is a very commonly used halo profile de-
scribing the density of matter at a given radius of the halo, and ρ̄bg is the background density which
has not collapsed to form halos yet.
The corrected final profile given by the baryonic correction model is:

ρbcdm(r) = frdmyrdm(r) + fbgas(M)ybgas(r) + fegas(M)yegas(r) + fcgal(M)ycgal(r) + ρ̄bg (49)

where the contributions to the halo-profile have been decomposed in:

• rdm the relaxed dark matter

• bgas the gas bound in the halo, in hydrostatic equilibrium

• egas the expelled gas due to ejection from any feedback process
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• cgal the stellar component of the central galaxy

The yi represent the individual normalized profile, fi the corresponding fractions and M is the
enclosed mass.
This method is very interesting as it is computationally cheap to slightly modify N-body codes
outputs to contain baryonic effects, compared to the running of a full hydrodynamical simulation.
When modeling our data, we want to vary the different contributions from the baryonic parameters,
to constrain them and accurately model our power-spectrum on the smaller scales.
Unfortunately we can not run an N-body simulation for each set of parameters, as that would be
computationally too expensive and we therefore need an efficient tool to extract the corrections
corresponding to our choice of parameters.
To that end we use an emulator [Giri and Schneider, 2021], which was built to model the suppression
of the baryonic corrected dark matter profiles using 7 parameters. These parameters modify the
shape of the profiles contributing to the baryonic correction model . In particular the profile for the
central galaxy:

ρcga(r) =
fcga(M)

4π3/3Rhr2
exp

[
−
(

r

2Rh

)2
]

(50)

and the gas profile:

ρgas(r) ∝
[Ωb/Ωm − fstar(M)][

1 + 10( r
rvir

)
]β

(M)
[
1 + ( r

θejrvir
)γ
] δ−β(M)

γ

(51)

with β having the Halo mass dependence:

β(Mc, µ) =
3(M/Mc)

µ

1 + (M/Mc)µ
(52)

Therefore these profiles have 7 physical parameters that can be finetuned with:

• (log10Mc, µ, θej , γ, δ) give the shape of the gas profiles from Equ.51 and Equ.52

• (η, ηδ) give the stellar abundance in the satellite galaxies and central galaxies respectively.

• fb = Ωb/Ωm gives the ratio between baryonic matter and total matter

The model has been tested to accurately reproduce the suppression from baryons in hydrodynamical
simulations. In Fig.19 are plotted angular power spectra for arbitrary choices of baryonic param-
eters. While the modifications induced by the baryonic correction models seem similar to those
coming from a mixed dark matter scenario, their redshift dependence is the opposite with the bary-
onic corrections getting stronger as redshift lowers while the Mixed dark matter effects get smoothed
out. Deeper surveys going to higher redshifts should therefore be very efficient to uncorrelate these
effects.
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Figure 19: suppression in the angular cosmic shear C(ℓ) from randomly selected baryonic parameters

4.4 Mixed dark matter emulator

In the linear theory, the perturbations have been worked out during the second half of the XXth cen-
tury. For a full review which includes hot dark matter we refer the reader to [Ma and Bertschinger, 1995].
The non-linear modification in the mixed dark matter scenario can not be computed analytically
and therefore need to be estimated using previously described N-body simulations. To predict sup-
pression in the non-linear-power spectrum from mixed dark matter we use the emulator presented
in [Parimbelli et al., 2021] which is a central part of this work and we will therefore describe it in
detail.
This emulator is built upon a suit of simulations which samples the {fwdm,mwdm} parameter space.
The simulations use a Transfer function input at z = 99, which as explained in section 4.2 produces
a starting position of the N-body simulation which matches the linear theory. The transfer functions
generated with CLASS are the only difference between the simulations. The initial conditions are
produced using second-order Lagrangian perturbation theory. Once the simulations have been run,
a Principal Component Analysis is used to reduce the problem to twenty dimensions. A Gaussian
Process Regression is then applied to predict the suppression in the power spectrum.
The emulator is trained using 60 simulations (yellow in Fig.20), a few simulations are reserved to
test the extrapolation capacity of the emulator. The idea is that any parameter-combination in a
reasonable proximity to a training point can be predicted using the emulator. The suppression in
the non-linear power spectrum for different masses and fractions are presented in Fig.21 and Fig.22
for redshifts 3 and 0 respectively. Note that we imposed the correction to always be below 1 as we
took the bump at smaller k to be caused by unphysical resolution effects.
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The effect on the C(ℓ)’s of different masses and fractions is shown in Fig.23 and Fig.24
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Figure 20: The training points for the emulator of [Parimbelli et al., 2021] in yellow and the fitting
function of [Kamada et al., 2016] in blue
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Figure 21: The suppression in the non-linear power spectrum from Mixed Dark matter with respect
to the ΛCDM non linear power sepctrum at z=3,k in h/Mpc
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Figure 22: The suppression in the non-linear power spectrum from mixed dark matter with respect
to the ΛCDM non linear power spectrum at z=0, k in h/Mpc
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Figure 23: The suppression in the angular spectrum from mixed dark matter with mwdm = 0.05keV
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Figure 24: The suppression in the angular spectrum from mixed Dark matter with mwdm = 0.1keV
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4.5 Comparison to a fitting function

We did not run any simulations as a test to determine the accuracy of the emulator independently
but we could compare the emulator to a previously computed fitting function. The principle of
the fitting function is to sample a similar parameter space, but instead of doing a gaussian process
regression, the power spectrum suppression is predicted using a physically motivated fitting function
with parameters tuned to match a few simulations in the desired parameter space. The fitting
function is presented in [Kamada et al., 2016].

10 1 100 101

k (1/Mpc)

100

3 × 10 1

4 × 10 1

6 × 10 1

 P
M

D
M
/P

CD
M

Non-Linear MDM emulator (-.-),Fitting function (--)

fwdm=0.751 mwdm=0.101keV
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Figure 25: comparing the fitting function and emulator at values on which the emulator has been
trained

For the fitting function, we define the quantity:

rwarm(fwdm) = 1− exp

(
−a

f bwdm

1− f cwdm

)
(53)

This new quantity contains the parameters a, b, c which are the free parameters fitted to match the
simulations.
We also need a damping scale associated to the free streaming scale:

kd(mwdm, z) = 388.8h/Mpc(
mwdm

keV
)2.207D(z)1.583 (54)

Which is rescaled with f−5/6
wdm in accordance with the Jeans length, which means k′d = kd/f

−5/6
wdm .

We can finally bring all these elements together to get the non-linear suppression in the power
spectrum :

Pnl,MDM

Pnl,ΛCDM
= (1− rwdm) +

rwdm

(1 + k/k′d)
0.7411

(55)

We present in Fig.25 the match or mismatch between the emulator approach and the fitting-function
approach.
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4.6 Monte-Carlo-Markov-Chains

To model the signal we construct a pipeline to reconstruct the data points as they are given by the
KiDS-1000 and the Planck-18 measurements. In our model we use parameters that can be varied
to change each effect. We allow these parameters to vary inside bounds called priors. The prior can
be "top-hat" which means we are agnostic about where in the allowed range the best fit value lies,
or "gaussian" where a preferred value is indicated with a gaussian spreading.
The Monte-Carlo-Markov chain generates a random walk over the parameter space. The goal is to
draw samples {Θi} to understand the posterior probability density, using the prior and the likelihood
function:

p(Θ, α|D) =
1

Z
p(Θ, α)p(D|Θ, α) (56)

Z is a normalization we do not need to compute as we can probe the relative change in the likelihood.
The prior p(Θ, α) is explained above and the likelihood p(D|Θ, α) is what is calculated on every-step
(in fact we evaluate the log-likelihood) to probe the correspondence between the sample and the
data. The variables Θ and α are to be understood as model parameters and nuisance parameters
respectively.
To obtain the posterior, a chain is run according to the Metropolis-Hastings algorithm, which accepts
or rejects each step according to the likelihood and the use of a randomly varying threshold. The
initiation of the parameters of the chain is random and we therefore discard an initial fraction of the
chain, typically between 20 and 50% as they probe parameter points that are not included in our
final steady distribution. To run the chains we use the module emcee [Foreman-Mackey et al., 2013].

5 Analysis

5.1 Pipeline of the KiDS-1000 Data

As described in section 3.1 our goal is to model the Angular-power spectra retrieved from [Asgari et al., 2021],
using the mixed dark matter theory.
An overview of the pipeline is given in Fig.26.
For the modeling of the cosmic shear signal we start by calculating the linear power spectrum Plin(k)
using CLASS, with the parameters {ωm, AS} being varied by the Monte-Carlo Markov-Chain with
priors described in 2. The other main cosmological parameters are fixed to the Planck18 values
[Planck col. et al., 2020], in particular: Ωb = 0.049, ns = 0.966, Neff = 3.046. We model a massive
neutrino with a fixed mass mν = 0.06eV . The energy density of the massive Neutrino is given by:

Ων =
mν

93.14eV ∗ h2
(57)

Therefore Ωdm = Ωm − Ωb − Ωnu and ΩΛ = 1 −
∑

iΩi is matched by CLASS to guarantee a flat
Universe.
We then use the revised-halofit fitting function from [Takahashi et al., 2012] which was calibrated to
give the non-linear correction to an input Linear Power spectrum for a range of cosmic parameters.
In the Halofit model the power spectrum is split in two terms: the one and two halo terms. The
two Halo term represents the clustering due to interactions between halos and therefore dominates
at larger scale, while the one halo term describes clustering inside a halo and therefore dominates
on smaller sales.
Now that we have Pnl,ΛCDM we can apply the baryonic and mixed dark matter corrections as
described in part 3.3 and 3.4 part respectively. For the baryonic parameters we let {ηd, θj , log10(Mc)}
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Figure 26: The main blocks of or analysis pipeline

be varied by the chain, while we fix:

µ = 0.7, ν = 0, γ = 2, δ = 5, η = 0.25 (58)

Finally we update Ωb/Ωm in accordance with the choice of parameters of the iteration. Note that
the baryonic correction is computed on the whole redshift range:z ∈ {0; 1.5}
For the correction due to mixed dark matter we use the emulator which is also computed on the
whole redshift range. It is shown in the paper [Parimbelli et al., 2021] that baryonic effets and
mixed dark matter suppression can be treated independently (section 3.4.). We show in section 5.3
that this is the case as naryonic parameters are constrained to the same values in ΛCDM and MDM
scenarios.
Once the non-linear matter power spectrum Pnl has been computed, it needs to be shaped into an
angular power spectrum C(ℓ) as this is the cosmic shear observable. To do this we use the publicly
available PyCosmo code described in [Refregier et al., 2017] and [Tarsitano et al., 2020].
We start by retrieving the publicly available galaxy redshift distributions from [Asgari et al., 2021],
represented in Fig.28. As explained in section 3.1, this distributions are not spectrometrically
evaluated but are based on the spectrum of the galaxies through the different band-filters. These
redshift bins ni(z) are then used to compute the weight functions:

Wγ(a) =
3

2
Ωm(

H0

c
)2
χ(a)

a

∫ amax

amin

das
a2s

n(as)
χ(as)− χ(a))

χ(a)
(59)

The weight function is slightly more complicated in a curved space.time as fκ(χ) = χ is only valid
in a flat space-time, which is the only case we consider in this work. The values amin and amax are
the scale factors we chose for our integration. In agreement with the KiDS-data we chose a redshift
vector z ∈ [0.01, 1.5] corresponding to a scale factor vector a ∈ [0.4, 0.99].
Once the weight functions are established, everything can be brought together through the Limber
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parameter prior range
ωm [0.44,0.404]

log(1010As) [0.,4.3]
AIA [-2,2]

log10(Mc) [11.,15.]
θj [4.,6.]
ηδ [0.05,0.4]
fwdm [0.,1.]

log10(1/Mwdm) [-0.17,2]

Table 2: The top-hat priors used in the KiDS-1000 analysis (the parameters above the horizontal
are for the ΛCDM case)

equation described in sect 2.4:

C
(ij)
G,G =

∫
da Wγ,iWγ,jPnon−lin(

ℓ

χ
, a) (60)

Note that this is the Galaxy-Galaxy contribution of the signal, the total signal being composed
of the Galaxy-Galaxy, Galaxy-Intrinsic and Intrinsic-Intrinsic signals as explained in sect 4.1 and
shown in Fig.17. The decomposition is:

C(ij)
ϵ,ϵ (ℓ) = C

(ij)
G,G(ℓ) + C

(ij)
G,I (ℓ) + C

(ij)
I,G (ℓ) + C

(ij)
I,I (ℓ) (61)

Now that we have a full angular power-spectrum prediction CEE(ℓ), we need to account for mode
mixing to be fully consistent with [Asgari et al., 2021], which is presented in equation (12) of the
aforementioned paper:

CE,l =
1

2Nl

∫ ∞

0
dℓℓ[W l

EE(ℓ)CEE(ℓ) +W l
EB(ℓ)CBB(ℓ)] (62)

The B-modes are discarded in our analysis as explained in sect 4.1. The normalization Nl is
calculated for the band powers to trace the centers of the angular power spectra bin, and is defined
by:

Nl = ln(ℓup,l)− ln(ℓlo,l) (63)

where up and low refer to the upper and lower angular Fourier scale (ℓ) of the bin l. The win-
dow functions W l

EE(ℓ) which accounts for mode mixing in the 8 l bins are extracted from the
paper [Joachimi et al., 2021] and represented in Fig.27. Once the integration of Equ.62 is per-
formed, we can finally compute the log-likelihood using the covariance matrix which is publicly
available in [Asgari et al., 2021]. For details on how the covariance matrix has been obtained see
[Joachimi et al., 2021]
The results of the Monte-Carlo-Markov-Chain are presented in part 5.3
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Figure 28: The redshift distribution of the galaxy density in the 5 redshift bins

5.2 Analysis of Planck 18 TTTEEE spectrum

To analyse constraints coming from the Planck 18 dataset we use the Planck-lity-py likelihood
presented in [Prince and Dunkley, 2019]. We use the TTTEEE Spectrum with low-ℓ bins. The T
stands for Temperature, which is giving by the energy/wavelength of the photon, while E is the
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parameter range
ωm [0.44,0.404]

log(1010As) [0.,4.3]
ωb [0.01,0.03]
ns [0.8,1.3]
τ [0.03,0.08],−1

2
(τ−0.0544)2

0.0072

h [0.5,0.9]
fwdm [0.,1.]

log10(1/Mwdm) [-0.17,2]

Table 3: The priors used in the Planck-18 TTTEEE analysis (the parameters above the horizontal
are for the ΛCDM case), the prior for τ is a log-gaussian centered on the Planck18 value, all others
are “top-hat"

E-mode polarization which is created by Thomson scattering. Including the low ℓ region means
including the range ℓ ∈ [2; 30] while the high ℓ’s are ℓ ∈ [30; 2508]. The power spectra are generated
using CLASS and the spectra are lensed, as the effects due to lensing have not been subtracted in
the data points. To include our mixed dark matter scenario we provide CLASS with Ωncdm which is
the energy density of non-cold dark matter today and mncdm which is calculated as mν,s according
to the conversion in Equ.34. The other parameters varied in the chain are h, τ, ns, As,Ωm, ωb which
are respectively defined in Equ.6, Equ.41, Equ.39 and Equ.5. The priors are shown in tab.3. From
Fig.29 to Fig.34 you can see the effects of mixed dark matter in the different power spectra. The
grey bands indicate the uncertainties from in the Planck-18 data.
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Figure 29: The TT spectrum for mwdm = 0.01 keV and various fractions fwdm
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Figure 30: The TE spectrum for mwdm = 0.01 keV and various fractions fwdm

39



0 250 500 750 1000 1250 1500 1750 2000

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

C
EE l,m

dm

1e 11 m=0.01keV
0.0
0.1
0.3
0.5
0.8
1.0

0 250 500 750 1000 1250 1500 1750 2000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

C
EE l,w

dm
Cl

EE fid
uc

/C
EE l,f

id
uc

m=0.01keV

0.0
0.1
0.3
0.5
0.8
1.0

Figure 31: The EE spectrum for mwdm = 0.01 keV and various fractions fwdm
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Figure 32: The TT spectrum for mwdm = 0.05 keV and various fractions fwdm
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Figure 33: The TE spectrum for mwdm = 0.05 keV and various fractions fwdm
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Figure 34: The EE spectrum for mwdm = 0.05 keV and various fractions fwdm
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5.3 Analysis Results

To make sure that our analysis can be trusted we first run a ΛCDM scenario and compare it to
the fiducial analysis made by the respective collaborations to gain confidence in our results. While
perfect overlap is not necessary nor expected as the analysis choices and free-running parameters
are different, there still needs to be a reasonable proximity in the two analysis. One can see from
Fig.35 that the overlap in our implementation is very good compared with the full results from
[Planck col. et al., 2020]. As expected from [Prince and Dunkley, 2019] the agreement is worst in
the τ parameter despite the implementation of a gaussian-prior.

Regarding the analysis of the KiDS-1000 cosmic shear data the agreement is slightly less precise
but still allows for high-confidence in our analysis results. The agreement is particularly strong on
the AIA parameter which shows that we used the same model modelling for Intrinsic Alignment as
in [Asgari et al., 2021]. Our contours allow for slightly higher values of Ωm (and therefore lower σ8)
but from the Ωm − σ8 plot it is clear that the overlap of the "banana" shape is very good, which
translates into excellent agreement in the S8 parameter. The "thinner" appearance of our "banana"
is likely due to the fixing of h and ns to Planck18 values in our analysis and the omission of nuisance
parameters the KiDS analysis included for redshift bin shifts.
Now that we are confident in our analysis we can include the mixed dark matter model and probe
if any degeneracies appear.
From Fig.37 it appears clearly that the main cosmological parameters perfectly overlap, while only
the σ8 (and by correlation S8) parameters go to lower values due to suppression of the linear matter
power spectrum from the warm dark matter components allowed by the Planck only analysis.
The lower values of σ8 can be attributed to the small mwdm values as can clearly be seen in the
log10(1/mwdm)− σ8 plot in Fig.37 from the downturn starting at log10(1/mwdm) ∼ 1 −→ mwdm =
0.1keV.
We now turn our attention to the MDM analysis of the KiDS-1000 data presented in Fig.38. In
this plot we observe an excellent superposition in all parameters between the ΛCDM and mixed
dark Matter scenarios. As we will see in section 5.4 the constraints on the mixed dark matter are
stronger in the KiDS-1000 analysis than in the Planck-18 TTTEEE analysis.
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Figure 38: Our Monte-Carlo Markov Chain results of the KiDS-1000 cosmic shear signal comparing
the MDM and ΛCDM scenarios
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5.4 Mixed Dark Matter Constraints

The preferred region in the [mwdm, fwdm] plane are shown in Fig.39. For a pure WDM scenario
(no cold dark matter, fwdm = 1) the bayesian 95% confidence limit is mwdm > 0.095keV for the
Planck analysis and mwdm > 0.23keV in the KiDS analyisis. In the sterile neutrino conversion this
translates to mnus > 0.19keV and mwdm > 0.59keV respectively.
In the mixed dark matter scenario the idea is that along the fwdm = 0 axes and for the highest
thermal mass axes we tend to retrieve the ΛCDM scenario. When fwdm = 0 this is trivial as the
entirety of dark matter is cold. Regarding the mass, the higher it is, the smaller the free-streaming
scale and therefore the smaller the suppression scale. While a 1.5keV mass particle still produces a
suppression in the power spectrum, it does not appear at scales relevant for cosmic shear measure-
ments and is therefore indistinguishable from a ΛCDM case in cosmic shear observations.
We can compare our limits to figure 8 in [Schneider et al., 2020]. A similar analysis to this work was
carried out using baryonic parameters and the non-linear MDM corrections were included via the
fitting function from [Kamada et al., 2016], which produces slightly stronger suppresions as shown
in fig25. The analysis was carried out on a Euclid-type mock catalog and the constrains are there-
fore stronger due to the smaller error bars from the wider and more precise survey. The stated
limit for a pure WDM cosmology for weak-lensing only measurements is mwdm > 300eV which is
as expected better then the limit of this work mwdm > 230eV . For mwdm = 30eV this work can
exclude fwdm > 0.12 while the forecast analysis can reject fwdm > 0.04 for mwdm = 30eV . This
agreement shows both the consistency of our analysis and the importance of future surveys like
Euclid to strengthen these bounds.
While it followed a very different analysis choice, our results can also be compared to [Das et al., 2021].
In this work an analysis was carried out using the Planck 18 TTTEEE spectrum, various BAO mea-
surements, the growth function fσ8(z) of galaxy samples, the Pantheon SNIa catalogue and weak
lensing measurements were included through a split-normal likelihood on S8. The combination
favored msp=27.49 eV and χ = 0.03 corresponding to:

ωs =
ms

94.05eV
χ =

27.49eV

94.05eV
0.03 = 0.0087 =⇒ fwdm =

ωwdm

ωdm
=

0.0087

0.12
= 0.073 (64)

where ωdm = 0.12 is the dark matter energy density from Planck18 constraint. This sterile neutrino
mass therefore corresponds to mthermal = 11eV which is just at the limit of our analysis, and in
conformity with the [Das et al., 2021] analysis disfavored by Planck 18 TTTEEE measurements
alone. This combination value fwdm = 0.073,mwdm = 11eV seems just disfavored at the 2σ limit in
our KiDS-1000 analysis as can be read of in 39. It is nevertheless important to distinguish the two
analysis as the parameters and prior ranges used for the modelisation are different. Our analysis
allows for two degrees of freedom (energy density and mass) which retrieves the ΛCDM scenario in
the high-mass/low fwdm limit, while the analysis in [Das et al., 2021] varies [∆Neff ,mν ] which has
the consequence of putting the ΛCDM limit in the low-mass/low ∆Neff limit.
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Figure 39: The constraints for the parameters mwdm and fwdm in the ΛMDM scenario

5.5 Impact on S8 tension

The preferred region in the [Ωm, S8] plane are shown in Fig.39. We note that the tension between
the ΛCDM contours in violet for Planck-18 and dark-blue of our KiDS-1000 ΛCDM analysis are
in agreement with the contours shown in Fig.6 of [Asgari et al., 2021]. The MDM contours seem
to be in slightly better agreement, mostly due to the lowering of the S8 value in the Planck anal-
ysis. To evaluate the modification of the tension we use the tensionmeter module described in
[Raveri and Doux, 2021]. In this estimation of the tension we do not account for the fact that using
additional parameters might have the result of broadening the contours due to the new degrees of
freedom.
To assess the tension between the contours we calculate the parameter shifts presented in Appendix
B. This shift is given by ∆θ = θ1 − θ2 where θ are the driving parameters and the indices refer to
the two sets to be compared. Once the parameter difference is obtained the probability of the shift
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is assessed by:

∆ =

∫
P(∆θ)>P(0)

P(∆θ)d∆θ (65)

which is the posterior in dissacordance with the no-shift contour ∆θ = 0.
Using this methodology we find a shift of σΛCDM=2.409 for the ΛCDM scenario and σMDM=1.855
for the mixed dark matter scenario.
To get an idea of the inclusion of Lyman-α measurements we select all points with fwdm < 0.2
which are crudely allowed by Lyman-α measurements. With this scenario the probability in shift
is σfwdm<0.2 =2.052. This reduction in tension is interesting while not strongly significant but was
obtained without the combined analysis of datasets.
For an interesting conceptual discussion of the combination of cosmological probes see [Massimi, 2021].
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Figure 40: The constraints for the parameters S8,σ8 and Ωm

6 Conclusion

In this work we probed the effects of a dark matter composed of a warm/hot part and a cold part
on cosmic shear measurements and on the main Cosmic-Microwave Background observables. The
concept of warm/hot matter is related to structure formation phenomenology and finds multiple
particle physics candidates. We used the sterile neutrino formalism and derived constraints form
the Planck 18 TTTEEE spectra. We also used a newly developed emulator to obtain the non-linear
response from the mixed dark matter scenario, producing an accurate non-linear power spectrum
we probed with the KiDS-1000 cosmic shear measurements. While not competitive with Lyman-α
constraints, we derive an lower-limit mwdm > 95eV from Planck18 measurements and mwdm >
230eV from the analysis of the KiDS-1000 cosmic shear data. We find that no scenario with
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fwdm < 0.1 can be excluded, consistent with Lyman-α constraints.
We evaluated the impact of our analysis on the S8-tension and found that it can alleviate the tension
from 2.409σ to 1.855σ. This is due to the suppression in the linear power spectrum produced by
low mass particles in the k-values 0.1 < k < 2h/Mpc which are selected by the top-hat in the σ8
computation.
When excluding all points with fwdm ≥ 0.2, in lose accordance with Lyman-α measurements, the
S8-tension is of 2.052σ
In the future we hope that more advanced probes like the Euclid mission or LSST will be capable
of improving these limits through more precise cosmic-shear measurements.
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A Appendix: The case of an additional massless component

In Section 2.7 we discussed the importance of Neff and more precisely ∆Neff to quantify an ad-
ditional source of relativistic particles. While its impact on the linear perturbation theory is well
understood, we wanted to test if its effects are well described by non-linear corrections to the power
spectrum, as this is a parameter which is usually discarded when the emulators or fitting functions
are calibrated. To test the good incorporation we ran N-Body simulations using the publicly avail-
able Pkdgrav3 [Potter et al., 2016] starting at z=49 with transfer functions computed with CLASS
to test how the non-linear matter power spectrum reacts to a modification in Neff . We ran different
box sizes and number of particles to test the convergence of our simulations and to make sure that
no finite-size effects were introduced by our box choice.
Once we retrieved the power spectrum of the simulation, we calculated the non-linear correction us-
ing different methods which are regularly used in the literature: [Mead et al., 2016], [Mead et al., 2021],
[Takahashi et al., 2012], [Euclid col. et al., 2020] We plotted the corrections for Neff = 3.246 and
Neff = 3.446. From figure Fig.41 we see that the non-linear prescriptions make a good job at
capturing the change of Neff .
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Figure 41: Comparison of non-linear prescriptions to capture ∆Neff

To compute the transfer functions here we fixed ωm, ωb and h while varying Neff . The difficulty
as explained in [Lesgourgues et al., 2013] section 6.1.3, is that this has an effect on the redshift of
equality between radiation and matter which Planck-18 estimated to it be zeq = 3411 ± 48. The
relation between zeq and Neff is:

zeq =
ωm

ωγ [1 + 0.2271Neff ]
(66)

59



or equivalently:

[1 + 0.2271Neff ] =
ωb(1 + ωb/ωc)

zeqωγ
(67)

with ωγ and ωc the photon and cold dark matter energy densities respectively.
When fixing the energy densities we get:

zeq = 3410 for Neff = 3.046
zeq = 3321 for Neff = 3.246
zeq = 3236 for Neff = 3.446

while if we fix zeq and ωb/ωc we can use a transformation:

(ωc, ωb, h) −→ ([αωc + (α− 1)ωb], ωb,
√
αh) (68)

With α = [1 + 0.2271Neff ]. For our choice of parameters this gives the parameters:

h = 0.675, ωb = 0.0220, ωcdm = 0.1204 for Neff = 3.046
h = 0.684, ωb = 0.0220, ωcdm = 0.1242 for Neff = 3.246
h = 0.693 ,ωb = 0.0220, ωcdm = 0.1280 for Neff = 3.446

On the Linear levels the resulting power spectra have very different appearances as can be seen in
Fig.42, Fig.43, Fig.44 and Fig.45. We only calculated the non-linear response for the scenario in
which zeq varies and the other parameters are kept fixed.
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Figure 42: Ratio of matter power spectra for different ∆Neff , with zeq fixed and different ωcdm
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Figure 43: Angular power spectra for different ∆Neff , with zeq fixed and different ωcdm
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Figure 44: Ratio of matter power spectra for different ∆Neff , with different zeq and ωcdm fixed
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Figure 45: Angular power spectra for different ∆Neff , with different zeq and ωcdm fixed
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B Appendix: The parameter distances in Ωm, σ8, S8
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Figure 46: The parameter shift in ΛCDM
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Figure 47: The parameter shift in MDM
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