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Abstract

We study the variational problem of the Einstein-Hilbert action for spacetime manifolds with
boundaries. In order to make the problem well-posed, the Einstein-Hilbert action must be
supplied with a counter-term. We derive the counter-terms for non-null boundaries, known as
the Gibbons-Hawking-York boundary term, and for null-like boundaries, recently discovered
by K. Parattu et al. [8]. Then, using the tetrad formulation of the Einstein-Hilbert action,
we show that both boundary terms can be derived with less effort. Furthermore, we study
the teleparallel and symmetric teleparallel formulations of general relativity which have the
advantage of already incorporate the boundary term. We compare these three equivalent
descriptions of general relativity, which differ only in the boundary term, calculating the
Euclidean action of a Schwarzschild black hole. At last, we use this result to compute the
entropy of a Schwarzschild black hole as S. Hawking first did in 1977 [9].
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1 INTRODUCTION

1 Introduction

The starting point of any field theory is the action principle. The action for general relativity
was first introduced by D. Hilbert in 1915 [1] and it is known as the Einstein-Hilbert (EH)
action

N T 1.1
g | dtav=aR. (1)
The variation of this functional with respect to the dynamical variable, i.e. the metric g, ,
is responsible to deliver the Einstein field equations in vacuum.

In contrast to classical field theories, e.g. electromagnetism, the Einstein-Hilbert action
contains second order derivatives of the dynamical variable. The second order derivatives of
the metric make their appearance in the boundary term when varying the action. Hilbert,
in his original paper, argued that by fixing the metric at infinity the boundary term vanishes
and it does not contribute to the variation of the action [2] [3]. However, when we are dealing
with spacetime manifolds with boundaries, this term cannot be ignored, otherwise one will
implicitly assume boundary conditions which will overdetermine the theory [4].

The standard solution to this problem is to correct the Einstein-Hilbert action by adding
a counter-term which fixes a variable on the boundary. This term is by no mean unique
but it can be defined in ways which are more convenient than others. The fact that the
variational principle of general relativity is not a well-posed problem was already brought up
by Einstein [5]. In his paper, Einstein proposes to correct the EH action with a counter-term
which is not covariant [6] and therefore does not solve the problem.

The most-popular covariant counter-term to the EH action is the Gibbons-Hawking-York
boundary term [7], explicitly derived in section 2.2. The covariance is achieved by introducing
a new variable normal to the boundary surface in addition to the metric. The GHY counter-
term is applicable only to non-null boundaries. In section 2.3 we derive a counter-term for
null boundaries which was recently discovered by K. Parattu et al. [8]. Then, in section
2.4, we introduce the tetrad formalism and use the tetrad description of general relativity to
derive both boundary terms.

A different approach to this problem requires the introduction of alternative spacetime
geometries of general relativity. In sections 3.3 and 3.4 we show that the teleparallel action
of Weitzenbock spacetime and the symmetric teleparallel action of symmetric teleparallel
spacetime, which differ from the conventional general relativity by a divergence term, already
incorporate the boundary term. Teleparallel general relativity achieves this result describing
the effects of gravity through the torsion and not by the curvature of spacetime, while in
symmetric telerallel spacetime both the torsion and curvature of spacetime vanish and the
effects of gravity are described by the non-metricity tensor.

At last, in section 4 we compare these different formulations of general relativity and their
boundary terms computing the Euclidean action of a Schwarzschild black hole. We then use
this result to calculate the entropy of the black hole as first done by Stephen Hawking [9].

The convention we are going to use, if not stated otherwise, for the Riemann tensor is

R =T, 5 —T%%, + 50, = T3, (1.2)

j2%

SEH =

where the Greek indices run from 0 to 3. Furthermore, the lower case Latin indices run from 1
to 3, the metric has signature (—, +, +, +) and from now on we will set c=G = h = kg = 1.




2 BOUNDARY TERMS OF E.-H. ACTION

2 The boundary terms of the Einstein-Hilbert action

2.1 Overview

In this section we study the variational problem of the Einstein-Hilbert action for spacetime
manifolds with boundaries. First of all, in section 2.2, we explicitly derive the Gibbons-
Hawking-York counter-term through the variation of the EH action. Second, in section 2.3,
we derive the counter-term to the EH action for null-like boundaries. At last, in section 2.4,
we use the tetrad formalism to show that both boundary terms can be derived with less
effort from the tetrad Einstein-Hilbert action.

2.2 Gibbons-Hawking-York counter-term
2.2.1 Introduction

Standard textbooks do not provide an explicit derivation of the Gibbons-Hawking-York
(GHY) boundary term, see for example E. Poisson [10], T. Padmanabhan [11] and S. Hawk-
ing [7] where they directly list the result and show that its variation compensates the bound-
ary term in the variation of the Einstein-Hilbert action. This makes the result somewhat
mysterious because it is not obvious and one should also know a priori that the induced
metric hqp has to be held fix on the boundary rather than the full metric g, .

After a short overview of the mathematics, we explicitly derive the GHY boundary term
following the steps presented in T. Padmanabhan’s paper [12]. Our aim is to bring the
variation of the Einstein-Hilbert action in the following form

0Sgn = / d*x (Equation of Motion Term) é(Dynamical Variable) (2.1)
M
+ / d*x (Conjugate Momentum) ¢(Variables to be fixed) (2.2)
oM
+ / d*x §(Boundary Term) + / d*x (Total Divergence Term), (2.3)
oM oM

from which we will be able to read out the new variable to held fix on the boundary along
with the dynamical variable. Note that doing so, we have to pay attention to the degrees of
freedom of the theory and be sure we are not overdetermining the theory. Finally, we will
neglect the divergence term and recover the boundary term.

2.2.2 Mathematical framework

Here we will briefly review the mathematics of non-null hypersurfaces in four-dimensional
spacetime that we will need in the derivation of the GHY boundary term. The contents
presented here can be found in the textbooks of E. Poisson [10] and E. Gourgoulhon [13],
here we will stick to the convention of E. Poisson’s book.

A hypersurface is a three-dimensional submanifold embedded in four-dimensional space-
time manifold. This surface can be either spacelike, timeline or null. The hypersurface ¥ is
described by a scalar function which satisfy

O(2%) =0, (2.4)

9



2 BOUNDARY TERMS OF E.-H. ACTION 2.2 Gibbons-Hawking-York counter-term

or by a parametric equation
% =z%(y?), (2.5)
where y*, with a = 1,2, 3, are coordinates intrinsic to the hypersurface.
Once the restriction ® on the coordinates is defined and if the hypersurface is non-null,
a unit normal vector n, to X can can introduced. We define n, so that n® point in the
direction of increasing @, i.e. n*®, > 0, as follows
ed

== 2.6
! |9W<D,uq)7u‘% ( )

where we defined € to be the square of the hypersurface unit normal, i.e.

i +1 timelike @7)
e=mn,n" = , .
: —1 spacelike

in order to generalize the result to both spacelike and timelike surfaces. Note that n, cannot
be defined for a null surface because g"’® ,® , would be equal to zero.

The three-metric induced on the hypersuface Y is obtained by restricting the line element
to displacements confined to the hypersurface as follows

a B
ds® = gaﬁdx“dxﬂ = Gap (&B dy“) (aidyb) =

dy* dyP (2.8)
= gaseaeydy’dy’ = hady"dy’,
where €& = %”Tz are vectors tangent to curves contained in X, i.e. it holds n,el = 0, and

hap := gagegebﬁ is the induced metric of the hypersurface. Note that h,, transforms as a scalar
under spacetime coordinate transformations z® — 2/* and as a tensor under hypersurface
coordinates transformations y — y°. Furthermore, given the induced metric and the normal
to the hypersurface one can recover the metric according to

Gap = habe‘;e% + engng = hopg + enang . (2.9)

This relation is verified by computing all inner products between n* and €.
Now, using the projector operator

h%g = 0“3 —enng (2.10)

we define the induced covariant derivative on the hypersurface OM as
D,Ag := W',h"3V A, , (2.11)
Do AP = b 0P,V A (2.12)

for any covariant tensor Ag and contravariant tensor A? respectively. We can derive a useful
relation between V, and D, for a vector field u along another vector field v when both
vectors are tangent to the hypersurface 3. We proceed as follows

(Dyu)® = v*Dyu® = v’\h“,\hal,vuu” =v*(6%, —enn, )V, u” =

(2.13)
="V, u” —evtnn,V, u” = o'V, u® + ev'n*u’V n, ,

10



2 BOUNDARY TERMS OF E.-H. ACTION 2.2 Gibbons-Hawking-York counter-term

where in the last equality we used n,u” = 0 to write n,V, ,u”" = —u"V,n,, since n® and ub
are orthogonal. Rearranging the terms of eq. (2.13) we get

Vsu® = Dgu® — en®u”Vgn, , (2.14)
then, if we define a, := n*V,n,, we get the following expression for the divergence of u®
Vou® = Dyu® — ea,u” . (2.15)

We introduce, see Poisson’s book for the proof, the surface element of a non-null hyper-

surface
d¥ = \/|h|d®y, (2.16)

where h = det hy,. Furthermore, the directed surface element that points in the direction of
increasing ® is n,dX and for non-null surfaces we define

dX, = enyd¥. (2.17)

In the next section we will use two important theorem of differential geometry which are
the Gauss’ theorem and the Stokes’ theorem. The first one states that for any vector field A®
defined within a finite region of spacetime manifold M, bounded by a closed hypersurface

OM, the following holds
/ d*z /=g VA :/ ax, A*. (2.18)
M oM

While the second one states that for any antisymmetric tensor field B*? in a three-dimensional
region of the hypersurface ¥, bounded by a closed two-surface 0%, the following holds

1
/dZa V3B = _/ dSas B . (2.19)
b 2 ox

2.2.3 Derivation of the Gibbons-Hawking-York counter-term

We begin with the following well known result given in every standard textbook of general
relativity, see for example the one of E. Poisson [10], to compute the variation of the Einstein-
Hilbert action

16%55EH:/ d4x\/—gGW§g“l’+/ d'z \/—gV, VF =
M M
:/ d4x\/—gGW(59“”+/ d*y e/ |h|n, V" (2.20)
M oM

where V# = g*8§T" 5= go‘“(SFga and we used Gauss’ theorem to get from the first to the second
expression. Here h is the determinant of the induced metric on the boundary surface 9M and
n,, is the unit normal to OM which is normalized, as stated in eq. (2.7), as ¢ = n,n* = +1
corresponding to timelike and spacelike parts of the boundary oM.

To simplify the expression in the second term of eq. (2.20), we use the following relations

§(V,n,) =V, on, — 51“21,71,\ = n,\él“;)l, =V, on, —0(V,n,), (2.21)

11



2 BOUNDARY TERMS OF E.-H. ACTION 2.2 Gibbons-Hawking-York counter-term

(V") =V,én" + (5F5/\n)‘ = n’\(SFﬁj/\ = -V, ont +6(V,n"). (2.22)
We can now simplify the argument in the boundary term as follows
n,V* = g“ﬁnuéf‘gﬁ - naéf‘ga =
= ¢*?(Vadng — 6(Vang)) + Vaon® — §(Van®) =
= Va(g™0ns) — 5(g*°Vang) + 6g°°Vang + Vadn® — §(Van®) =
= Vo (0n® + g*%6ng) — 26(Van®) + Vangdg™ =
= Vaou® — 25(Van®) + Vangdg™® (2.23)

where in the first equality we used the definition of V*#  in the second equality eq. (2.21)
and eq. (2.22), in the third one the identity V,g*® = 0 and in the last one we defined
Su® := 6n® + g*?dng. The vector du® lies on the boundary dM, this can be shown as
follows

I ng = nedn® + non, = §(nny) = 0. (2.24)

We now calculate the first term of eq. (2.23), i.e. the four divergence V,0u®. Since du®
lies on OM, we can use the relation of eq. (2.15) and get

Vo 6u® = Dyou® — cagdu’ (2.25)

where ag = n*V ,ng and D, is the induced covariant derivative on O M defined in eq. (2.12).
The second term in eq. (2.25) can be rewritten using

agdu” = agdn® + a’ong = agnadg™® + a®ong = agnadg®” (2.26)

where we used the definition of u® and the identity a’éng = 0 due to the fact that as and
N, are orthogonal because using eq. (2.6) one can show that on, = C(z*)n, where C(z#) is
a scalar function. Substituting this in eq. (2.25), gets us

V,ou® = Dyou® — 5naa55go‘5. (2.27)
We can now go back to eq. (2.23) and obtain
n,V* = Dy6u® — 26(Van®) + (Vang — engag)dg™ . (2.28)
The quantity that emerged from the calculation turns out to be the extrinsic curvature tensor
K. =Vang —engag, (2.29)
that has the following properties (without proof)
Kog = Kpo, n°Kog =1 Kos =0, K =V,n®. (2.30)

Using eq. (2.9), the second property allows us to write Ka,35g°‘ﬁ = Kagého‘ﬁ and thus

VIR V" = V/|h|Dadu® — 24/|h|6 K + \/|h|Kapdh™® =
= /|h|Daou® — 524/ |h|K) — \/|h|(Khap — Kap)dh™? (2.31)

12



2 BOUNDARY TERMS OF E.-H. ACTION 2.2 Gibbons-Hawking-York counter-term

where we used the well known relation for the variation of the square root of the determinant

of the metric, i.e. 6v/|h| = —3+/|hlhasdh®”.

We can indeed rewrite eq. (2.20) as we anticipated in eq. (2.3) as

167 6Spn = / d*z /—9G ., 09" — / By e/ |h|(Khag — Kaz)0h?
M oM

—/ d*yed(2 |h|K)+/ d*y er/|h|Dadu® . (2.32)
oM oM

At this point one cannot fix all the boundary terms equal to zero, because 12 boundary
conditions will be implicitly chosen: 6 from the A%’ term and 6 from the §(K+/|h|) term,
making the theory overdetermined. Instead, what Gibbons, Hawking and York did was to
fix the induced metric A*? on the boundary and use the boundary term

1
Sany (= —— dye/|h| 2K (2.33)
]_67T OM

as counter-term to correct the Einstein-Hilbert action. Note that by imposing
5hPloa =0 (2.34)
we get the natural boundary conditions
(Khag — Kag)|gp =0, (2.35)

and taking the trace of this expression gets us to K|,,, = 0. Therefore the natural boundary
conditions is equivalent to
Kaglogp = 0. (2.36)

The natural boundary conditions demands that the extrinsic curvature must be zero ev-
erywhere on the boundary surface. Using Stokes’ theorem, the last term in eq. (2.32) can
be converted into a boundary term on the two dimensional boundary 9> M and is usually
ignored. The variational problem becomes well posed because

167 6S = 167 §(Sgm + Scuy) = / d*x V—9Gg"", (2.37)
M

delivers the Einstein field equations. Furthermore, by integrating this result we obtain the
gravitational action for spacetime manifold with non-null boundaries up to a constant of
integration that does not depend on the metric g**, i.e. 45y = 0,

S = Sgn + Sauy + S0 . (2.38)

2.2.4 Making the action physical

In the previous section we derived the gravitational action for spacetime manifolds with
non-null boundaries up to a constant of integration Sy. Here we investigate the meaning of
this term as done by E. Poisson [10] in his book. Note that Sy does not play any physical
contribution to the theory since it cannot affect the equation of motion.

13



2 BOUNDARY TERMS OF E.-H. ACTION 2.2 Gibbons-Hawking-York counter-term

To understand the role of Sy, we will calculate the gravitational action for flat spacetime.
For the time being, let us assume that Sy = 0 and let g,, be a solution of the vacuum
Einstein field equation, thus R = 0 and therefore Sgy = 0, leaving us with

S = SGHY = i d3y5 |h|K (239)

87 Jam

The spacetime manifold can be understood as a collection of foliations, i.e. M = ], 24,

where the slice of the foliation X, ;cr is an hypersurface with the time component constant.

We then choose OM to consist of two hypersurfaces X; with ¢ = const. and a three-cylinder

B with radius r = ry. Keeping in mind that the normal to M must point outwards we
have

OM= (=X, )uUBUY,, (2.40)

where the minus sign in front of ¥;, reminds us to correct the direction of the normal that
point inwards the hypersurface OM. See figure 4.1 on page 47 for a drawing of the spacetime
foliation.

The two hypersurfaces of constant time are defined by ® = t — t; where ¢« = 1,2 and
their induced metric can be read out from their line element ds? = dx? + dy? + dz?. The
unit normal has components n, = €9, = (—1,0,0,0) since ¢ = —1 and the trace of the
extrinsic curvature tensor trivially vanish K = 0 because all Christoffel symbols vanish.

The three-cylinder is defined by ¥ = r — ry and the induced metric h,p is given by the
line element ds? = —dt? + r2dQ? where we used spherical coordinates. One can then easily
find \/W = rZsinf. The unit normal has components n,, = €9,V = (0,1,0,0) where e = +1
and we recover

o-/1nl

K =V, =9n'+Thn* =Thn" =

r=rg

1
Vil
_ TE (2.41)

1 9 .
= sin@aﬁ sin 6

r=rQ

We then have

1 to 27 s 2
S=— d? hK =— dt d dOrisinf@= = ro(ty — t 2.42
sw | eV = o [Car [Cdo [Caprgane = nta -, a2

which diverges when the spacial boundary is pushed at infinity, i.e. rg — oo.

We have therefore shown that the gravitational action of a flat spacetime is infinite even
when the spacetime manifold M is bounded by two hypersurfaces of constant time. This
problem is there also when the spacetime is curved [10], making the gravitational action not
a well-defined quantity for asymptotically-flat spacetimes.

We can solve this problem defining Sy to be equal to the gravitational action of flat
spacetime

1
So = ——/ d?’yev |h|K0, (243)
8T Jorm

where K is the extrinsic curature of OM embedded in flat spacetime. The minus sign in
eq. (2.43) makes the quantity Sgry + S for 7o — oo well-defined.

14



2 BOUNDARY TERMS OF E.-H. ACTION 2.3 Counter-term for null boundaries

2.3 Counter-term for null boundaries
2.3.1 Introduction

In the previous section we showed that the addition of the Gibbons-Hawking-York counter-
term to the Einstein-Hilbert action makes the variational problem of general relativity well-
posed. This result cannot be directly generalized to null boundaries because the normal to
a null surface has zero norm and the three metric on a null surface is degenerate.

There are two possible ways to solve this problem. One possible approach would be to
treat the null surface as the limit of a sequence of non-null surfaces. For example, one could
perform the calculations on a timelike surface infinitesimally separated from the null surface
and then take the limit. A more elegant approach would be to develop a procedure that is
based on the properties of the null surface. For the non-null case, we obtain directly from the
variational principle itself what to fix on the boundary. It is therefore desirable to develop a
procedure that tell us what to fix on the non-null boundary to make the variational problem
well-posed and not the other way around.

Recently, K. Parattu et al. [8] published the derivation of the counter-term for null
boundaries starting from the variation of the Einstein-Hilbert action. After introducing
the mathematical tools required for this derivation, we follow Parattu’s approach as done
in appendix G of [8] where he derives the counter-term for a general normal vector to the
null-surface.

2.3.2 Mathematical framework

The unit normal to the null surface cannot be defined as we did for non-null surfaces because
the normal to the null surface has a zero norm which makes the definition (2.6) undefined.
We go around this problem defining the normal on the null-surface as

lo = AD, (2.44)

where @ is the scalar function that describe the null-surface and A # 0 is an arbitrary
normalization scalar factor which may depend on the metric. Note that the choice of [* is
not unique because A is not unique, unlike in the non-null case.

The second problem we are faceting when we try to generalize the non-null procedure is
that the induced metric on a null surface is degenerate, what follows highlights this problem.
One may try to use a definition analogous to the non-null case to define the induced metric

haﬁ = Gap — lalﬂ ) (245)

but we run against a problem, namely, this metric is degenerate making it not well-defined.
To see this, we can try to project (* onto the null-surface and see that it does not vanish:
hopl® = lg — €l®l,lg = I3 # 0 where we used [“l, = 0 on the null surface. Since there is
no straightforward extension of the non-null induced metric to the null one, we should dig
deeper and find another way around this problem.

Luckily for us this problem was first solved by B. Carter [7]. We are going to follow his
steps but we stick to the convention of K. Parattu such that the results found here can be

15



2 BOUNDARY TERMS OF E.-H. ACTION 2.3 Counter-term for null boundaries

used in the derivation of the counter-term. What is usually done is to introduce an auxiliary
vector k% such that [,k* = —1 holds everywhere.

Our first guess to find a projector to the null surface with the newly introduced auxiliary
vector k% is

% = 6% + k%l (2.46)

which satisfies the projector condition I1%4I17 = 1%, and, in contrast to eq. (2.45), we have
141, = 0, but we still have T1°50% = [ # 0. Also note that since I3 = gap + kals is not
symmetric, it cannot be the induced metric we are looking for. We can easily define a new
object which satisfy the symmetry condition, namely

Gap = Gap T kalg + lakﬁ = Hag -+ lakg . (2.47)
We now demand that the projector ¢®g = I1%5 4 [“kg satisfies the projection condition
¢°5q°y = 5T, + TI%40P ke, + 19k T1, + ksl = g% + 1ksd®, = ¢°5 (2.48)
which requires [*kgq”., = 0 and this is equivalent to
ksq”, = ky + kgkPl, —k, =0 & kgk” =0, (2.49)

which means we need £ to be a null vector. Note that the projector ¢*s has the properties
to project on the space orthogonal to (%, i.e. the null surface, since ¢“gl, = 0 and q“sl° =0
and on the space orthogonal to k%, since ¢®gk, = 0 and ¢®gk® = 0. We are therefore further
projecting the three null surface, orthogonal to (%, onto a two surface orthogonal to k.

We now discuss the coordinate system on the null surface following Parattu’s notation.
As stated in Parattu’s paper: any set of three continuous, infinitely differentiable functions,
y® = (y', 52, 4®) of the spacetime coordinates x® constitutes a system of coordinates on the
null surface if the set of values of these functions at every point on the null surface is unique.
Then, the coordinate basis is the set of three vectors e = gzz. Let the parameter \ vary
smoothly on the null generators such that the displacements along the generators are of the
form dx® = [“d\. Ensuring that \ varies smoothly for displacements across geodesics we
can chose it to be one of the coordinates on the null surface. The other two coordinate are
to be chosen as two smooth functions z# = (2!, 2?) that are constant on each null geodesic.

The basis vectors in the coordinate system y@ = (), 24) is
oz, 0Ox°
R eA P ,
oN’ 0z4
Note that €9 is a vector tangent to the two hypersurface, i.e. [,e§ = 0 and k,ef = 0.

Furthermore, the two linearly independent vectors e} span the two dimensional hypersurface.

We can now express the induced metric hy, = gagegef for a null surface using this coordi-
nate basis. His components are hyy = gasl®l® =0, gra = gaglaeﬁ =0 and qap := gaﬁeje%.

Note that the determinant of the induced metric is zero and the line element is two dimen-

sional
ox® oxP?
2 _ ay.p A B\ _
ds* = gaﬁdl' dz” = gaﬂ(aZAdZ ) (_82’de > =

= QupeSiedzAdzP = qupdzAds® (2.51)

A=1,2. (2.50)

a __
€\ =

16



2 BOUNDARY TERMS OF E.-H. ACTION 2.3 Counter-term for null boundaries

The directed surface element for the null surface, see appendix A.3.4 of Parattu’s paper [§]
for the proof, is
Y, = ﬂlad?’y = \/—alad)\d2z (2.52)
A A
where ¢ is the determinant of the two-matrix g45. Note that E. Poisson [10] uses a different
convention for [* and therefore the result of eq. (2.52) differs by a minus sign with the one
of his book.

In the remaining part of this section we are going to introduce some definitions that are
going to simplify the terms in the derivation of the counter term. The first one we want to
introduce is the second fundamental form ©,p, also known as extrinsic curvature, for the
null surface at any point we have

Ous 1= 11", 11°4V I = ¢"0q’ sV, 1s (2.53)

the proof of the last equality can be found in the appendix A.3.5 of Parattu’s paper [8].
The trace of ©,5 is © = g*?0,5 = ¢*?O,5 and is known as the ezpansion scalar. 1t is the
expansion along [* of the two surface on the null surface orthogonal to k.

Another useful object will be the non-affinity coefficient k. We start by performing the
manipulation of the following quantity

l
1°Volg = 1oV (A05®) = 1L, A + 1AV, V30 =

A
al [e7 lOé @ @ [ ]'
= ZﬂaaAH AV, (Z) = 1°l50a In A+ 1°Vglo — 1"la— Vs A =
1
= (laﬁa In A)lﬁ + §ag(lala) , (2.54)

where in the third equality we have commuted the covariant derivatives and in the last
equality we used [*l, = 0 on the null surface. The second term of eq. (2.54) can be
rewritten using the following relation

Is(1*la) = 95,07 (1°la) = (gpy — kply — Isky)07(1°1a)
= q3, 0" (1%lo) — kpl, 07 (1%1,) — lgk 07 (1%1,)
— k0, (11,15, (2.55)

where in the last equality we used that the first two terms vanish. The first one is zero
because qz,07(1°ls) = q750, (1) = ¢°00(1*1ls) ~ ¢“slo = 0 since only* the component z°
has 0y(1%l,) # 0 and the second term is zero because 1,07(1%l,) is a derivative along the null
surface and there [*l, = 0. We can therefore rewrite eq. (2.54) using the result of eq. (2.55)
as follows

1
19V ol = (zaaa InA— 5/<:787(zala))15. (2.56)

The definition klz := (*V,lz allow us to obtain the following relation for the non-affinity
coefficient

1
K = laﬁa InA— §k78,y(lala) . (257)

4To see this, consider a coordinate system x® = (®,z!, 2%, #®) where the first component describes the
null surface. In such a coordinate system l, = (4,0,0,0) and only the 2° component has d3(1%l,) # 0.
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2 BOUNDARY TERMS OF E.-H. ACTION 2.3 Counter-term for null boundaries

If we now define & := —$k70,(1°l,) = k0,1, then
k—k=10,InA. (2.58)

Finally, we derive a relation between the expansion scalar © and the non-affinity coeffi-
cient x that will be useful later on. The following expression can be rewritten as follows

O+ kK =q"Vals — k'l k=
= ¢"3Val’ — kpg™1°V,l, =
= "3V al® — kpl®V 1P =
= 3V,17, (2.59)
where in the third equality we used V,g"” = 0.

2.3.3 Derivation of the null counter-term

As we did for the non-null counter-term, we start with the well known result
167 0Spy = / d*z /—9G ., 09" —|—/ d'z =gV, VH =
M M
— [ dtov=iGuig [y v, (2.60)
M oM A

where V# = ¢*@ (5Fgﬂ — ga“(SFga. Once again we used Gauss’ theorem to get from the first to
the second expression. Performing the same manipulations on the argument of the boundary
term as we did in the non-null case to arrive at eq. (2.23), we find

LVH = Vo 6u® — 20(Vol*) + Valgdg®” (2.61)
where du® := 01 + g*?§lz. This relation can be rewritten using d/—g = —%\/—ggwég“” as

V=9 1
ngﬂw - Z(,/—_gvaaua — 25(v/=gVul®) + vV=9(Vals — gagv,\l)‘)(Sgaﬁ) L (2.62)

The first thing we want to do is to separate out the surface term from the first term in

eq. (2.62). Using the following relation V 0" = ﬁ@u( |g|v*) to calculate the divergence

of a vector field v*, we obtain

@vaw = %aa(\/—_g&ﬂ) =0, (\/?&ﬂ) — V/=g0u®d, G) : (2.63)

where we can isolate the derivatives along the null-surface from the first term of eq. (2.63).
Using the projector I1%5 given in eq. (2.46), we proceed as follows

0 (V320 ) =0, (V3Tne e’ ) — o (k00 ) =

A A A
=0, <?H“56u6> — @5(%%)@&/& — ﬂkaaa(a(zﬁzﬁ)) =
=0, (gnaﬁéuﬁ) — ?k‘aaa(5(lgl’8)) , (2.64)
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where in the second equality we used lgou” = 1561° + 159761, = 21501° = 6(I5l°) and in the
last one §(l5l°) = 0 on the null-surface. The first term in eq. (2.64) is a surface derivative
on the null surface and the second term contains variation of the derivatives of the metric.
We can further simplify the second term of eq. (2.64) as

— k%0a(6(1517)) = —3(k*0u(lp1?)) + 5k“0u(151°) . (2.65)

Summarizing all these results, the first term of eq. (2.62) becomes

T = (mﬂaﬁ&“ﬁ) = 00 0a1a1)) + YL E0K0a(151°) - V/=gbu*0s <1> _

A A A
_ V"9 o B8 _ V—9a B vV -9 a B8 Ny
+ /= gk®a(151%)5 (;) + L;%wa&(zﬁzﬁ) — /= g6ud, Cl) , (2.66)

where in the second equality we used once again 6,/=g = —3+/=99,,09". Note that all the
variations of the derivatives of the metric are in the first two terms of eq. (2.66), this is true
only if the factor A does not depend on the derivative of the metric.

The second term of eq. (2.62) can be rewritten as

= 259" = ~20( IV 1 2y (%) | (2.67)

We now want to substitute back the terms of eq. (2.66) and eq. (2.67) in eq. (2.62). To
simplify the expression we use the following relation in three different places

k.a
Val® + 5 0u(15l") = 675V al’ + k*15Val® = 1%Vl (2.68)

where we used 0, (150°) = Vo (I5l°) = 15V 1P 4+ 1°V 415 = 213V ,1° and the definition of I1%.
Thus eq. (2.62), the argument of the boundary element on the null surface, becomes

—VA_gzuw _% (—V;gnaﬁ(suﬁ) — 9 (—V;gnawazﬁ)

Y \V ol 1
vV 1
+ Agékaaa<lﬁl5) o /_g(suaaa (Z) ‘ (269)

The second term of eq. (2.69) can be rewritten using the projector ¢*s = II1*3 4 [“kg. Using
eq. (2.59) we get
Q—THO‘BVQZB - 2—VA_9(@ k), (2.70)
where O is the expansion scalar and x the non-affinity coefficient.
As we mentioned in the previous section we have [,[* = 0 on the null surface and we
demand that [ k% = —1 and k,k* = 0 holds everywhere. Since we are interested in surfaces
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2 BOUNDARY TERMS OF E.-H. ACTION 2.3 Counter-term for null boundaries

that stay null during the variation, the relations ¢®°l, = 0 and ¢*’k, = 0 holds even during
the variation, i.e. 6q*%l,ls = 6q°Plo ks = 5¢*Pkoks = 0. We use these relations to simplify
the term g,509°?, which we will use to simplify the third term of eq. (2.69). We proceed as
follows

90309°% = gap(0g°% — 3(k°1%) — 5(1°KP)) = apdq®™® + 2lks0 (k*1°) + 20,k (1°K%) =
= Qap0q™® + 21, ksl" k™ + 2kl k017 = qup0q™" — 20In A — 2ks0l° (2.71)
where in the third equality we used l,ksd(1°k”) = kgd(I1*k®) — kgkP1?5l, = 0 and in the
last equality [,k* = —1, [,0k® = §In A obtained from §(I,k*) = 0 and dl, = [,d In A. Next,

we need to simplify the second term of eq. (2.69), i.e. (Valz)dg®®. To do so, we use the
definition of the induced metric ¢*° as follows

(Valg)dg™ = Valgdq™ — Valgd(k*1°) — Vo6 (1°K?) =
= Valgdq®® — Volgdkl? — Vo lgk®01° — Vo 1561°k" — YV, 151°6k° =
= Valgdq®® — SI°KP (Valg + Vila) — 1PV ol g6k™ — 19V o1g6k° =

1
= Valgdq®® — 51°KP (Vals + Vila) — §agz25kﬂ —Kdln A, (2.72)

where in the last equality we used the definition of the non-affinity coefficient xig := [*V iz
together with §(l,k%) = 0 < [,0k* = —0l,k* = —0In Al,k* = §In A and the short hand
notation $9,1% = 1°V,l5. The first term of eq. (2.72) can be further simplified

Valpdq®® = 6"00" 5V ul,6¢"" =
= (q"0 — k"ly — 1"k0)(¢" 5 — K"15 — 1"kp)V u1,0¢°" =
= (q"a — "ko)(q" — "kp)V ul,6¢™" =
= (¢"aq" sV uly — ¢"ol"ksV ul, — ¢ 1" ko W1, — Pkl kY u1,)0¢ =
= (Onp — %q“akgﬁulz - Kq”gkalu)éqaﬂ =
= ©a50q"" (2.73)

where in the third equality we used [,6¢*® = §(1,q*?) — ¢*6l, = —q¢*1,0In A = 0, in the
fifth one the definitions of ©,5 and & given in eqgs. (2.53) and (2.54), kokzdg®” = 0 and
finally, in the last one, we used knq”sl,0¢*° = kolzdq®® = 0 and q"d,l* = 0 since it is a
derivative on the null surface an there it holds 2 = [,[* = 0. Furthermore, the last two term
of eq. (2.72) can be simplified as follows

2351 Ok —roln A = 28()[ 0" —kdélnA=—-0InA o A +r| =

k0,12

= -6lnA (_ - /@) =—0InA(K + k), (2.74)

where in the first equality we used that only the derivative with respect to the 2% coordinate
is non-zero® on the null surface and in the last one the definition % := —%kaaazﬂ.

®We are using a coordinate system 2% = (®, \, 2!, 22) where the first component describes the null surface.
In this coordinate system I, = (A,0,0,0) and only the component z° has 95(1%l,) # 0.
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2 BOUNDARY TERMS OF E.-H. ACTION 2.3 Counter-term for null boundaries

Putting all these parts together we rewrite the third term of eq. (2.69) as

—VA(V Iy — Gasll"\V,1*)3g = —VA_g (Qapdq™® — 81K (Vals + Vsla) — 61n Ak + 7))
— (0 4 K)(qapdq™® — 20 In A — 2kgd17) . (2.75)

The fourth, fifth and sizth term of eq. (2.69) can also be simplified as follows

1 In A
2\/—gI1° 5V, 175 (Z) _ 250 + 1)’ Z (2.76)
—VA_g(Skaaa(zﬂzﬁ) - —VA_g(—aln A) k9,12 = 2 V/Ig RolnA, (2.77)

1 0 A
—V/—gou"d, (Z) = V=981 + g**6l5) = =

= ?(cﬂ“@a In A+ g* 6130, In A) =

= %(6[“8 InA+1%0,InAdlnA) =

_ %((naaa InA+ (k- F)SInA), (2.78)
where we used eq. (2.59) in the first term, 6k* = —k*0InA and kK = —3k“0,l* in the

second term and in the last one iz = [301In A and eq. (2.58). Finally, we can insert all the
simplified term in eq. (2.69) and obtain

ﬁluvﬂ =0, (ﬁﬂaﬁduﬁ) — 26 (@(@ + /<;)> + ﬂ(@ag — Gus(© + K))5q*”

A A A A
+ —VA <2k (O + k) — k*(Vals + Vsla) + 0 In A) 5l (2.79)
We now write the boundary term using the coordinate system y* = (), z',2?) and the

respective surface element given in eq. (2.52), i.e. @d?’y = ‘/Tad/\d?z, thus

/W dy gzuw = /8M drd*z {aa (\/fnaﬁauﬁ) — 26 (\/75(@ + @)

q a
+ %(@aﬂ — ¢ap(© + K))dq A (2.80)
+ % <2k (O + k) — k*(Vals + Vsla) + 0a In A) W} .

The terms in the first two lines of eq. (2.80) have the same structure as the one of the non-
null case, namely, the first term is the three derivative that is usually ignored, the second
one is the boundary counter-term and the third one is the one we will kill fixing ¢®* on
the boundary. In contrast to the non-null case here we have an extra term with 6/* which
we have to deal with and make sure that we do not overdetermine the theory fixing [* on
the boundary surface. Setting d¢®® = 0 on the boundary fixes 4-1=3 degrees of freedom
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(the minus one account for the symmetry condition ¢.s = ¢s.), while setting 6/* = 0 on
the boundary fixes other 4-1=3 degrees of freedom (the minus one account for the condition
[*l, = 0). These 6 degrees of freedom are compensated by the 6 degrees of freedom of the
counter-term used to correct the Einstein-Hilbert action, namely

1 V=g 1
Sl = d®y QTgHaﬁvazﬁ = —/8 d\d?z 2%(@ + k). (2.81)
M

167 Jouq 167

If we fix the induced metric g,3 and the normal to the null surface [* on the boundary, the
corrected gravitational action gives the following variational problem

16708 = 167T(S(SEH + Snuu) = / d427 vV —gGW(Sg’“’. (2.82)
M

By integrating we conclude that the gravitational action for null surfaces is given up to a
functional Sy, independent of g, as

S == SEH + Snull + S() . (283)

The term Sy plays the same role as the one in the non-null case, namely, it ensures that the
action does not diverges for r — oco. To determinate Sy, one may follows the same procedure
showed in section 2.2.4.
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2 BOUNDARY TERMS OF E.-H. ACTION 2.4 Boundary terms and tetrad formalism

2.4 Boundary terms and the tetrad formalism
2.4.1 Introduction

Recently, following Parattu’s publication, Jubb et al. [14] published a paper discussing the
boundary and corner terms of the action of general relativity. Interesting to us, they showed
a unification for the derivation of spacelike, timelike and null-like boundary terms using
Cartan’s tetrad formalism. As we will see, the use of the tetrad formulation of Einstein’s
theory simplify a lot the derivation of both boundary terms.

After a short introduction of the tetrad formalism, we show the equivalence between
the tetrad Einstein-Hilbert action to the one of the conventional theory. Then, once the
mathematical framework is set up, we follow Jubb’s procedure and elegantly derive both
boundary terms.

2.4.2 The tetrad formalism

Cartan’s tetrad formalism is also known as Einstein’s “vierbein” theory and dates back to
Einstein’s research of the 20s. As a formalism rather than a theory, it does not make any
different prediction but allows to express the relations of general relativity in a useful different
way. It was introduced to represent a relativistic quantum field theory in curved spacetime.
Different authors, in the literature, use different notations which may cause some confusions.
Here we will introduce the tetrad formalism following the convention® of J. Yepez [15].

The conventional approach to general relativity uses the “natural” differential basis,
namely, the tangent space T, at point p is spanned by a set of partial derivatives at that
point

ey =0y, (2.84)

while the cotangent space T); at point p is spanned by a set of differential elements
et = dat | (2.85)

which lie in the direction of the gradient of the coordinates functions. A four-vector A € T,
has components A = Are, = (A% A', A%, A%), while a dual four-vector A € T has compo-
nents A = A,e” = g, AVet. The partial derivatives and the differential elements are inverses
of each others, i.e. e ® e, = 1#,. One is allowed to choose any orthonormal basis to span
T, as long as it has the signature of the manifold one is working on. We can then introduce
a set of basis vectors e, as non-coordinate unit vectors, where we use small Latin letters to
denote the indices, with inner product

(€as€) = Nab , (2.86)

where 1., = diag(—1,1,1,1) is the Minkowski metric of flat spacetime.
The tetrad basis is the orthonormal basis independent of the coordinates. Note that it
is not possible to find a chart that cover the entire curved manifold, but we still can choose

®Yepez’s convention differs from the one of S. Weinberg [3] and N. Straumann [2]. Here the tetrads e, ®
have first the Greek index and second the Latin one. Furthermore, the notation of the covariant derivative
V. differs from the one of Weinberg and Straumann, see eq. (2.94) and the following remark.
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a fixed orthonormal basis independent of the position. We will then express any vector at a
point p as a linear combination of the fixed tetrad basis vectors at that point. Denoting an
element of the tetrad basis by e,, the coordinate basis is expressed in terms of the tetrads
as follows

eu(r) =e,"(x)eq, (2.87)
where the functional components e,*(x) form a 4 x 4 invertible matrix. The tetrads or
vierbeins are the four objects e,* where a = 1,2,3,4. The inverse of the tetrad is e/, and it
allows to write e, = e#qe,. The tetrads satisfy the following identities

elo(z)e,(x) =08, e, (z)e!y(x) = 0y . (2.88)

v )

Furthermore, we can use the metric g,, to induce the product of the tetrad fields and inverse
tetrad fields, as follows

Nab = guu(x)eua(x)eyb(x) s (289)
g (1) = €, (2)e," () ap - (2.90)

One can now form a dual orthonormal basis using a set of one-forms e € T that satisfy
e* ® e, = 1%. Then, the non-coordinate basis can express as linear combination of the
coordinate basis and vice versa

e'(x) = e, (z)e!(x) , e'(x) = elq(x)e. (2.91)

Any vector at any spacetime point can be represented using coordinate and non-coordinate
orthonormal basis

V =Vte, =V,, (2.92)

and its components are V# = e#,V* or V* = ¢,°V*. Note that in general the Greek indices
are raised and lowered by the metric g,,, while the Latin indices are raised and lowered by
the Minkowski metric 74.

In the non-coordinate-based geometry, the affine connection coefficients F;}V are replaced
by the spin connection coefficients w,*,. One finds, see Yepez’s paper [15] for the derivation,
the following relation which express the spin connection in function of the affine connection

a a A Tk A a — A a Aa
wu's = ex"e Ny —etyouen” = —eyDyeN" = —expDye™ (2.93)

where we used Dyg,, = Vg, = 0 in the last equality. This relation can be used to obtain
the tetrad postulate, i.e. V,e,* = 0, multiplying eq. (2.93) by e, and using the identity of
eq. (2.88), we obtain

a b a_ A bk A b a aTk a
wuve,” =egtepe, Ty — epe, 0\ = eI, — dye,

& Ve, =0, — T e + w, et = 0. (2.94)
Note that here we are not using the convention of Weinberg [3] or Straumann [2], they use

the symbol of the covariant derivative V,, to indicate D,,, the first two terms of eq. (2.94).
The covariant derivative of a coordinate vector and one-form are

VX" =0, X" + T, X", (2.95)
VX, =0,X, - T}, X, (2.96)
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and similarly for the non-coordinate vector and the one-form
V. X"=0,X" +w, X", (2.97)
V,uXo = 0,X0 — w20 Xp . (2.98)

Furthermore, under Lorentz transformation the tetrads transform as a tensor, while the spin
connection must transform as a connection

e, — Nee,, w,ﬂb — A“cwMCd(A_l)bd — (A‘l)acﬁMAcb. (2.99)

Now that the mathematical framework is set up, we introduce Cartan’s notation which
further simplify the tetrad formalism. As we saw, the non-coordinate basis one-form is
e =e,e, = e,*dr", in analogy one writes

W = w,“pdat . (2.100)

Furthermore, we introduce the following two notations for the differential form and the wedge
product of two vectors A and B

dA = 0,4, — 8,4, (2.101)
AAB=A,B,—A,B,, (2.102)

which are both antisymmetric in the Greek indices. With this notation one can write the
torsion tensor and the Riemann curvature as

T = de® + w N e, (2.103)
R = dw® + W' AW, (2.104)

which is a compact notation for, see Yepez’s paper [15] for the derivation,

T,," = 0ue," — 0pe," + wuabeyb — wyabeub , (2.105)
Tt =T, =T, -1, =0, (2.106)
R = 0w, — 0w, s + wu e w s — wy e wy (2.107)
R = aeo" Ry = 0,0, — 0,0, + T0 T, =T 17, (2.108)

Note that here we use Yepez’s convention for the Riemann tensor which differs from our
convention given in eq. (1.2).

Before proceeding with the derivation of the tetrad Einstein-Hilbert action, we derive a
few relations that will be useful later on. One can easily find using eq. (2.104) and eq. (2.108)
the following relations

R = dw™ 4w A w®, (2.109)
R, = ™R - (2.110)

Then, using the skew and the interchange symmetries of the Riemann tensor R, . we find

R,"=-R,"=R,". (2.111)
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Furthermore, using the relation given in eq. (2.93), one can find the antisymmetry property
of w,™ with respect to the Latin indices as follows

w,® = —w,b. (2.112)
Finally, we compute the variation of the Riemann curvature tensor as follows

SR = §(dw™) + 0(we A w?) =
= 5(8uwl, — 8,,wuab) + 0w, W, — w, wud’) =
= au&uy — 8V5wuab +dw, . w,” + wu’e Sew,,
— 0w, wy, b _ 0,0 5w;fb + Fzyéw,\“b - Fﬁu(Sw,\“b =
= (@L&uuab + Fﬁuéw)\ab +w,’ Sw,® + wubc dw, )
— (8,,5@@“1’ + F,’)uéw)\“b + w,’ 5Wu + w, b, dw, ™) =
= 2(8M5wl,“b + Fﬁyéwﬂb +w,’ 5w, + wy 0w, ) =2V 5w,, (2.113)

where in the third equality we used the fact that the variation 6 commutate with the partial
derivative and we added a zero term at the end of the expression since the torsion free
condition (2.106) of Riemann spacetime implies I}, = I'} , in the fourth equality we used
the antisymmetry of w,® given in eq. (2.112) and 74, = 0 to rewrite the following two terms

dw, e W, = —wybcéwﬂac =—w,b, dw, (2.114)

—0w, e w,® = w, 6w, = W, bw, ™, (2.115)

in the fifth equality we used again the antisymmetry of w,® and in the last one we identify
the terms in brackets to be V,L(Sw,,“b.

2.4.3 The tetrad Einstein-Hilbert action

In this section we want to show that the Einstein Hilbert action in tetrad formalism takes

the following form

abed € A€’ A R, 2.116
167 J, 270 € (2.116)

where g,4p¢q 18 the Levi-Civita symbol. Note that, as suggested by I. Jubb [14], we do not
regard Sttrad as a first order Palatini action because R® = R®(w®(e?)) is a function of
e® and is determined by the condition that general relativity is a torsion free theory, i.e.
T = de® + w% A e’ = 0 obtained combining eq. (2.103) and eq. (2.106).

The first thing we want to do, is to compute the Ricci scalar

Stetrad

v vV DA vV _AK v ,ab A _k cd
R:g'u R;w:g” R ,u)\u:g“ g R/{,LL)\y:e'uae b1l € € qn Rn,u)\uz

Ad _va da
= e"ge! € Ryyny = € ae" o Ry ™ (2.117)

where we used eq. (2.89) to express the metric in function of the tetrads and eq. (2.110) in
the last equality. Defining e := \/—g, we have

Sg = F d'z/—gR=— [ d'zee.e",R,,". (2.118)
M
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Now, we show that eq. (2.116) is equivalent to eq. (2.118) proceeding as follows

1 1 1
26abcde ANe’ AR = —eppea (e, dxt) N A (e,dz”) A (ﬁRﬁACddx“ A dxA) =

—Eabed €, €1 PR da? A dx? A dx® A da =

b cd _pve\ j4
—Eabed € €y R\ e d x =

'b'c'd'

€ 8abcd8 eua’eyb’enc’ekd’euaeubRnA

2
1
"1
1
T4
i Cdd4$—

AN
= —eegpeae® Os (5b,e € g Ry dir =

4

2(&5W—@&ﬁ % ey Ripdie =

1
= 56 (e”ce’\d — e”de’\c) R “d's =

= ee” R Ad e, (2.119)

. . 130 gl . . .
where in the fourth equality we used e’ = eg??“d' et ¥y e et y, in the sixth equality

gmﬂ%wgﬂ—%www—mﬁj—maﬁg%}—dfﬁ—ﬁﬂ),(mm)
c d

and in the last one the antisymmetry of R,,% given in eq. (2.111).

We have therefore shown that eq. (2.116) is equivalent to eq. (2.118). Furthermore, note
that we can use the result of eq. (2.119) to change from the compact tetrad notation to the
coordinate basis notation
1 1

1
—Eabed e A Bb VAN RCd =

Stetrad -
167 M2 16

/ d*zee’ e’y R, ™ . (2.121)
M

To complete our picture of the tetrad Einstein-Hilbert action we should remark that few
authors have pointed out, see for example C. Rovelli and F. Vidotto [16], that this action is
not exactly equivalent to the metric one, but it differs by a sign factor. This sign factor play
an important role in quantum field theory.

2.4.4 The boundary terms of the tetrad Einstein-Hilbert action

In the previous section we showed that using the tetrad formalism the Einstein-Hilbert action
takes the following form

1 1
—Eapea€® Ne? AR (2.122)

Stetrad
16w M2

as you can guess, the advantage of this notation is the absence of the metric which will
simplify the variation of the action. We will go through the derivation as first proposed by
Jubb et al. [14], we will adapt their notation to our own notation.
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2 BOUNDARY TERMS OF E.-H. ACTION 2.4 Boundary terms and tetrad formalism

We compute the variation of the action as follows
1
167 §.Stetrad — / 5 Cabed (6e® A e AR+ e Ade® A R+ e AP A 5RCd) —
M
= / Eabed ((56“ Ae® AR 4 e Aeb A V(Sde) , (2.123)
M

where for the third term we used eq. (2.113) and for the second one we performed the
following manipulation

Eabed € N0 AR = —£ 4100 0 A e® A R = £4peq 0€° N e A R¥ = epoq. 9€® Ne® AR | (2.124)

where we used the antisymmetry of R,,% given in eq. (2.111) and the antisymmetry of the
Levi-Civita symbol €44.4. The first term in eq. (2.123) gives the Einstein field equations in
vacuum, i.e. £gpeq €® A R = 0, while the second term is the boundary term. Using the tetrad
postulate of eq. (2.94), the variation of the boundary term can be rewritten as

—16w 65 = / Eabed €4 N €2 N\ Vow = / \V4 (eabcd e Ael A (5w6d) =
M M

= / Eapea €& A X N Swd =6 (/ Eaped €° N €A de) , (2.125)
oM oM

where in the third equality we used Gauss’ theorem and in the last one, we took the the
variation 0 outside the integral demanding that the pullback of the metric to the boundary
OM is unvaried and that the pullback of e to the boundary dM has zero variation. It is
now possible to read out the boundary term from eq. (2.125).

Up until to this point our derivation is independent of the type of boundary oM. We
want to show that we can recover all types of boundary terms. To do that, we express the
boundary term in the coordinate basis using a similar procedure as the one used to obtain
eq. (2.121)

1 ~
Sp = T » Eaped € N € N w™ = “Tor d®y 2e e e et el pw, ™ =
1 1 ) )
= —E o d3y 26 €4 e pWy b 167T dSy 26 e (g}U/ _ eudeua) Dueya : (2126)

where in the second equality we have introduced e,%e;, which is the normal to the surface
expressed in the tetrad basis and we used the index a to indicate the type of boundary, in
the third equality we used e, ¢, = 6% and in the last one the following manipulation

ab

etpw, ' = —e”beHbDue“d = — (5,’; — e“ae,f) D, (e, g"") = — (g‘“’ — e“&e”&) D,e,”, (2.127)

where in the first equality we used the definition of w,% given in eq. (2.93), in the sec-
ond equality the fact that the sum over b extends over all indices except a because of the
antisymmetry of w,® and in the last one Dyg"" = V,g"* = 0.

Let us first consider non-null surfaces For this case the normal to the surface i is n,, = eu e
as defined in eq. (2.6). Then, D,e,* = "V, n, and with e*® = g"e,* = g''n,e" = nte®, we
calculate A A

elae’t = npette’ = netelntn’ = entn” (2.128)
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b _ b

where € = n, e’ = n.;e,%, ' n'n” = g,,n'n” is given in eq. (2.7). Thus, we recover

ea (g“” — e“de"d) Due,,d = eze (g" — entn?) Vun, = eV n, =K, (2.129)
where we used again ege? = n&l;edei’ = ¢, the definition of the induced metric A" given in
eq. (2.9) and the trace of the extrinsic curvature defined in eq. (2.30). We see that this is

exactly the Gibbons-Hawking-York boundary term of eq. (2.33), substituting e = /|h| and
eq. (2.129) in eq. (2.127) we get

1

Sp— —
B ].67T OM

dye/|h2K = Sany - (2.130)

Finally, we consider null surfaces. For this case we use the indices a = 0, 1 to differentiate
the normal to the surface [, = euoeo to the auxiliary vector k, = e,'e; in the tetrad basis.
Furthermore we demand that everywhere holds —1 = [,k* = g, e”oe”1€’e! = ng1e’e’, where
in the last equality we used eq. (2.89). Then, D,e,’ = €’V [, and with e = gie,® we
compute

eterd = 77&36“56”& = n016“16”0 = 77016061k:“l” = —kH". (2.131)

Thus, we recover
e (g’“’ - e“@e”d) Dﬂeyd = epe? (g" + kM) Vul, =1"V,1l, =0 +k, (2.132)

where we used the identity ege® = ngoe’e® = 1, eq. (2.46) to get IT*” and eq. (2.59) to obtain
the final result. We see that this is exactly the null boundary term of eq. (2.81) for A =1,
substituting d*y e = dAdz? /g and eq. (2.132) in eq. (2.127) we get

1

Sp=——
B 167 oM

dAd*22,/q(© + k) = Spu - (2.133)

We have therefore showed that starting from the tetrad Einstein-Hilbert action is possible
to derive any type of boundary term. The tetrads procedure is more compact and elegant
in the sense that we do not have to carry out the variation of the metric.
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3 GENERAL SPACETIMES

3 (eneral spacetimes

3.1 Overview

In the previous chapters we saw that the Einstein-Hilbert action of Riemann spacetime
must be supplied with an extra term, i.e. Sggy or S,.u, in order to recover the Einstein
field equations from the variational principle when boundaries of the spacetime manifold
are considered. Here, we are going to explore different types of spacetimes geometries and
compare their actions with the one of conventional general relativity.

First of all, we give an overview of the different types of metric affine geometries using
the book of T. Ortin [17] adapting it to our own notation.

Second, we study the case of teleparallel general relativity which is based on the concept
of distant parallelism, first proposed by Einstein when he introduced the tetrad field trying to
unify general relativity and electromagnetism [18]. The modern notion of parallelism, for two
vectors separated by a finite distance in spacetime, was rigorously defined by Weitzenbock
when he introduced the Weitzenbock spacetime for which the Riemann tensor vanishes.

At last, we explore the case of symmetric teleparallel general relativity which has raised
attention in many recent publications. We are interested in these alternative descriptions of
general relativity because, as we will show, their gravitational actions already incorporate
the boundary counter-term usually added by hand to the Einstein-Hilbert action.

3.2 Metric affine geometries

Let ./\/l(IN“, g) be a manifold with an arbitrary affine connection IN“W and metric g,,. We
define the curvature tensor R®,s, and the torsion tensor 7%, through the Ricci identities
for a scalar ¢, a vector £* and a one-form w,:

[6/L’ 6l/] Qb = _Talwﬁagb ) (31)
[vuv V,,] = Raﬁuvgﬁ - Tazwvﬁga ) (3'2)

[6/” %V] O.)g = —Ragija — Tau,,ﬁaw/g y (33)
where the covariant derivative %u is the one compatible with the affine connection fo‘w,.

Furthermore, the Riemann tensor R®,s, describing the curvature of spacetime is given by
the following expression”

= = Ta A T A
B0 = Uing = Vigw + 13l — T 5 (34)
which satisfy the antisymmetry conditions R,s,, = —Rgau = —Rapy, and the torsion tensor
by B _
e, =1%,-TI%, (3.5)
which satisfy the antisymmetry condition 7%, = —=71%,,,.

The most general affine connection one could define for an affinely connected metric
spacetime is

%, =T 4+ K%, + L%, (3.6)

"We keep the convention stated in eq. (1.2) which may differs from the one used in recent literature.
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3 GENERAL SPACETIMES 3.2 Metric affine geometries

where I',, are the Christoffel symbols computed from the metric g,,, as

1
F;O:y = 59040 (g;w,ll + Gov,u — g;w,a) > (37)

K%, is known as the contorsion tensor and it is computed using the torsion tensor 7¢,, as

a 1 o ey oY
KuV:§<Tu 1/+Tu ,u_Tuu)a (38)

which satisfy the antisymmetry condition K, = % 5 (Tpav+Toap—Tow) = —%( Thor+Topat+

Tow) = =K, and L® “ is known as the dzsformatwn tensor and it is computed using the
non-metricity Qaum = Vagw,, where the covariant derivative Va is the one compatible with

the affine connection I'%,,,, as

ns

1

Lauu = §<Qauu - Quau - Qua,u) . (39)

In Figure 3.1 we present a diagram showing different types of affinely connected metric
spacetimes, which summaries what we are going to explain in the following two paragraphs.

‘ Torsion-free, curved spacetime ‘

R=0
‘ Affinity connected metric spacetime ‘ Symmetric teleparallel spacetime
R=0 T=0
Q=0 ‘ Teleparallel spacetime ‘
‘ Riemann-Cartan spacetime ‘
T=0 R=0 Q=0 Q=0

‘ Riemann spacetime ‘ ‘ Weitzenbock spacetime ‘L

R=0 T=0

‘ Minkowski spacetime }

Figure 3.1: Diagram of affinely connected metric spacetimes showing the different permuta-
tions of the non-metricity tensor ., the Riemann curvature tensor R*,s, and the torsion
tensor 1%, where the indices were suppressed to keep the notation compact.

The Riemann-Cartan spacetime is obtained when the non-metricity tensor vanishes, i.e.
Qo = 0, this is known as the metric postulate. The metric postulate leaves the torsion
undetermined. In order to have a connection completely determined by the metric one has
to impose the vanishing of the torsion, ie. 7%, = 0= I, =17, A Riemann-Cartan
spacetime with vanishing torsion is a Riemann spacetime. Another way to determinate the
connection is to impose the vanishing of the curvature tensor. In this case the connection
is called Weitzenbock connection and, as we are going to see, is determined by the tetrads.
A Riemann-Cartan spacetime with Weitzenbock connection is a Weitzenbock spacetime.
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

Furthermore, one should note that by setting the curvature of Riemann spacetime or the
torsion of Weitzenbock spacetime to zero, one recovers Minkowski spacetime.

Other spacetimes are found when we consider a non vanishing non-metricity Qa,,. For
vanishing curvature one recovers the teleparallel spacetime which become equivalent to the
Weitzenbock spacetime when the non-metricity vanishes. Another interesting spacetime,
which we are going to study, is the symmetric teleparallel spacetime where both the curvature
and torsion vanish.

3.3 Teleparallel general relativity
3.3.1 Teleparallel action in Weitzenbock spacetime

Before proceeding, we spend a few words on the notation. To avoid any confusion, we will
explicitly specify the dependence on the Weitzenbock connection for objects of Weitzenbock
spacetime, as for example with the curvature of the Weitzenbock spacetime R~ ugl,(l“) = 0.
To describe the Weitzenbock Spacetime we use the already introduced tetrad formalism.
The tetrad postulate given in eq. (2.94) takes the following form in Weitzenbock spacetime

%#eya = 0ue, — e,i“lN“W + @Mabe,,b =0, (3.10)

where %u is the covariant derivative compatible with the Weitzenbock connection. We can
use the trivial solution w,%, = 0 of eq. (2.110) to determinate the Weitzenbdck connection,
this result is found as follows

R, (@) = ™R, () =0 = & =0, (3.11)

where we used that the Riemann curvature of Weitzenbock spacetime vanishes.
Plugging the result of eq. (3.11) in eq. (3.10) and using the tetrad identity (2.88), we
get the following expression for the Weitzenbock connection

T, = e ,0,e,%. (3.12)
Now that we have the connection, we can explicitly write the torsion tensor as
T, =T, =T, = (0,6, — 8,e,%) . (3.13)

Since in Weitzenbdck spacetime the non-metricity tensor vanishes, according to eq. (3.6) the
contorsion tensor is the difference between the Weitzenbock connection and the Levi-Civita
connection N
K =T%, —T%,. (3.14)
Now that we have expressed the torsion of the Weitzenbock spacetime in function of the
tetrad fields, we define the teleparallel action as

1

Spi=—[ d'zeT 3.15
T 167 M re ( )
where e = /—g¢ is the determinant of the tetrad e*, and T is the torsion scalar defined as
1 1
= —ZT*WTA“” + §T‘“’ATAW + T T, (3.16)
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

3.3.2 The torsion scalar

In order to show that the variation of the teleparallel action St gives exactly the Einstein
field equations without the need of adding a boundary counter-term, we need to relate the
torsion scalar T of Weitzenbock spacetime to the Ricci scalar of Riemann spacetime. To do
that we use the fact that the Riemann tensor of Weitzenbock spacetime vanishes.

Before proceeding with the calculations we point out that we are following a different
notation that the one usually found in the recent literature. Our convention of the Riemann
tensor and contortion tensor agree for example with the one used by B. Li et al. [19]. One
may verify our results with the one presented in this paper, note that our convention for the
torsion scalar T differs from their convention by a sign factor.

We proceed as follows

0= R%(0) = Ly = Tg, + D505 — DT, =
= R%u0(0) + K% g — K5 + K3 K0 — K0 K
+ TS — TS K s + T KOs — T g Ky =
R (1) + (D5K% 0 + T8 K N — TA K, — T K9,
— (B, K5+ TS, K s — T, K% — T3, K%,0)
+ K%K, — KWK 5 =
= R%6,(T) + VaK® — Vo, K5 + KK — KWK 5, (3.17)
where in the second equality we used the definition of contorsion given in eq. (3.14) to rewrite
the WeitzenbGck connection, in the third equality we add a zero term 'y, K\ =I5 K0 = 0
since the Levi-Civita connection of the conventional general relativity is symmetric '}, = F,)j‘ﬂ

and in the last equality we identified the covariant derivative of the contorsion compatible
with the Levi-Civita connection, i.e. VgK®,,. Rearranging the terms of eq. (3.17) we find
R, = R, (T) = V, K5 — VK, + K\ K5 — K*\sK* ., (3.18)

which we use to compute the Ricci scalar. Taking the trace of the Ricci tensor R, = R 4.,
we find

R = gﬂl/le — guVRa,uau — vuKa,ua o VaKa'uu + KagVKaua - KQUQKUVV ) (319>

The first two terms in eq. (3.19) can be rewritten using the definition of the contorsion given
in eq. (3.8) as
oL oL 1 o o oL 1 o o oL
V. K%y =V K, = §V“(T o+ =T a)—gva(T LM =T =
==V, 7, =V, T, +V, 1T, =
= -2V, T, (3.20)

where in the second equality we used T,** = —T,** to combine the second terms in the two
brackets and in the last equality T,** = T, together with T+“, = 0 easily verifiable with
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

the definition of the torsion given in eq. (3.13).
The third term in eq. (3.19) is rewritten as follows

1
KaayKo'l/a — Z(Tyag + Toay _ Tao—y>(TaUU + TVO'a _ T(Tl/a) —
1
— Z(7'7,/00.1"1060'V + TVOCUTVUQ _ TVQO.TO'VOC _|_ TO.OLVTaUV + TUQVTVU(X _ TJQVTUVOL)
1 1 1
. _Tacn/T ov _Tozijucr _Tagmi/a —
4 “ 4 o 4
1 1
= —-T,T1.,°" + =T, T%,, 3.21
where in the last equality we used the antisymmetry propriety of 7%, = =71, to rewrite the
last three terms in the brackets as follows 7,%,7,°" = -1,*,1,"° = -1,*,1,°"; 1,4, T"?, =

T,,T" . =T, 1,%; —1,*, 1T, = —T,,T"?, and we see that they all compensate the
others in the brackets.
The fourth term in eq. (3.19) is rewritten as follows
1

- KaaaKUVV = _Z(Taaa + Taaa - Taaa)(TVUV + TVUV - TUVV) = TaaaTyua ) (322)
where we used T,%, =T°", =0; T,%, = T“,, and the antisymmetry of the torsion tensor
to rewrite — 1%, =T, T, = =T",° and T,°" = -1, = =-T",°.
Combining the third and fourth term of eq. (3.19), we obtain

1 1
KaO'VKUVOé - KaUaKUVV = _ZTQJVTQUV + ETJVQTOCJV + TaocUTVVU =T (323)

Plugging the results of egs. (3.20) and (3.23) in eq. (3.19), we obtain
R=T-2V,T%, < T=R+2V, T, (3.24)

this is a useful relation which relates the torsion scalar of the teleparallel theory with the
Ricci scalar of the conventional general relativity.

3.3.3 The variational principle

We now show that the teleparallel action of general relativity constitutes a well-posed solution
for the variational principle of a spacetime manifold with boundaries. We use the results of
the previous section to rewrite the teleparallel action as

1
St d*z el = Tor d*ze(R + 2V, T",) = Sgu + Storsion - (3.25)

We are going to show that the boundary counter-term that we usually add by hand to the
Einstein-Hilbert action is already embedded in the teleparallel action. To do that, we follow
the procedure presented in the paper of N. Oshita and Y. Wu [20].

The first thing we do is to express the metric tensor using the tetrad field as in eq. (2.90),

ie. g = nabeuaeub. We variate this expression and obtain dg,, = nab(ée”“eyb + e,ﬁée,,b).
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

If g,, is fixed, then this is equivalent to de,’,’ = —e,%0e,’ for any €, In the variational

problem we usually fix the metric g,, on the boundary of the manifold M, therefore the
boundary condition is equivalent to

Oguwlom =0 & de, |0 = 0. (3.26)

Note that this condition fixes only ten components of e;. The induced metric defined in
eq. (2.9) can be rewritten using the tetrads as follows

h/tl/ = guu - 5nunu - (nab - 5nanb)eyaeub, (327)

where n, = n,e, is the component a of the unit normal vector to the boundary expressed
in the tetrad basis. Using the projector operator h*, defined in eq. (2.10) we easily obtain
the following decomposition of the tetrad field on the boundary

et, = ht, +entn,. (3.28)

Note that since the tetrad field is fixed on the boundary, the derivative tangent to the surface
must vanish, i.e.

h*,0,6e," =0. (3.29)

Starting from eq. (2.20), we compute the variation of the Einstein-Hilbert action using
the tetrad formalism as follows

167 6Sgy = / d'z \/—9G,.,09" +/ d*yev/|h|n, (g“ﬁéfgﬁ — gauéFga) = (3.30)
M oM

= / d*z V—=9G 09" + / 3y er/|h|n*g™? (&ﬁguﬁ — 6M(5ga5) (3.31)
M oM

where we used §g"*|om = 0g°*or = 0, to compute

1

5FZB|3M = ig'u)\ (aa(égkﬁ) + 85(5ga)\) - a)\<5ga5>) ’ (332)
1 1

0T Dol = §9m (35(5%@) + 0a(0gpr) — 5A(595a)> = §9m3a(59m)> (3.33)

and with n, = n"g,, we find

1
m(g™8Th — 90T loa = 15 (9°762(0a(09r5) + 05(09an) = 02(09a)) — 3597 Dalb951) ) =
= nygaﬁ(aa(dguﬁ) — 9y(89agp)) - (3.34)

Carrying on the manipulations of the term 0Sgy where we left them in eq. (3.31), we obtain
the following for the first term in the surface integral

0a09up = nab(eﬁbaaéeua + 56M“0aegb + e,j’@aéegb + 565b8ae,ﬂ) =
= Nap(es"0ade,” + €, 0ndes") (3.35)

35



3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

because the variation of e,* vanish on OM. Furthermore, the first term of eq. (3.35)
combines with the factor n*g®? of eq. (3.31) to form
n“gaﬁnabegbﬁa&ua = n"e%,0,0e,", (3.36)
while second term of eq. (3.35) combines with the factor n*g*® of eq. (3.31) to form
n“go‘ﬁnabeuaaa(Segb = n*(hP + snanﬁ)nabeu“&léeﬁb =

= n“nabeuaeﬁcho‘caaéegb + 5nanﬁn”nabe”“8a565b =

= nf (R + 5no‘nb)8a565b =

= nPe*,0,0e5" (3.37)
where in the first equality we used the definition of the induced metric (2.9), in the second
equality h*? = e°h*,, in the third equality eq. (3.29) to eliminate the first term and to
add a zero term n’h%,0,0e5” = 0 and finally, in the last equality we used eq. (3.28). Using

the two terms of egs. (3.36) and (3.37) to express the first term of the surface integral of
eq. (3.31), we find

/ d?’ya\/\h\n”gaﬁﬁyégw:/ d*yev/|h|2n" e ,000e," (3.38)
oM oM

and a similar expression for the second term of the surface integral of eq. (3.31). We therefore
obtain the following result

167 6Spn = / d'r /=G ,09" + / d*y e/ |h]2n" (e*,0ube,” — €*a0,0es") . (3.39)
M oM

We now verify that the contribution of Sy,,s0n Of the teleparallel action St induces exactly
the surface term given in eq. (3.39). Using Gauss’ theorem we find

167 Ssorsion = / d4x62VMTa“a = / d*ye/|h] 2n, T, . (3.40)
M oM

Using the fact that 6g,, = de,” = dn, = 0 on the boundary, the variation of Sirsion is
1673 Sorsion = / dye |h|26(n,Ty) = / dye |h|2nte® (0 deq” — Oade,”), (3.41)
oM oM

where we used the expression of the torsion tensor given in eq. (3.13).
Combining eq. (3.39) and eq. (3.41) we get

1676ST = 167(8SEH + 0Storsion) = / d*z V—9G.,0g"" (3.42)
M

indeed the surface term of the Einstein-Hilbert action is exactly cancelled out by the Sirsion
term of the teleparallel action. Eq. (3.42) tell us that the teleparallel action constitute a
well-posed solution for the variational principle of spacetime with boundaries.
Integrating eq. (3.42) we find the teleparallel action of general relativity up to a constant
of integration Sy
ST = SE'H + Storsion + SO ) (343>

note that Sy is independent of the metric g, and it should be chosen in order to have the
teleparallel action Sp physical at r — oo as we did for the Sggy counter term in section 2.2.4.
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3.3.4 Covariant approach in Riemann-Cartan spacetime

In the previous section we showed that the teleparallel action in Weitzenbock spactime is
equivalent to the Einstein-Hilbert action plus the GHY boundary term. Here we want
introduce the teleparallel action using a completely covariant approach.

We are going to follow the approach presented by A. Golovnev et al. [21] where they
used the Lagrange multipliers to impose the condition éauﬁy(a) = 0 to the teleparallel
action in Riemann-Cartan spacetime. In their paper, they directly stated the final result
of the variation with respect to the measure e without providing the calculations, here as
an exercise, we will go through every single step®. Note that these authors use a different
notation for the Riemann tensor R®,s,, torsion scalar T and contorsion tensor K¢,, than
the one we are using.

The teleparallel action in Riemann-Cartan spacetime with Lagrange multiplier A", used
to impose the condition R®,3,(w) = 0 is

1 - ~ -
gro— 1 / a5 (T(e,3) + MR (@) | (3.44)
167T M
where the Lagrange multiplier satisfies the antisymmetry properties M, = —A\"*, =

—\
The variation of the teleparallel action with respect to A yields the desired condition

R,™@) =0, (3.45)

which implies @ = 0, as shown in eq. (3.11).

To perform the variation with respect to the mesure e = \/—g, we first need to compute
the variation of the tetrad field e#,, the metric g,, and the torsion tensor T w- We use the
tetrad identity given in eq. (2.88) to compute the variation of the tetrad field e#, as follows

0 =0(0") = 6(etqe,”) = det e, + e'yde,’ & dety = —etye”ude,’. (3.46)

To compute the variation of e = y/—g we need to compute the variation of the metric g,,,
using eq. (2.90), we obtain

59, = Nap(de,%e,” + €,%0e,") = nup(de,le,” + e, e,”), (3.47)

where in the last equality we used the symmetry of n,, to rewrite the first term. The variation
of the inverse of the metric is found as follows

0=4(%) = 0(9""gur) = 09" gur + g""dgun
PN 59;11/ — _gu)\g,uo(;gg)\ — _nabgu)\g,ucr((segbe)\a + egbée)\a) —
= —(0e,’e"yg" + et ag”0en) = —(e”pg" + ey )oen . (3.48)

8These calculations are similar to the steps presented in section I1IB [21], where they derived the equations
of motion from the teleparallel action in Weitzenbock spactime. The main difference in the Riemann-Cartan
spacatime is the non vanishing spin connection .
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We now use the well known identity % = —gg""6g,, together with eq. (3.47) to calculate

3\/ —g 1 a(_g) 1 v 1 v
= g " 2y=g agw 2% 0w e(den’ey +e"de,’) = eeyde,’ . (3.49)

As already mentioned, to be able to compute the variation of the torsion scalar T we need
to compute the variation of the torsion tensor 7', therefore varying this tensor we obtain

0%, = 5(f°‘W — fo‘w) =0(e%,0,e," + &Mabeaael,b —e%0.e," — @Vabeo‘aeub) =
= de%,(Ope, " + @#abeyb — 0y, — @,,abeub) +e%,(0u0e, " + (Tjuabéeub — 0,0e," — C},,abéeub) =
= —eabT”Wéeﬁb + eaa(ﬁuée,,“ — 51,(5(3#&) , (3.50)

where in the last equality we used eq. (3.46) to rewrite de®, and the Lorenz covariant deriva-

b

tive, i.e. Dye,* == J,e,% + W, %e,” a notation similar to the one given in eq. (2.93), where

here we have the spin connection w,?, instead of the affine connection f“aﬁ. Furthermore,
note that throughout the calculation w # 0 because we are working in a Riemann-Cartan
spacetime.
We can now perform the variation of the following quantities that constitute the torsion
scalar T as given in eq. (3.16):
6(T)\;U/TXLW) = 5T>\MVT>\W/ + TA;U/C;T)\#V = 5T>\/LVT>\#V + TAuué(gAngﬂagyﬁTﬁaﬂ) =
= 6T>\,LLVT/\MV + 59AHTHMVT)\/JJ/ + 259MQTAaVT>\;LV + g)\ﬁguagyﬁéT’{aﬁT)\,uu =
= —T“WT,\“”e’\b(Se,{b + e’\a(ﬁﬂ&ya - 15,,56ua)T,\‘“’ + nab(éekbe,{a + 5e,€be,\“)T’”‘”T/\W
—2(g"%e™y + gaae“b)éeabT)\a”TAW — TWVT”“”e”béeab + e”a(ﬁaéega — 555eaa)T,{°‘B =
= —AT YTy, e y0e,” + ATy X, D,de,® (3.51)

S(TH \T™ ) = 6T \T? y + TH AT 1y = 5(g7P T )0 )Ty + TH AT ) =
= 0" PTH \T*  + g"POTH \T 0 + TH 6T ) =
= — (g€’ + €497 )deo"TH \T 1y — T \T™ ey e,
+ e“a(ﬁpéeﬁ - 15>\5epa)T)‘Mp — T”WT“”)\e)‘b&sz + e/\a(ﬁuéeya — ﬁyée,ﬂ)T‘“’)\ =
= 2(T"H — TVHF) T\, e p0e,.b + 2eH 4 (D, de\® — Dade, )T " =
= 2(T"H — TYHF) T\, e pdel + 2(TA Y — TV, Net o Dyde?, (3.52)

S(T%0eT",7) = 0T 6TV, + T 0T, = 6T 0o T" 7 4 T% 40 0(g7 T ) =
=011 + 69" T" )T 0 + 97 0T" ) T a6 =
= —T"..T", % e“yde.’ + eaa(ﬁa(sega - ﬁaéeaa)T”,f’ — (g7 ey + ") 0e\ TV T nor
— T”V,{To‘a”e”béepb + e”a(ﬁyée,{“ - 5H66V‘1)T0‘a” =
= 2T 0T, + T\ TV va)e®s0en’ + 2(ea TV, — €7 0T, *)Dabey (3.53)
where in the last equality of all these variations we used the antisymmetry of the torsion
tensor T, = —T“,, to add similar terms together.
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

We have therefore calculated all the terms we need to compute the variation of the
teleparallel action, plugging them all together, we get

1 1 174 1 v (0% vV O ~ 1 a ~
65 = = [ d'a {e(jwﬁww )+ 30T AT ) +0(T% a0 T, ))+(’]I‘(e,w)+)\” bR b(w))de}.
(3.54)
Before proceeding with the simplification of the terms in the brackets, we define the
superpotential S“* which will simplify a lot the expressions we are going to calculate

SV = KM 4 g R T g — g™ T (3.55)

which satisfy the antisymmetry condition S** = —S** because the contorsion tensor is
antisymmetric with respect to the first two indices.

We want to group similar terms in the variation of the teleparallel action. We begin with
terms proportional to D,de,*. The second term of eq. (3.51) combines with the second term
of eq. (3.52) to form

14Tl/,u)\55a 12T)\1/ Tl/)\ “55 a_T/\V T)\V Tz/)\ H’55 a __
_Zkeaveu+§(u_ u)etaDydeyt = (T, — pt weaDydey” =
= 2K’\”“€“aﬁy5e,\“ , (3.56)

where we used the antisymmetry of the torsion tensor and the definition of the contorsion
tensor given in eq. (3.8). Combining this term with the second term of eq. (3.53), we get

ZKA”#e“aZS,j&e)\a + 2(os’l’aTa‘oéA — e’\aTaa”)ﬁl,éeAa’ = 2(K)"’Me“a +eY, T4 — e’\aTaa”)ﬁl,(Seka =
= QSM)‘VG“GZS,,(SeA“, (3.57)
where we used the superpotential given in eq. (3.55) to substitute
S ety = KM ety + g et T o — gl et T = KN ety — T + e, T . (3.58)
We proceed by combining the terms proportional to e*,de,’, the first term of eq. (3.51)
combines with the second term of eq. (3.52) to form
1 Aov m b 1 KUY VUK A b ARV KAV VAR w b
Z4T T/\w,e poes + 52(T -T )T,u)\,je poe, = (T +T -T )TAWe poe, =
= 2K Ty et vde, (3.59)

where in the last equality we used the antisymmetry of the torsion tensor to write the last two
terms in the brackets as TF" = —T"* —T¥* — T¥ and the definition of the contorsion
tensor given in eq. (3.8). Combing this term with the second term of eq. (3.53), we get

2K ATy et pies’ — 2T 0o T, 4+ TN TV o) e®poes’ = 2(K™ Ty — T% TP 7 — TP 5T, ) et yoe,” =
= 2SMY Ty et ybe,” (3.60)

where we used the superpotential given in eq. (3.55) to substitute

S)\RVTAHV _ (Km/)\ + g)\nTpl/p . g)\qunp)TAW/ — KHV)\T)\VM . TppVTH/w . TppnTl/VM ) (361)
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

Summarizing all the terms, the variation with respect to the measure e of the teleparallel
action yields

-

= T6r /d4xe <QSM”T,\We“b5e,€b+2SuA”e“a5,,(5€A“+(T(e,cNu)—i—)\WabEW“b(cNu))e“béeub> )
T

(3.62)
Integrating by part the second term in the brackets of eq. (3.62), we get

256,\“51,(65’#’\”6“@) = 256)\“(61,(65#)‘”6"@) — @VbaeS“A”e“b) =
= 256)\(1((81,(65”/\V€“a) — w,,baeSu)‘”e“b) + (w,,baeSuA”e“b — o?,,baeS#)‘”e“b)) =

= 26(VZ,S“>\V — K”WSU’\”)e“a&)\“ , (3.63)

where we used the antisymmetry of the superpotential, i.e. S = —S5** and the tetrad
postulate of eq. (2.94) to write

(VVSMO[B)QMI? - (vusuaﬁeub) = Vusbaﬂ = aVSaaﬂ + Faal/sagﬂ + Fﬁm/San - wybasbaﬁ -
= 9,5,°% — w,.5,%% = 0,(S,°Pet,) — w, 05, Pety (3.64)

and B
Ktog=T¥as —Thy = (05" — ws'a)e"vea” (3.65)

note that we are not using the same convention for the connection as in section 2.4.2 where
we had TH,5 = e, (0aes® + wapes?), because here we defined the contorsion tensor such
that it is antisymmetric with respect to the first two indices, i.e. K*8 = — K8 while
in eq. (2.93) we defined the spin connection with antisymmetry in the last two indices, see
eq. (2.112), ie. w,? = —w,®. Taking into account this consideration, the right expression
that relates the contorsion tensor and the spin connection, according to our notation, is the
one given in eq. (3.65) where the third index of K*,ge, %, = K4 correspond to the first
index of wg.

Therefore the variational principle of the teleparallel action in Riemann-Cartan spacetime
yields to

1 1, -

5SHC = / e (= VS + S (Top + Kop) + 5(T(e,8) + Xy, ())0) ) der” £ 0
1 ~ ~

& 0=V,8" =S (Tou + Kop) — 5 (T(e, @) + M o Ry (@)) 6 - (3.66)

Enforcing the condition obtained from the variation of the teleparallel action with respect
to A, i.e. R, @) =0 = @ =0 as show in eq. (3.11) and using Ty, + Ko = Koy, We
obtain the following field equation

I

1
V.8, — S™MK,,, — 5P]r(e)(sA =0, (3.67)

which is equivalent to the Einstein field equations as we are going to show in the following
section. Note that this result is equivalent to the one given by Gikivbev et al. [21], remember
when comparing it with our own that they are using a different notation of the contortion
tensor K*,3 and sign convention of the torsion scalar T than the one we are using.
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3 GENERAL SPACETIMES 3.3 Teleparallel general relativity

Finally, the variation of the teleparallel action with respect to the spin connection @,’,

gives, after partial integration?,

Du(eN™ ) =0, (3.68)

this is an equation for the Lagrange multiplier \,,%. As the Lagrange multiplier does not
enter in the equation of motion given in eq. (3.67), we do not need to consider it any further.

3.3.5 [Einstein field equations

Here we want to show that the field equations calculated in eq. (3.67) are equivalent to the
conventional general relativity by substituting eq. (3.18), rewritten here for convenience,

R0 = VK5 — VK + KWK 5 — KK, (3.69)
into the Einstein fields equations
1
G',=R', — éél’fR =0. (3.70)

Inserting the Riemann tensor and the expression calculated in eq. (3.24) for the Ricci
scalar, we find

1
0=G", =V, K%, — VK, + K K", — K*,K", — 5% (T —2V3T*%,) . (3.71)
The first two terms of eq. (3.71) together with the last one, can be rewritten as

1
V, K%, — VK, — VT, = évy(Tﬂaa + Ty —T,) — Vo K, + IV T, =
= =V K™, =V, T+ 51V T =

= V5", (3.72)
where in the second equality we used the antisymmetry of the torsion tensor 7¢,, = =17,
to rewrite T"*, = 0 and T,** = =T, '* = =T, and in the last equality, we used the

definition of the superpotatial given in eq. (3.55) to get
VoSl = Vo (KF, + 1Ty — §9TP1g) = —NV K™, + 0NV T — YV, T"5,  (3.73)

where we used the antisymmetry property of the torsion tensor K+, = — K .
The third and fourth terms of eq. (3.71) can be rewritten as

K\ KMo — KoK, = Kon KM — K K)\!, =
= Ko (=K — g™ TP g+ g*AT5) + K4\, TP
— KT — %KA“V(T*"Q + T, = T*,) =
= —Koxn, S (3.74)

9For more details see section IVC of [21].
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3 GENERAL SPACETIMES 3.4 Symmetric teleparallel general relativity

where in the second equality we added two terms which sum up to zero, used the antisym-
metry of the contorsion tensor to rewrite KM% = —K#** the antisymmetry of the torsion
tensor to get 7°*, = 0 and T,** = —T,** = —T**,, and finally, in the third equality, we
used Ky#, = —K*",, and K,*, = 5(T%, + T,.* — T,%,) = 0.

Summarizing all the terms, we obtain the following Einstein field equation

N[ =

VS 1 — QAR — %T(e)éﬁ =0, (3.75)

which indeed is the same as the one gotten varying the the teleparallel action with the
Lagrange multiplier approach obtained in eq. (3.67).

3.4 Symmetric teleparallel general relativity
3.4.1 Symmetric teleparallel action

The symmetric teleparallel spacetime has non-vanishing metricity, i.e. Quu = 6ag,w # 0,
and vanishing curvature R*,s, and torsion 7%,,. The connection describing this spacetime
is obtained using eq. (3.6) as follows

I, =T%, + L%, (3.76)
We define the symmetric teleparallel action as

So LI V—9Q, (3.77)

where Q is the non-metricity scalar defined as

1 1 1 1
Q= _ZQaﬁuQaﬂu + éQaﬁuQﬁua T ZQuaaQuUU a §QMOCOCQUMJ ’ (3.78)

note that this quantity is in invariant under local general linear transformations and trans-
lational symmetry.

As explained by A. Conroy and T. Koivisto [22], the vanishing curvature imposes the
connection to be pure inertial, meaning that it differs only by a general linear transfor-
mation J% from the trivial connection or “coincident gauge”, i.e. I'“,, = (J71)%30,J°,,
where (J71)®5 are the components of the inverse matrix of the linear transformation Js.
Furthermore, the vanishing torsion further simplified the connection because

T, =T, — 1%, = (J7)(8,J%, — 8,J°,) =0 (3.79)

has solution J“z = 036 where £* is a vector in the tangent space. Note that the translational
symmetry of the non-metricity scalar allows to chose {*, i.e. the gauge condition, such
that the connection I'“,, vanishes completely. A trivial connection implies that all points
in spacetime are equivalent, therefore this formulation of general relativity is often called
coincident. For the gauge with vanishing connection the non metricity scalar Q becomes, as
shown by J. M. Nester and H.-J. Yo [23],

Q=g" (Tg,I0, —T5.T0,) , (3.80)

where '}, are the Christoffel symbols. This result tell us that the symmetric teleparallel
action is equivalent to the Einstein-Hilbert action corrected with the GHY boundary term.
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3 GENERAL SPACETIMES 3.4 Symmetric teleparallel general relativity

3.4.2 The non-metricity scalar

In this section we are going to relate the Ricci scalar of the Riemann spacetime to the non-
metricity scalar Q following a similar procedure as we did in section 3.3.2 for the torsion
scalar.

Using the fact that the Riemann tensor of the symmetric teleparallel spacetime vanishes
and the definition of the symmetric teleparallel connection given eq. (3.76), we obtain

0= R(0) = Ty — Tiigy + sl — T8I0 =
= R%p(0) + L5 — L0 + L\ L 0 — L2 LAy
+ TS5l — T8, L s + T Loss — Tl =
= R0 (D) + (95L%u + T55L 0 — ThgL®s — ThgL®)
— (8L 5 + T3, L g — T L — T3, L% 1)
+ L LY — L LA 5 =
= Rau5V(F) + V,BLa;w - V}/Lauﬁ + La)\ﬁLkW — LaAVL)‘MB . (3.81)

Rearranging the terms of eq. (3.81) and taking the trace of the Ricci tensor we obtain the
following expression for the Ricci scalar

R=g" Ry = 9" R0 = VLo — VoL, + L5, L% — Lo L7, . (3.82)

The first two terms in eq. (3.82) can be rewritten using the definition of the contortion
tensor given in eq. (3.9) as

1 1
V,LLLaHa - VaLaHu = §Vu (Qaua - Q”aa - Qaa“> - §va <QOZMH - Quau - Quau> =
= quaua - quyaa = V,u(Qa”a - Quaa) ) (383>

where we used the symmetry of the non-metricity, i.e. Quu = Vaguw = Vaguy = Qo and
we replaced the dummy indices to combine similar terms.
The third term in eq. (3.82) is rewritten as follows

1
LaaVLUVa = Z (Qaalx - Qaau - Ql/aa> <Q0Va - ana - Qaay> =
1
_ Z( . QO&UVQVO'Q - QUQUQUVQ + QUOéVQVO'a + anyQam/ o anUQaua + angQuaa>
1 1 1
_ ZQaUuQaUV + ZQ(XUVQO'V& + ZQuaoQaUV _
1 1
= 71@040’1/62&0” + §anuQ0ya . (384)

where in the last equality we used the symmetry of the non-metricity and replaced some
dummy indices to rewrite the last three terms in the brackets as follows Q,%,Q.°" =
QUVQQ(XVU — QVUQQ(XO'V — QQUVQVU(X; _QVQUQO'Va — _QVUOLQO'O[I/ — _QUOLVQZ/O'OC and
Q%% Q"0 = QL"Q"° = Q,",Q%, and we see that they all compensate each others.
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The fourth term in eq. (3.82) is rewritten as follows
a ov  _ 1 a o a « ov o ovy\ __
_L UaL v — Z(Q o QO’ o ro a) (Q v Q v QV > -
1
= Z <Qaaaanu + QaaaQVUV - QaaaQuJV + Qaaanju - Qaao—anu - Qaaaanu)
1 a ov 1 a ov 1 a vo __
+ ZQO’ aQ v 4Q UaQ v 4ch aQ v —
1 a ov 1 o ov
- ZQO’ aQ v 2Qa anl ) (3-85)

where in the last equality we used again the symmetry of the non-metricity and replaced
some dummy indices to rewrite the last three terms in the brackets as follows Q,%*,Q", =
Qac“Q%) = Q%@ —Qu% Q"7 = —Q%aQ,°" and —Q,%;Q,"" = —Q;.Q"7, and we
see that they all compensate each others.

The third and fourth term of eq. (3.82) can be rewritten as

1 1 1 1
Lam/LUVa_LaaaLoyu - _ZQam/Qamj—'—QQaauQmja—i_ZQoaanju_iQoaaQVUV = @ . (386)
Plugging the results of egs. (3.83) and (3.86) in eq. (3.82), we obtain

R=Q+V,(Q"a— Q") & Q=R+ V,(Q" —Qu"), (3.87)

this is a useful relation which relates the non-metricity scalar of the symmetric teleprallel
theory with the Ricci scalar of the conventional general relativity.

3.4.3 Covariant approach

As one could imagine, the covariant approach used in section 3.3.4 for teleparallel general
relativity can be applied also to symmetric teleparallel general relativity. The main idea is to
impose the two conditions of vanishing Riemann curvature R*,3, and vanishing torsion 7%,z
using the Lagrange multiplier method. Here we will not go through the explicit variation
of the action but we will summarize the results presented in the paper of J. B. Jiménez,
L. Heisemberg and T. Koivisto [24] which one can verify using tensor manipulation software
such as for example the package xAct for Mathematica.
The symmetric teleparallel action is defined as

So = / d*z /= g(Q + X" R* 5 + 6, T* ) (3.88)
oM

where the Lagrange multiplier d,*” is antisymmetric with respect to the last two indices and
AP is antisymmetry with respect to the first and second two indices.

In analogy to the superpotential S introduced for teleparallel general relativity, we
introduce the non-metricity conjugate P*,,, such that Q = Q,*”P“,,, as follows

1 1
Pa,uy = Z < - Qa,uu + Q,uaz/ + Qua,u + Qa)\)\g;w + Q)\aAg,ul/ + 5 (536211/\)\ + 63@;/\)\)) : (389>
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The variation of the symmetric teleparallel action with respect to the metric leads to the
following field equations

2
—va V_gpal/_qy_QgV:O; 3.90
N ( Iz ) w iz ( )
where
1 1
q/W = _1(262015#@&51/ - Quaﬁ@ua5> + §Qaﬁ,u@ﬁay
1 1
+ Z(2Qo¢>\)\QauV - QMAAQVUO') + §QAa>\Qauy . (391)

Note that also in this case the Lagrange multipliers do not enter into the field equations,
therefore we can ignore the field equation for the Lagrange multiplier that one would get
varying the action with respect to the connection. The field equations given in eq. (3.90) can
be verified using the Riemann tensor of eq. (3.81) to compute the Einstein field equations
G, = 0 as we did for teleparallel general relativity in section 3.3.5.
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4 ENTROPY OF A SCHWARZSCHILD B. H.

4 Entropy of Schwarzschild black holes

4.1 Overview

We use the Feynman gravitational path integral to relate the partition function to the Eu-
clidean action for a Schwarzschild black hole. As we are going to see, the Euclidean action is
completely determined by the boundary term. First, following S. Hawking [9] approach, we
use the GHY boundary term to compute the action. Second, following N. Oshita and Y. Wu
recent publication [20], we repeat the calculation using the teleparallel action and finally, we
approach the problem using the symmetric teleparallel action. All methods deliver the same
result which we use to calculate the entropy of Schwarzschild black holes, as S. Hawking first
did in 1977 [9].

4.2 The gravitational path integral

In quantum mechanics, for a system with Hamiltonian H and temperature T = 37!, the
partition function is

Z=Tre ™ = (gu, éule™|ga, dn) (4.1)

n
where g and ¢ are gravitational and matter fields. We can relate this quantity to the
time evolution operator e~ by the Euclidean analytic coordinate transformation ¢t = —ir,
known as Wick rotation, where we identify the period of the Euclidean time 7 to be 5. The
partition function can then be expressed as a path integral over all matter and gravitational
fields as follows

Z= / Dlg|D[gleS26) (4.2)

where Sg(g,6) = —iS(g, ¢) is the Euclidean action and S(g, ¢) is the gravitational action.
This path integral is taken over all positive-definite metrics g whose boundary is

8./\/{ - (_Ztl) U B U th y (43)

where we consider the spacetime manifold M to be foliated by spacelike hypersurfaces
¥, = 83(r), a three-sphere of radius r bounded by the closed two-surface S?*(ry). The mani-
fold itself is bounded by %, 3, (where t; = 0, to = —if3) and B(ry) = [t1,ta] X S*(ro) the
union of all two-surfaces S%(rp). The minus sign in front of 3J;, serves to remember us that
the normal vector to the hypersurface 3;, must point outwards M. Figure 4.1 shows what
we just said in a drawing.

The dominant contributions to the partition function Z are given by those metrics g and
matter fields ¢ which are near the background fields gy and ¢q, solutions of the classical field
equations with the given periodicity and boundary conditions. Expanding the action in a
Taylor series around the background fields, we obtain

Se(g,9) ~ Sp(go. ¢o) +SM(g,¢) + ... (4.4)

where g = go + g, ¢ = ¢o + ¢ and SU is quadratic in the perturbations g and ¢. Then,
inserting eq. (4.4) in eq. (4.2) and taking the natural logarithm, we get

InZ ~ —Sg(go, ¢o) + In (/D[g]D[¢]e_S(l>(g’¢)) . (4.5)
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4 ENTROPY OF A SCHWARZSCHILD B. H. 4.3 The Schwarzschild solution

Figure 4.1: The manifold M is bounded by the two foliations »; , ¥, and B the union of
all two-surfaces S2.

As explained by Hawking [9], the first term of eq. (4.5) is the contribution of the background
fields to the partition function, while the second term is the thermal contribution of thermal
gravitons and matter quanta on the background geometry which from now on we will neglect.
Furthermore, we will further simplify our calculations working in vacuum, i.e. we will neglect
any matter field ¢.

4.3 The Euclidean section of the Schwarzschild solution

The simplest non-trivial solution of the vacuum Einstein field equations is the Schwarzschild
solution, given by

ds? = —f(r)dt* + f(r) " dr® +12dQ? (4.6)
where f(r) = ( — %) and dQ? = df*+sin® 0d¢?. The Euclidean section of the Schwarzschild
solution is obtained with the coordinate transformation ¢ = —i7, known as Wick rotation,
as follows

ds® = f(r)dr® + f(r)"'dr® + r?dQ?, (4.7)

which makes the metric positive definite for » > 2M. The Euclidean Schwarzschild metric
is asymptotically flat because lim, o, f(r) = 1 and has a periodicity of § = % in Euclidean
time 7. The singularity at r = 2M is only apparent and is due to the choice of coordinate.
To see this, we perform the transformation « = rf(r) with do = dr and we obtain

x

ds” = ~dr* + gdﬁ + 202, (4.8)

then with x? = x and 2y dy = dx, we get

2
ds* = 47“%6%2 + drdx* + r?dQ? (4.9)
r
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which is regular at y = 0, i.e. »r = 2M. We now identify the two-dimensional geometry of
the first two terms of the metric as flat space in polar coordinate, i.e. ds®> = dy + x?dv> where
¢ has periodicity 27. From a simple coordinate transformation ¢» = - we can determine
the right periodicity of the Euclidean time to be § = 4nr. Note that the rescaling factor 4r

does not affect the periodicity of 7. On the horizon, i.e. r = 2M, we get

1
-1
B=drr=8tM =Ty=_, =Sl (4.10)
which is the Hawking temperature for the Schwarzschild black hole.

To summarize, we have shown that the Euclidean section of the Schwarzschild solution
is defined for y > 0, 0 < 7 < 87 M. Here the metric is positive definite, asymptotically flat
and nonsingular.

To calculate the Euclidean action for the Schwarzschild metric we will need the induced
metric on the hypersurface ¥;, = S3(r), a three-sphere of radius r, and the three-cylinder
B(rg) = [t1,ta] x 8%(ry), where S%(ry) is a two-surface of radius r9. Knowing that the
hypersurface ¥, is parametrized by ® = ¢ — ¢; and the three-cylinder B by ¥ = r — ry, we
can derive the unit normal using eq. (2.6). Furthermore, once we know the unit normal we
calculate the induced metric using eq. (2.9). Remembering that the Schwarzschild metric
g 1s given in eq. (4.6), we compute these quantities as it follows.

The normal vector to the spacelike, i.e. € = —1, hypersurface ¥, is
€0, ®
== —/ 1,0,0,0 4.11
nﬂ ‘gagaaq)aﬂq)| f(T’)( ) Yy Yy )7 ( )
1
nt = — (1,0,0,0), (4.12)

VI(r)

the induced metric on Y, is
hyw = g — eny,n, = diag(0, f(r)’l, r?, 12 sin® 0), (4.13)

2

and the square root of the determinant is vVh = f (7")’%7" sinf. Furthermore, we indicate

with ¢, i = 1,2, 3, the coordinates on ;..
The normal vector to the timelike, i.e. ¢ = 1, three-cylinder B(ry) is

S €0,V 1
t199P0. 00|\ F(r)
m* =/ f(r)(0,1,0,0), (4.15)

the induced metric on B(rg) is

(0,1,0,0), (4.14)

Y = G — emym,, = diag(—f(ro), 0, r%, 7’3 sin? @), (4.16)

and the square root of the determinant is \/—v = f (ro)%rg sinf. Furthermore, we indicate
with 2%, 7 = 0,2, 3 the coordinates on B(rg).
Finally, the induced metric on the timelike, i.e. € = 1, two-surface S§%(ry) is
O = hy, —emyum,, = diag(0,0, 3,75 sin*0) (4.17)

with /o = rZsinf and we indicate with w’, i = 2,3 the coordinates on S§%(ry). Note that
V=7 = N/ where N = f(ry)/? is known as the lapse function in the ADM formalism.
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4.4 Gibbons-Hawking-York approach

Here we will follow the approach used by S. Hawking in 1977 [9] to derive the Euclidean
action of a Schwarzschild black hole using the Sy counter term. Since in Hawking’s paper
the calculations are not carried out, this is a good exercise to test the knowledge acquired
so far.

Before proceeding with the derivation, for convenience, we write down the Einstein-
Hilbert action corrected with the GHY counter term obtained in section 2.2. Since we are
interested in solutions of the Einstein field equations that are asymptotically flat at infinite,
we chose the constant of integration Sy in eq. (2.38) to be the one calculated in section 2.2.4.
The action takes therefore the following form

S = 167T/ d4x\/_R+—/ d*yer/|h|(K — Ky) (4.18)

where the surface integral is carried out on OM = (=%, )UBUY,, and K, = % is the trace
of the extrinsic curvature tensor for asymptotically flat spacetime computed in eq. (2.41).

We now calculate the Euclidean action Sg = —.5 for the Schwarzschild metric. Because
the Schwarzschild metric is a solution of the vacuum Einstein field equations, the Ricci scalar
vanishes and therefore Sy = 0, i.e. the Euclidean action is completely determined by the
Scry boundary term. To compute the action, we need to compute the extrinsic curvature
on the boundary OM = (—=%;,) UB U X, where t; =0 and t, = —if3.

The extrinsic curvature K on the two hypersurfaces ¥;,, ¥;, vanishes. Using the unit
normal n* to ¥; given in eq. (4.12), we get

K =V,n"=9n*+Thn*=Thn"=0 (4.19)

because the Christoffel symbol I'}, vanishes.

While the three-cylinder B(r() has a non zero extrinsic curvature. Using the unit normal
m# to B(rp) computed in eq. (4.15) and the induced metric v, on B(ry) given in eq. (4.16),
we get

11
K = V mt = 8 m* + F“)\m = I‘N m’" = f(r)§ 5/7”1/87"7#1/ =
r=ro
1 1
= 5 ()2 (V"0 + 7000 + 1" 0v00)| =
=70
1 1 2M 2 2 2 1 M
= Ef(ro)2 (f(ro) 17”_8 + - + T'_o) = 70—0f(7“0)2 + f(ro) 2g. (4.20)

Since the two hypersurfaces 3, , 3;, have a vanishing extrinsic curvature, the only contribu-
tion to the Euclidean action is the one of the boundary B(ry)

Sp=—iS = 87%/7«0) d*2v/—7 (K — Ky) = / dt/S?(m “w/—7 (K — Kp). (4.21)
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Therefore, using /=7 = f(ro)2r2sin § obtained with eq. (4.16) together with the extrinsic
curvature K of eq. (4.20) and Ky = % we calculate the Euclidean action as follows

SE:—— dt/ dgb/ 49/ — (K — K) =

=—— ﬂd(b/ do f( 7“0)%7" sin 0 (f f(ro)% + f(r )*%%2 — 2) =

2
:5<§ M —ro+ f(ro)2r )25<§ —7’0+(1——+O(Z\é)>7“0)=
b 1 s

where we used the Taylor series of f(rg)'/? = (1 — %)1/2 ~1— % +0 (J‘f—22> Remembering
0
from the previous section that the period of the Euclidean time is § = 87 M, we get the
following result for the Euclidean action of a Schwarzschild black hole
2
S Pa P

=47 M? . 4.2
2 167r ( 3)

4.5 Teleparallel approach

To my knowledge, N. Oshita and Y. Wu [20] were the first to publish in August 2017 the
calculation of the Euclidean action for a Schwarzschild black hole using the teleparallel
action of general relativity. As an exercise, adopting our notation, we will go through the
calculations in more details.

In section 3.3.3 we showed that the torsion induced surface term of the teleparallel action
plays the same role as the GHY boundary term. Since the two approaches are equivalent, we
expect to recover the same result as in the GHY approach when computing the Euclidean
action with the teleparallel action. Choosing the constant of integration Sy in eq. (3.43) to
be regularized by a reference backgrond defined by the flat spacetime as we did for the GHY
term, the teleparallel action given in eq. (3 25) becomes

St = 167T d4x vV—9gR+ — / d'w =gV, (T — (T a)o) =
d4:r vV—9gR+ —/ Py e/ |k, (T4 — (T*"4)o) (4.24)

167'[' M

where we used once again Gauss’ theorem to compute the second term on the boundary
OM = (=%, ) UBUZX,,. To compute the Euclidean action we will set t; = 0 and to = —if5.
Since the Schwarzschild metric is a solution of the vacuum Einstein fields equations, the
Ricci scalar vanishes, leaving the Euclidean action completely determined by the torsion
induced term. Defining 7}, := 7,4 — (T )0 for convenience, the Euclidean action is

SE:—ZST——SL(—/ d?’y\/ﬁn“TlnL/ de\/—’ym“Tu—/ d3y\/ﬁn“Tu) =
™ -3y B(ro) ¢,

. —iB
_ _SL dt / Pw =M (T = (T%)0)lr—ry » (4.25)
T Jo S2(rg
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4 ENTROPY OF A SCHWARZSCHILD B. H. 4.5 Teleparallel approach

where we used that the two integrals on the hypersurfaces 3;, and ¥;, with t; =0, t, = —if3
cancel each other out!?.

The tetrad field of the Schwarzschild metric given in eq. (4.6) can be read out, using
eq. (2.90), by rewriting the metric in the following form ds* = g, dz"dz" = nue, e, dr’dz”
where 7,, = diag(—1,1,1,1). We then obtain

e, = (f(r)%,f(r) I rsmé’) (4.26)
e = (SO)E F)E st g) (4.27)
where f ( (1 21y We now comoute the torsion tensor T%,,. Using eq. (3.13), i.e
T, = e, (0,6, — 0,e,"), we compute
L f'(r
T = €' (0re," — Ope,”) = 5 l];((r)) (4.28)
T, = & u(Oher® — Bye,") = 0. (429)
T2y = ea(Orey” — Dse,”) = % , (4.30)
T%.9 = €’ (0ye9® — Ope,) = %, (4.31)
and we obtain t 9 L )
fwm:Tm+TmAJ%¢+Tm=§fm (4.32)

Using m* given in eq. (4.15) and /—v = f(?“o)%rg sin # obtained with eq. (4.16), we compute
the following quantity on the boundary B(rg)

fl( ) =sinf (— T
3 oo +r—0) = sin @ (—3M + 2r) . (4.33)

The tetrad field of the asymptotically flat spacetime is

V= mrTara’r:ro - f(?“o)’/’o sin 6 <

e, = (1,1,r,rsinf) , (4.34)
ety = (1, 1r ' rtsin™ 6’) , (4.35)

which we use to compute the torsion term (7%, )¢ and obtain

2
(Tara)[) = Ttrt + Trrr + T¢T¢ + Te?"@ = ; . (436)

10They cancel each other out because the argument of both integrals is the same and is independt of t.
We use e, given in eq. (4.26) to compute the argument of the integral following the same procedure done

for the torsion of the three-cylinder B(rg): n#*T® 0 — (NPT 10)0 = n'T"y. = —nle” ,0re® = 2ff(/,r(;3)/2 =: F(r)

which does not depend on ¢. One may see as follows that the two integrals cancel each other out

s, P+ Jo, F(r) = = [, F(r)+ J, F(r) =0.
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4 ENTROPY OF A SCHWARZSCHILD B. H. 4.6 Symmetric teleparallel approach

The normal vector of the asymptotically flat spacetime to the three cylinder B(rq) is obtained
using the metric of asymptotlcally flat spacetime and is m* = (0,1,0,0). Therefore, using
again /—v = f (7“0) 272 sin @, we compute the following quantity on the boundary B(r)

2
/—_7 mT(TVTV)(]’T:TO _ f(ro)% sin 93 ~ sin 6 2rq (1 — % + 0O <M )) —

To To 7”0

= sinf <2r0 —2M + O (l>) : (4.37)
T'o

where we used the Taylor series of f(rg)"/? = (1 — 24)1/2 ~1 — T 4 O(%—;)
0
Plugging in the results of eq. (4.33) and eq. (4.37) in eq. (4.41), we obtain

So= o T / a6 / 087/ =71 (T — (T )o)lrmry =

B 6 27r . B
__8_7r d¢/ df sin 0 <—M—|—(’)<T—O)> =

ﬁM—i— @ < ) — EM (4.38)
rg /) ro—oo 2
Recalling that the period of the Euclidean time is g = 87 M, we get the following result for
the Euclidean action of a Schwarzschild black hole
B B

Sp="M=

=47 M?, 4.39
2 167 (4.39)

which agrees with the result obtained using the Gibbons-Hawking-York approach.

4.6 Symmetric teleparallel approach

Here we are going to calculate the Euclidean action for a Schwarzschild black hole using the
symmetric teleparallel action of general relativity. To my knowledge, this is not been done in
the literature. Inserting the result obtained in eq. (3.87) into the definition of the symmetric
teleparallel action (3.77), we obtain

SQ 167T d4£lf 2 R + Ta— d4$ V _gvu(Quaa - Qaua) =

- d4x VEgR+—— [ @yl (@a - Q). (440)
oM

where in the second equality we used as usual the Gauss’ theorem to calculate the second

term on the boundary OM = (=%;,) U B U X;, where to calculate the Euclidean action we

will set t; = 0 and t, = —if5.

Since the Schwarzschild metric is a solution of the vacuum Einstein fields equations,
the Ricci scalar vanishes, leaving the Euclidean action completely determined by the non-
metricity term. As explained in section 3.4.1, we can choose the gauge condition such that
the connection of the symmetric teleparallel action vanishes, i.e. f“aﬁ = 0. In this gauge
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4 ENTROPY OF A SCHWARZSCHILD B. H. 4.7 Entropy of Schwarzschild black holes

the non-metricity tensor takes the following form @ ,ag = V905 = 0490 and it implies that
the term Q"*, in eq. (4.40) vanishes because Q**, = 0"g*, = 0"6% = 0. Noticing that
on the hypersurfaces ¥;, and X, it holds n,Q."* = n:Q,"* = n:0,¢9" = 0, we compute the
Euclidean action as follows

Sp=—iSg = —Z< / By Vhn, Qo — / B2 /= mpQu™ + / d*yVh n“Qa“o‘> =
167 \ Jx,, B(ro) iy
_ v dt/ d*w /=y m, Q" =
- 167 S2(ro e = =
_ v dt/ d*w /=y m,0,g""| =
167 S2(ro) O r=re =
2 2M
. dd)/ db/ f(ro)ré sin ) ———0, ( —) =
167T ’ V f( 0) r r=ro
- gM. (4.41)

Note that for the symmetric teleparallel action the constant of integration Sy, which makes
the action physical, is trivial because the boundary term is completely determined by the
non-metricity which does not diverge at infinite due to the choice of coordinates.
Recalling that the period of the Euclidean time is 8 = 87 M, we get the following result
for the Euclidean action of a Schwarzschild black hole
s B8 >
Sp==M = =A4r M~ , 4.42
P79 167 (4.42)
which agrees with the results obtained using the Gibbons-Hawking-York and teleparallel
approaches.

4.7 The entropy of a Schwarzschild black holes

We now use the first leading order approximation of the partition function given in eq. (4.5)
to compute the partition function of a Schwarzschild black hole, i.e.

2

InZ ~ _SE(QO) = —

4.43
o (4.43)

which we use to calculate the entropy on the event horizon. From thermodynamics we know
that the energy of the system relates to the partition function as

Oz p
E = 4.44
op T8t ( )
while the Bekenstein-Hawking entropy is obtain from In Z = S — SE as follows
B , A
S=InZ+pE=(1—-p0)InZ =— 6n =4 M =7 (4.45)

where in the last equality we substituted the surface area of the Schwarzschild black hole
event horizon, i.e. at the Schwarzschild radius r=2M one obtains A = 47r? = 167 M?2.
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5 CONCLUSIONS

5 Conclusions

We solved the variational problem of the Einstein-Hilbert action for spacetime manifolds
with boundaries. This required us to correct the Einstein-Hilbert action with a counter-
term. For spacelike and timelike boundaries the counter-term is the GHY boundary term,
while for null-like boundaries the counter term is the one found by K. Parattu et al. [8]. We
want to draw the attention of the reader to the fact that although this problem was solved
for non-null boundaries more than forty years ago, it is surprising that not until recently
somebody has found a solution for null-like boundaries. Another important point on which
we want to draw the attention to, is that the tetrad formulation of general relativity allowed
us to obtain both boundary terms with much less efforts.

The study of boundary terms brought us to explore alternative spacetime geometries of
general relativity. We studied the teleparallel action of Weitzenbock spacetime and the sym-
metric teleparallel acton of symmetric teleparallel spacetime showing that these alternative
geometries are equivalent to the Einstein-Hilbert action of Riemann spacetime up to a di-
vergence term, i.e. the boundary term. While these three geometries use different properties
of the spacetime manifold to describe the effects of gravity, they are equivalent up to the
boundary term. We compared these three alternative geometries computing the Euclidean
action for a Schwarzschild black hole. We used this result to compute the entropy of the
black hole. All the three approaches delivered the same result.

We worked out the entropy of a Schwarzschild black hole just an example on how one
may find an astrophysical application to compare these different formulations of general
relativity. We hope to have aroused the reader’s curiosity and to have made him aware of
this ambiguity in the description of spacetime manifolds in general relativity. An interesting
outlook of this work could be to further investigate the differences between these three
formulations studying for example the coupling of matter to gravity. It is well known that
Dirac fermions do not couple with the non-metricity but do couple with the contorsion part
of the affine connection, one may expect that the different boundary terms play different
roles in the coupling. Furthermore, if fermions have a Lagrangian that goes beyond the
Dirac Lagrangian, then even the non-metricity could play an important role in the coupling.
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