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Abstract

This thesis reports on a search for spontaneous radiation from wave function collapse
in the first science data from XENONnT. It further investigates the impact of the
inhomogeneous electric drift field in the detector. Based on the results of a performed
data-driven reconstruction of the drift field, it was found that the corresponding field
corrections are of the order of 0-2% and subdominant compared to other signal correc-
tions. With this, the search for x-ray signatures of spontaneous wave function collapse
was performed in the parameter space of reconstructed event energy using the analy-
sis framework developed for the XENONnT low-energy electronic recoil searches. No
evidence of such a signal was found in 1.16 tonne-years of exposure. Given the low
electronic recoil background in the energy region of interest (19, 140) keV, this allowed
to set limits on the phenomenological parameters of the continuous spontaneous local-
ization (CSL) and Diósi-Penrose (DP) models. We obtain λ/r2

c < 3.04 × 10−3 s−1m−2

at 95% C.L. for the CSL model and R0 > 1.4 × 10−9 m at 95% C.L. for the DP model.
These represent the first results from a liquid xenon TPC and set the strongest upper
bounds on the CSL model for rc < 10−5 m and the strongest bounds on the DP model
to date.
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Introduction

There is a difference between a blurred or
poorly focused photograph and a photograph
of clouds and wafts of mist.

Erwin Schrödinger, 1935

The theory of quantum mechanics has revolutionized our understanding of Nature at
small scales and predicts the outcomes of experiments with great success. However,
since its development over 100 years ago, the theory has sparked a debate about the
measurement process itself that has yet to be resolved. It is not the complexity of such
a process that is not understood but the fundamental difference between the dynamics
of a quantum system before and during a measurement. Whereas quantum systems
can be in superposed states, we always observe only one state at the time of mea-
surement. And although the Schrödinger equation, which describes the dynamics, is
deterministic, it can only assign a probability to a quantum mechanical system being
found in a specific state. This constitutes the measurement problem.

The models of wave function collapse offer a possible solution to this problem [1].
By modifying the Schrödinger equation, these models add an internal mechanism to
the theory that causes the breakdown of superposition without the need for an exter-
nal observer. Moreover, the mechanism is intrinsically probabilistic. To preserve the
successful description of quantum mechanics of the microscopic world, the introduced
collapse mechanism only becomes dominant for large systems. Thus, models of wave
function collapse are phenomenological theories, suggesting that there is a more fun-
damental underlying theory.

Due to the modified dynamics, the predictions of the models of wave function collapse
deviate from standard quantum mechanics and thus can be tested experimentally [2].
One consequence of the collapse mechanism is the diffusion of particles in space, re-
sulting in the emission of radiation for charged particles. The radiation is predicted
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to be emitted predominantly in the x-ray regime at a low rate, requiring detectors
with a low background and an energy threshold at the keV scale. Several experiments
have tried to detect the radiation, but so far, without success. Nevertheless, they were
able to constrain or rule out certain subsets of proposed wave function collapse models.

This work presents the first search by the XENONnT dark matter experiment for the
radiation from wave function collapse. The main goal of the experiment is the direct
detection of dark matter in the form of weakly-interacting massive particles via their
interaction with xenon nuclei [3]. However, the low background and the large target
mass make the detector a leading observatory for various other rare event searches [4].
For this thesis, I use the data collected during the first science run between July and
November 2021 to test two of the most studied wave function collapse models: the
continuous spontaneous localization model [5] and the Diósi-Penrose model [6]. Both
models predict a collapse-induced radiation emission by charged particles.
The expected signal of both models is continuous in energy. This motivates a good
understanding of the detector’s signal reconstruction over a broad range of energies.
XENONnT detects scintillation and ionization signals generated by particle interac-
tions with xenon electrons or nuclei. To measure the ionization, an external electric
field is required to drift electrons away from the interaction site to a gaseous phase
above liquid xenon, where they induce a secondary scintillation light. However, this
electric drift field is not completely uniform. Therefore, before performing the signal
search, I reconstruct the electric drift field with a data-driven approach. I use the
results to investigate how the non-uniformity of the drift field affects the signal recon-
struction and consequently the search for radiation from wave function collapse.

The thesis is structured as follows: Chapter 1 introduces the theoretical motivation
for wave function collapse models, outlines how they can be tested experimentally, and
gives an overview of the current state of research. Chapter 2 describes the design, the
detection principle, and the signal reconstruction of the XENONnT experiment. The
reconstruction and characterization of the electric drift field are presented in chapter
3. The method and results of the search for radiation from wave function collapse are
shown in chapter 4, followed by a conclusion and an outlook.
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Chapter 1

Wave function collapse

The models of wave function collapse, or just collapse models, were introduced to
explain the absence of superposition of macroscopic objects and the probabilistic nature
of measurements in quantum mechanics. Before presenting different proposed collapse
models, the measurement problem of quantum mechanics is explained in more detail
in the following section.

1.1 The measurement problem of quantum
mechanics

The measurement problem already became apparent in the beginnings of quantum me-
chanics, most famously illustrated by Erwin Schrödinger’s cat paradox [7]. The absurd
thought experiment of a cat being alive and dead at the same time before observing it
highlights the special role of the measurement and the fact that the theory does not
set an upper limit at which it is no longer valid. Why does the cat behave classically
and not quantum-like when it is made of atoms? The apparent lack of macroscopic
superposition contradicts the superposition principle that follows directly from the lin-
earity of the Schrödinger equation.
The standard formulation of quantum mechanics postulates that the wave function
collapses to one eigenstate of an observable as a consequence of the measurement pro-
cess [8]. An idealized measurement scheme by von Neumann illustrates why this axiom
is problematic [9]. A derivation without assuming an idealized measurement is given
here [10] but leads to the same conclusion. The spin of a single electron is measured
in a certain direction. The wave function |φ0⟩ describes the initial configuration of the
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electron that forms a superposition of the spin pointing up- and downwards:

|φ0⟩ = 1√
2

(|up⟩ + |down⟩) . (1.1)

The macroscopic measuring apparatus A has two disjoint pointer states A1 and A2

that correspond to the two spin eigenstates. Even though the macroscopic apparatus
has many degrees of freedom, it is in principle described by a wave function if quantum
mechanics is a complete theory. Interacting with the electron, the system evolves
according to the linear Schrödinger equation into the following entangled final state:

|φ0⟩ ⊗ |A0⟩ −→ 1√
2

(|up⟩ ⊗ |A1⟩ + |down⟩ ⊗ |A2⟩). (1.2)

If the wave function contains all the information about the electron as well as the
macroscopic apparatus, and the time evolution is strictly linear, then the measurement
itself cannot destroy superposition. Due to the linear interaction, the apparatus is in
a state of macroscopic superposition in the final state. This is of course not what is
observed: Individual measurements show the spin directed up- or downward.
This leads to the second aspect of the measurement problem, the emergence of prob-
abilities in quantum mechanics. By the Born rule, the square modulus of the wave
function can be interpreted as probability for the occurrence of each outcome, e.g. in
1.2 both spin directions are equally probable. The rule gives accurate predictions for
experiments but stands in strong contrast to the Schrödinger equation’s deterministic
nature. For a given initial state of the wave function, the equation determines how
it evolves over time. In essence, the measurement problem raises the crucial question
if quantum mechanics provides a fundamental description of nature or if it is just a
method to predict the outcomes of measurements [11].
Several resolutions to the measurement problem have been proposed, though none has
gained consensus or been proven correct. The three main proposals can be presented
along three incompatible assumptions of standard quantum mechanics, following [12]:

1. The wave function gives a complete description of a physical system.

2. The time evolution of the wave function is always determined by the linear
Schrödinger equation.

3. Measurements yield definite outcomes.

Each proposal has to reject one of these assumptions to resolve the measurement prob-
lem. Thereby, the first two proposals do not change the predictions for experiments
and therefore are not falsifiable.
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Chapter 1. Wave function collapse

• The de Broglie-Bohm theory rejects the first assumption and hence is a so-
called hidden-variables theory [13]. At the center of the theory are point particles
that move along trajectories determined by the wave function. However, the
initial conditions are in principle unknown or hidden.

• In the Many-worlds interpretation introduced by Everett, measurements
do not result in one or another outcome, but instead all possible outcomes are
realized by splitting up the Universe into independent branches [14].

• Collapse models reject the second assumption by proposing new physics, but
retain the assumption of definite outcomes in measurements and a complete de-
scription of a physical system by the wave function.

1.2 Wave function collapse models

Over the last decades, a variety of collapse models have been developed [1]. They all
incorporate a modified Schrödinger evolution that breaks the quantum superposition
at the transition from the microscopic to the macroscopic realm. The mathematical
description of the new dynamics replaces the collapse postulate of the Copenhagen
interpretation and makes the role of the external observer obsolete. Besides substan-
tial differences, the collapse models share many common features that are necessary
for a coherent solution to the measurement problem: The additional terms in the
Schrödinger equation are nonlinear to suppress superposition. They are stochastic, so
the collapse to an eigenstate is random but distributed according to the Born rule, and
they must prohibit faster-than-light signaling to preserve causality. Furthermore, an
amplification mechanism is required that makes the new terms only dominant when
the size or mass of systems increases. Finally, the localization of the wave function
occurs in the position basis to ensure that no macroscopic object is found delocalized
in space.
The first consistent collapse model that was able to fulfill all these properties was the
GRW model, introduced by Ghirardi, Rimini, and Weber (GRW) in 1986 [15]. Its
simple collapse mechanism is illustrated in figure 1.1 and conveys the general idea of
collapse models well. Each particle in an N-particles system experiences collapses, also
called jumps, that occur randomly in time and space. The spontaneous jumps localize
not only the wave function of the single particle but of the whole N-particle system
and are represented by a Gaussian operator L. The position distribution of the jumps
is given by ||Li

x ψ(x1, ..., xn, t)||2 such that the localization coincides with standard
quantum mechanics. Between jumps, the evolution of the wave function follows the
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Figure 1.1: Schematic of the waveform collapse process in the GRW model in 1D.
The initial wave function ψ is localized in space by the multiplication with a Gaussian
function. The larger the wave function at a given position, the larger is the collapse
probability. The final state has a resolution rc. Figure adapted from [11].

standard Schrödinger equation. The model has two phenomenological parameters that
need to be determined experimentally: the mean collapse rate λ determining the fre-
quency of jumps, and the resolution rc setting the spatial width of the collapse.
The GRW model was subsequently developed further to replace the discrete jumps
with a continuous evolution and to include the description of identical particles. In
the focus of this work are two of the most studied collapse models, the continuous
spontaneous localization model and the Diósi-Penrose model.

1.2.1 Continuous spontaneous localization model

The continuous spontaneous localization (CSL) model is a continuous generalization of
the GRW model, including the description of identical particles [5]. The jumps are re-
placed by a continuous collapse process that is induced through the interaction between
particles and a randomly fluctuating classical field. The random field, or noise field, is
primarily introduced to describe the stochasticity of the collapse process. However, it
has been suggested that the field could be interpreted as a real physical field, possibly
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Chapter 1. Wave function collapse

of cosmological origin [1]. The continuous interaction of particles with the noise field
does not only localize the wave function but induces a Brownian-like diffusion of the
particles, corresponding to an accelerated movement in space. In the case of charged
particles, the random acceleration leads to the spontaneous emission of radiation. The
diffusion and the resulting radiation are not predicted by quantum mechanics and offer
the opportunity to test the CSL model, as it will be discussed in section 1.3 in more
detail.
The modified Schrödinger dynamics can be expressed in terms of a stochastic differen-
tial equation [16]:

d |ψt⟩ =
[
− i

ℏ
Ĥ dt+

√
α
∫

d3x
(
M̂(x) − ⟨M̂(x)⟩t

)
dWt(x)

−α

2

∫
d3x d3y D(x − y)

∏
q=x,y

(
M̂(q) − ⟨M̂(q)⟩t

)
dt
]

|ψt⟩ , (1.3)

where |ψt⟩ is the wave function in standard bracket notation, and x and y are 3D
spatial vectors. The first term on the right side of eq. (1.3) represents the standard
Hamiltonian evolution, dominating the microscopic regime. The second and third term
cause the localization in space. The stochastic dynamics is expressed in the form of
Wiener processes Wt(x) for each point in space [17]. The noise field is then defined as
wt(x) = dWt(x)/dt and has the correlation function D(x − y) given by

D(x − y) = exp
(
−|x − y|2/4r2

C

)
. (1.4)

The collapse operator is the mass density operator M̂(x) = mψ†(x)ψ(x), with the
particle creation and annihilation operators ψ†(x) and ψ(x). The non-linearity is in-
troduced by the expectation value of M̂(x):

⟨M̂(x)⟩t = ⟨ψt|M̂(x)|ψt⟩. (1.5)

The characteristic constant of the model is

α = λ

m2
0
, (1.6)

where the mass m0 is a reference mass that is by convention set equal to the nucleon
mass. The phenomenological parameters are the same as in the GRW model, the col-
lapse rate λ and the resolution or correlation length rc. The two parameters define at
which scale the collapse terms become dominant and suppress macroscopic superposi-
tion. In this reasoning, Ghirardi, Rimini and Weber proposed λGRW = 10−16 s−1 and
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rc = 10−7 m [15]. Later, Adler argued that collapse should already be effective in the
mesoscopic regime, based on the process of latent image formation, where relatively
few particles form a photography. Adler proposed to set λAdler = 4 × 10−8±2 s−1 at
rc = 10−7 m or λAdler = 10−6±2 s−1 at rc = 10−6 m [18].
The CSL model gives a consistent framework of the collapse, but two problems arise
from it. First, the Brownian diffusion induced by the noise field clearly violates energy
conservation. It increases the energy of the system slowly but steadily. A possible
resolution are dissipative extensions of the model, where the energy reaches a finite
equilibrium [19]. Second, the noise field of the CSL model is white in time, meaning
it has a flat frequency spectrum. This is a mathematical idealisation and can not rep-
resent a real physical field. Colored extensions have been formulated, where the noise
field has a frequency cutoff as a new parameter [20].
The mentioned modifications of the CSL model preserve the collapse process but can
alter the predictions for empirical tests. Besides the extensions, there is also an ongo-
ing effort to develop an underlying fundamental theory from which the collapse models
emerge and that could resolve these problems [21]. Such a theory would also provide
a stronger theoretical motivation for the phenomenological collapse models.

1.2.2 Diósi-Penrose model

The Diósi-Penrose (DP) model emerged from the idea that the collapse of the wave
function could be caused by gravity [6, 22]. The larger the mass of a system, the faster
is the collapse of the superposition of different spacetimes. Like the CSL model, the
general structure can be expressed in terms of eq. 1.3 with [2]

DDP(x − y) = 1
|x − y|

(1.7)

αDP = G

ℏ
, (1.8)

where DDP(x − y) is the correlation function of the DP model and G in αDP is the
gravitational constant. In addition, a parameter R0 needs to be introduced to give
particles a finite size. For point-particles, the collapse rate diverges and the instan-
taneous collapse would suppress superposition also for microscopic systems. Penrose,
who developed the gravity-related collapse model independently from Diósi, suggested
to set the regularization parameter R0 equal to the spatial width of the wave function
[23]. The similar structure of the CSL model and the DP model imply that the gravity-
related model also induces a Brownian diffusion that can be probed experimentally.
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Chapter 1. Wave function collapse

1.3 Experimental tests
There are two approaches to test the CSL model and the DP model: interferometric
and non-interferometric experiments. No type of experiment has observed a conclusive
signal so far, but technological improvements have made it possible to constrain the
corresponding parameter spaces more and more.

1.3.1 Interferometric experiments

The most direct way to check the validity of the superposition principle at all scales
is to demonstrate that even large, massive particles show interference effects [24]. The
challenge in interferometric experiments lies in preparing a well-isolated system where
a coherent spatial superposition persists over a long enough period of time. Other-
wise, the interaction with the environment destroys the interference. Note here, that
decoherence by environmental interactions can, however, not resolve the measurement
problem. Decoherence disentangles superposed states but cannot destroy the superpo-
sition [1]. The most stringent interferometric limit for the CSL model was set by an
experiment that measured interference fringes for molecules consisting of up to 2000
atoms and with masses above 25 kDa [25]. The experiment excluded collapse rates
λ > 10−7 s−1 at rc = 10−7 m and thus parts of the theoretical values suggested by
Adler [18]. Interferometric experiments are not the most sensitive test of the CSL
model, but they are robust to dissipative and colored modifications of the model (see
sec. 1.2.1) [26]. For the DP model, interferometric experiments have not been able to
set competitive limits [27].

1.3.2 Non-interferometric experiments

Non-interferometric experiments try to measure the Brownian diffusion induced by the
noise field. The approach has the advantage that the system under investigation does
not need to be in a carefully prepared superposed state. A variety of experimental
techniques can exploit the continuous interaction of particles with the noise field, de-
scribed briefly below. Figure 1.2 displays the most stringent exclusion limits for the
CSL model from non-interferometric experiments and theoretical propositions.

Cold atoms

Cold atom experiments cool a few atoms down to temperatures near absolute zero.
They can then measure the position variance of the cloud of atoms. The collapse-
induced Brownian diffusion would give rise to additional growth of the position variance
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compared to the quantum mechanical prediction [28]. If no excess growth is observed,
this type of experiment can set upper limits on the CSL collapse parameters. These
limits are almost unaltered for colored CSL models. For dissipative models, however,
they are much weaker because the dissipative effect reduces the Brownian diffusion.

Figure 1.2: Exclusion limits for the CSL collapse parameters λ and rc from non-
interferometric experiments and theoretical propositions. The upper bound from the
gravitational wave (GW) detector LISA Pathfinder [29, 30] excludes the purple shaded
parameter space. The red exclusion area is obtained from a cantilever experiment [31],
the green area from a cold atoms experiment [28], and the blue-green area is derived
from the measured heating rate in the CUORE experiment [32]. The two most stringent
limits from searches for x-ray emission are set by Donadi et al. [33] (light blue) and the
MAJORANA experiment (dark blue) [34]. The black dots and the circle represent the
theoretical values suggested by Adler [18] and GRW [15], respectively. The theoretical
lower bound excluding the gray area is based on the following requirement: a graphene
disk of the minimum size a human eye can resolve (≃ 0.01 mm) should be localized
faster than the human eye’s perception time (≃ 10 ms) [26]. The white area is the
parameter space not yet excluded.

10



Chapter 1. Wave function collapse

Bulk heating

Similarly, the increase in kinetic energy can be measured in terms of the heating rate of
a bulk material at a low temperature. To test the collapse model, the measured heating
rate is compared to the predicted energy depositions of radioactive decays and muons.
The neutrinoless double-beta (0νββ) decay experiment CUORE [32] has set the most
stringent upper limit of this kind and can exclude λAdler completely [35]. Tellurium
dioxide crystals serve as the bulk material and are held at temperatures around 10 mK.

Optomechanical systems

In Optomechanical systems, a mechanical resonator interacting with a radiation field
is used to measure the motion of an object with extremely high precision. The en-
vironment as well as the noise field affect the motion of a test mass. Cantilevers are
one type of mechanical resonator that has been used to constrain the CSL model [31].
Another type of optomechanical systems are gravitational wave detectors. The space-
based LISA Pathfinder provides the most stringent limit on the collapse rate λ for
rc > 10−5 m [29]. The detector measures the motion of two approximately free-falling
masses with an optical system. In contrast to cantilevers, gravitational wave detec-
tors can also set significant constraints on the DP model. LISA Pathfinder excludes
regularization scales R0 < 4.01 × 10−14 m and thus of the size of a nucleon [30, 36].

X-ray emission

Apart from measuring the Brownian diffusion directly, experiments can search for its
secondary effect, the spontaneous radiation emission by electrically charged particles.
The main component of these detectors is a target material that can detect the col-
lapse induced radiation via electromagnetic interactions but serves at the same time as
emitter of the radiation. The emission rate is the largest in the x-ray regime, what will
be explained in chapter 4. To be sensitive to this signal, the detectors need to have
an energy threshold at the keV scale and a low background. This is achieved by direct
detection dark matter experiments and 0νββ decay experiments. The background in
these experiments originates from radioactive decays in detector components, the tar-
get material and the environment, as well as from cosmic particles depositing energy
within the detector. To reduce it, the detectors are designed to minimize the radioac-
tive contamination of their components and are located deep underground, where they
are partially shielded from cosmic rays.
For the CSL model, the search for x-ray emission currently sets the most stringent con-
straints for correlation lengths of rc < 10−6 m. Both upper limits shown in fig. 1.2 are
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obtained with 0νββ decay experiments employing high-purity germanium crystals [33,
34]. On the downside, the introduction of a frequency cutoff by colored CSL models has
a substantial impact on the predicted radiation emission rate. A physical noise-field of
cosmological origin with a cutoff around 1012 s−1 would make the radiation completely
inaccessible for the two shown experiments [37].
For the DP model, the theoretical emission rate is similar. The MAJORANA DEMON-
STRATOR (MAJORANA) experiment has set the strongest lower limit on R0, exclud-
ing values below 4.94×10−10 m. The result rejects Penrose’s hypothesis that relates R0

to the spatial width of the wave function [38]. It follows that R0 cannot be identified
with the size of a particles mass density and the parameter has to be left free and can
only be determined experimentally.
Direct detection dark matter experiments have not presented results for this search
yet. The most sensitive detectors of this kind are dual-phase time projection chambers
as employed, for example, in the XENONnT experiment.
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Chapter 2

The XENONnT experiment

XENONnT is a direct detection dark matter experiment using a dual-phase time pro-
jection chamber (TPC) as a detector. It measures the scintillation and ionization
signals of particle interactions within the xenon target [3]. The experiment is located
underground at the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy, at an
average depth of 3.6 km water equivalent. It is an enlarged and improved version of its
predecessor, the XENON1T experiment, from which it reuses several subsystems [39].
Like XENON1T, it is designed to directly measure interactions of dark matter with
atomic nuclei.
The existence of dark matter is motivated by astrophysical and cosmological observa-
tions at all scales [40]. From measurements of rotation curves of galaxies, observations
of gravitational lensing to the cosmic structure formation, they all show that baryonic
matter interacts via gravity with an unknown type of matter called dark matter. The
study of the cosmic microwave background indicates that 84% of the total matter den-
sity in the Universe is in the form of dark matter. However, its fundamental nature is
unknown and one of the great puzzles in physics today.
The evidence suggests that dark matter could be formed by a new particle beyond
the Standard Model [41]. Such a dark matter particle would have to be massive,
should only interact gravitationally and eventually weakly, and its abundance should
be consistent with the abundance of dark matter. A well-motivated candidate fulfilling
these requirements is the weakly interacting massive particle (WIMP) that emerges
from theoretical extensions of the Standard Model, such as Supersymmetry. WIMPs
are predicted to scatter on an atomic nucleus, transferring a small amount of energy,
but only very rarely. Thus, to detect WIMPs directly, an experiment has to have a
large target mass and measurement time (exposure), a low energy threshold and a low
background. The realization of these requirements in XENONnT makes the detector
ideal for other rare event searches, such as the search for radiation from wave function
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Chapter 2. The XENONnT experiment

Figure 2.1: XENONnT experiment with the water tank (left), cooling and purification
systems and data read-out infrastructure (right) located underground. Image credit:
XENON collaboration.

collapse. In the following, the design of the XENONnT detector and its subsystems
with regard to the experimental requirements is introduced.

2.1 Experimental design
Before the XENONnT experiment was built, all used construction materials were care-
fully selected to minimize their contribution to the background. In a radioassay cam-
paign material samples were screened to measure their radioactive contamination [42].
These measurements are also important later on to model the material background for
a signal search.
The experiment consists of multiple subsystems depicted in figure 2.1. Next to the
large water tank containing the detector, there is a support building where the xenon
is cooled, purified and stored, and the data acquisition (DAQ) system is located. The
cooling system keeps the xenon liquefied at a constant temperature of 177 K. Different
purification systems remove radioactive contaminants from the xenon. A dominant
contribution to the background originates from 214Pb that is in the decay chain of 222Rn,
which is continuously emanated from detector materials. A dedicated radon removal
system reduces the concentration of 222Rn to 1.7 µBq/kg via continuous cryogenic
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(a) (b)

Figure 2.2: a) Sketch of the XENONnT dual-phase TPC enclosed by a double-walled
stainless-steel cryostat and b) of the three nested detectors. Both figures from [3].

distillation [43]. A Krypton distillation column is installed to remove 85Kr, another
important background source [44]. In addition, the xenon is circulated through rare-gas
purifier filters to remove electronegative impurities such as water and oxygen. These
contaminants attenuate the ionization and scintillation signals [39].
The sketch in fig. 2.2b illustrates the inside of the water tank. The water does not only
shield the detector from radioactivity of the environment but serves at the same time
as an active water Cherenkov muon veto. 84 photomultiplier tubes (PMTs) of 8-inch
are mounted to the tank’s walls to measure the Cherenkov light generated by cosmic
muons passing through the water [45]. Optically separated from the muon veto, there
is a neutron veto made of reflective panels and 120 8-inch PMTs to measure the signals
originating from neutron captures in the water.
At the core of the experiment is the dual-phase TPC illustrated in fig. 2.2a, where
particles interact with the liquid xenon and deposit energy. It is installed in the middle
of the neutron veto and is enclosed by a double-walled stainless-steel cryostat to ther-
mally insulate it. The cylindrical TPC has a diameter of 1.3 m and a height of 1.5 m.
It is filled with 5.9 t of liquid xenon (LXe) and has a gaseous phase of xenon (GXe) on
top. Two arrays of 3-inch PMTs ([46]) detect the light signals from interactions, 253
at the top and 241 at the bottom. The TPC walls are made of Polytetrafluoroethylene
(PTFE) reflective panels to maximize the amount of collected light. Electrodes and
field-shaping wires are used to apply an electric drift field in the liquid and an extrac-
tion field in the gaseous phase. The two electric fields are required for the detection
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method of a dual-phase TPC, introduced in the following section.

2.2 Signal detection with a dual-phase TPC

An incident particle deposits energy either on a xenon nucleus, denoted as nuclear re-
coil (NR), or on a bound electron, an electronic recoil (ER). Both interactions generate
excitation, ionization, and heat. The share of each process varies with the type of in-
teraction [47]. Figure 2.3 illustrates how the dual-phase TPC can detect the excitation
and the ionization signal. The excited xenon atoms Xe⋆ rapidly form excited dimers
Xe⋆

2 with neighboring xenon atoms. The dimers decay to the dissociative ground state
by emitting scintillation light at 175 nm in the vacuum UV regime [48]. In addition,
the ions Xe+ and free electrons e− produced by ionization can recombine to a dimer,
releasing more light. These two mechanisms give rise to the prompt scintillation signal
that is detected by the PMTs and called S1. A secondary delayed signal is created
with the help of the electric drift field, that is applied between the cathode, above the

Figure 2.3: Signal detection in a dual-phase xenon TPC. The energy deposition of a
particle creates a prompt scintillation light (S1) and free electrons that create a delayed
secondary light signal (S2) when they are extracted into the gaseous phase. The two
light signals are detected by two arrays of photosensors. Image credit: Lutz Althueser.
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bottom PMTs, and the gate, slightly below the gaseous phase. The drift field sup-
presses the recombination process and drifts ionization electrons upwards within the
liquid. The strong electric field of a few kV/cm between gate and anode extracts them
into the gaseous phase producing scintillation light via electroluminescence, also at 175
nm. This amplified signal is called S2 and is proportional to the number of electrons.
Both S1 and S2 are given in the unit of photoelectrons (PE), the number of electrons
ejected at the PMT photocathodes.
With the two signals, the position and energy of an interaction can be reconstructed
[49]. The horizontal position (r,φ) of an event is determined from the S2 light pattern
on the top PMT array. The drift time between the prompt S1 and the delayed S2 signal
gives the vertical position (z). To determine the total deposited energy per event, both
S1 and S2 are combined. The ratio of S1 to S2 depends on the type of interaction and
the energy, but they are anti-correlated such that the energy can be calculated from
their weighted sum [39]:

E = W

(
S1
g1

+ S2
g2

)
, (2.1)

where W=13.7 eV is the average energy to ionize or excite a xenon atom, and S1 and S2
are the signals in PE. The photon detection efficiency g1 describes the average amount
of measured PE per scintillation photon, the charge amplification factor g2 per escape
electron, respectively. The two parameters are detector-specific and measured with
radioactive calibration sources that generate a mono-energetic signal. Figure 2.4 shows
the fit of such an energy calibration in XENONnT.
A crucial advantage of the presented detection principle is that it enables a significant
reduction of the background in three different ways. First, electronic recoils can be
distinguished from nuclear recoils by their ratio S1/S2, because they generate relatively
more ionization [47]. The discrimination allows to reject ER interactions, for example
β and γ decays, as a background in an NR signal search, and vice versa. Second, the
3D position information can be used to select only interactions occurring in the central
volume of the TPC, the fiducial volume. The liquid xenon in the outer parts shields
the fiducial volume very effectively from external radioactivity of detector materials
and the environment. Finally, events with multiple interactions inside the TPC, such
as they would occur for neutrons or Compton-scattered γ-rays, can be removed for
searches of signals that interact only once [49].
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Figure 2.4: Top panel: Energy calibration of XENONnT extracted from the charge
yield per unit energy as a function of the light yield per unit energy. Black markers
denote mono-energetic calibration lines used for a fit of g1 and g2. Grey points from
high energy lines above 1 MeV were excluded from the fit due to missing high-energy
optimizations. The best-fit calibration is indicated by a solid orange line. The 1σ
and 2σ uncertainty bands from uncertainty propagation with the covariance matrix
are indicated by the darker and lighter orange bands, respectively. Bottom panel: Non
normalized residuals of the fit with model uncertainties. Figure from [50].

2.3 Event reconstruction

When the PMTs of a dual-phase TPC detect scintillation light, they convert it into
electrical signals, which are then digitized and saved as raw data. For analysis, the
raw data has to be processed to reconstruct the individual interactions and their cor-
responding S1 and S2 signals. In XENONnT, this event reconstruction process is done
with the software straxen [51].
Straxen is is used for the processing, storage and corrections of the collected data. It
is built on top of strax [52], a generic analysis framework for xenon TPC experiments.
The framework consists of four basic structures: the context, plugins, data types and
data kinds. The context holds the general configuration of the processing. The plugins
are the algorithms that produce different data types. The data types are defined by
the specific information they contain. The data kinds represent different levels of the

19



University of Zurich

data processing.
In straxen, there are five data kinds corresponding to five main levels of the reconstruc-
tion process [53]: pulses, hits, peaklets, peaks and events. The digitized and amplified
signals of the PMTs are called pulses and form the lowest level. When XENONnT
collects data, the data acquisition system records all pulses that crossed the internal
trigger level of a PMT channel. The pulses are stored for each PMT individually at
this stage. In the next step, an algorithm identifies hits. These are defined as pulses
that are above a certain threshold and occur within a certain time window.
The goal is then to identify peaks from the hits that correspond to individual S1 or S2
signals. To do so, the hits from different PMTs occurring within 700 ns are grouped
into clusters [4]: the peaklets. The peaklets are divided into smaller clusters until
they contain no more than one S1 or S2 candidate. The peaklets are represented by
so-called waveforms, the sum of all contributing pulses as a function of the time. By
integrating a waveform over time, the number of measured photoelectrons is obtained,
denoted as peak area. Based on the rise time, width and area of the waveform, and the
number of contributing PMTs, the peaklets can be classified as S1 or S2 peaks. While
S1 peaks have a fast-rising waveform, the S2 peaks are broader due to the diffusion
of the electron cloud during the drift and the extraction process that generates the
secondary scintillation. S1 peaks need at least three PMTs contributing within a time
window of 100 ns, S2 peaks require at least four contributing PMTs.
To obtain events corresponding to an interaction inside the TPC, the S1 and S2 peaks
are paired. The pairing algorithm starts with an S2 peak above 100 PE and defines a
time window around it. In multiple steps, a matching S1 is searched. As some inter-
actions, such as a decay, deposit energy in two stages at the same position, a second
S1 or S2 peak can be added to a paired S1 and S2 peak. The larger peaks are denoted
as main S1 and S2 and the smaller ones as alternate S1 or S2. Figure 2.5 shows the
waveform of a successful pairing of an S1 and an S2 peak that forms an event. As a
last step of the reconstruction process, various parameters characterizing an identified
event are calculated and stored, such as the event position or energy. XENONnT uses
machine learning algorithms to reconstruct the horizontal interaction position from the
S2 pattern on the top PMT array. The energy is determined with eq. (2.1) introduced
in the last section.
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Figure 2.5: Waveform of a successfully reconstructed event containing an S1 and
an S2 signal. In the upper left, the waveforms of the main S1 and S2 are shown
individually. The lower panel shows the two peaks combined on a time scale of µs.
The S2 PMT hit-pattern in the upper right shows the reconstructed position as red
marker, whereby the color scale indicates the amount of light detected per PMT. Credit:
XENON collaboration.

2.4 Calibration source 83mKr

In XENONnT, several radioactive sources are employed to calibrate the detector. The
calibration source 83mKr, in the focus of chapter 3, is used for several purposes: the
energy calibration, position and signal corrections, and detector stability monitoring.
The metastable isomer decays in two transitions to the ground state by releasing in-
ternal conversion electrons followed by auger electrons, γ- or x-rays [54]. Figure 2.6
illustrates the branching fractions of the different decay modes. The metastable state
with a half-life of 1.83 h decays to an intermediate state with a half-life of only 154 ns.
The first transition releases 32.1 keV of energy and the subsequent transition 9.4 keV.
The wide application of the source in XENONnT is based on several advantageous
properties of the source. The half-life of 1.83 h is short enough that the source does
not contaminate the detector for a longer period of time, but vanishes quickly after the
calibration is complete. On the other hand, the half-life is long enough for the source
to be homogeneously distributed in the detector, which is required to make signal cor-
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Figure 2.6: Decay scheme of 83mKr with the branching fractions of the different
decay modes. The two transitions of 32.1 keV (S1a) and 9.4 keV (S1b) release internal
conversion (IC) and Auger (Aug.) electrons, and gamma- (γ) and x-rays. Figure
adapted from [54].

rections throughout the detector. The source is injected into the XENONnT TPC
through an emanation chamber connected to the gaseous purification system. The
chamber contains the parent isotope 83Rb, which has a half-life of 86.2 d and produces
83mKr via electron capture. While 83mKr emanates as gas and mixes with xenon, 83Rb
remains contained in the chamber [55].
In liquid xenon, the two subsequent decays of 83mKr produce two mono-energetic energy
depositions. However, due to the short-lived intermediate state (154 ns), it is difficult
to measure distinct S1 and S2 peaks for each transition. For most reconstructed 83mKr
events in XENONnT, the peaks cannot be separated but are observed as one merged
S1 and one merged S2 peak, corresponding to an energy of 41.5 keV [56]. For decays
more than about 350 ns apart, the two S1 peaks can be separated and are stored as
an event with a main and an alternate S1. The S2 signals have a larger width due to
the diffusion of the drift electrons and extraction process. Therefore, they cannot be
separated and are always stored as one merged main S2. The positions of the two inter-
actions occur within O(10 µm) ([54]), whereas the position reconstruction uncertainty
is O(2 cm) in XENONnT. Hence, they are not separable.
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2.5 Corrections

As the detectors response to an interaction is not uniform, several corrections need to
be applied to the reconstructed events. In the following, it is detailed what kind of
corrections are applied in XENONnT to achieve a position and energy reconstruction
that is independent of the interaction type and position.

Position

The position reconstruction is affected by the electric drift field that is not completely
uniform. Mainly at the bottom of the detector and high radii, boundary effects in-
troduce a horizontal component on top of the vertical component of the drift field [4].
The electrons are drifted inwards such that the reconstructed positions are biased to
smaller radii. To correct the bias, the homogeneous distribution of 83mKr is used. A
correction map in r =

√
x2 + y2 and z is derived by requiring that the reconstructed

event coordinates of 83mKr are distributed homogeneously within the active volume of
the detector.

Energy

The energy is reconstructed from the weighted sum of the peak areas of S1 and S2.
In the following, the measured peak areas in PE are denoted in italics by S1 and S2,
while S1 and S2 refer to the signals themselves. Because of the linear anti-correlation
of S1 and S2, the reconstructed energy is independent of the electric drift field [57].
A locally higher drift field enhances the ionization and S2 but diminishes at the same
time the recombination and S1, and vice versa. Hence, the total energy is conserved.
For this reason, S1 and S2 are by default not corrected for their drift field dependence.
However, there are multiple position-dependent measurement efficiencies that affect S1
and S2. These need to be corrected. The energy is then determined with the corrected
signal areas cS1 and cS2:

E = W

(
cS1
g1

+ cS2
g2

)
. (2.2)

S1

Besides the non-uniform drift field, S1 is influenced by PMT-related efficiencies, and
the light collection efficiency inside the detector, which is governed by the detector’s
geometry and used materials. The dependence can be expressed in terms of the light

23



University of Zurich

yield, that is defined as the amount of measured photoelectrons S1 divided by the
energy E of an interaction and is given as follows [49]:

LY = S1
E

= PY (E,F (r, ϕ, z)) · ϵQE · ϵCE · ϵLCE(r, ϕ, z) (2.3)

PY is the photon yield, i.e. the number of scintillation photons per deposited energy
E. It depends not only on the local strength of drift field F (r, ϕ, z) but also on the
interaction type and energy. The quantum efficiency ϵQE indicates the probability
of one PE being emitted at the photocathode of a PMT, and ϵCE accounts for the
collection efficiency of the first dynode within a PMT. Both ϵQE and ϵCE are here the
average efficiencies of all PMTs together. The light collection efficiency ϵLCE is defined
as the number of photons reaching a PMT per emitted scintillation photon. This is the
second position-dependent factor: reflection on the walls and the liquid-gas interface
leads to less S1 light being detected by the top PMT array compared to the bottom
array. Attenuation in the liquid and absorption on TPC materials decrease the total
collection of S1 light.
This effect is corrected with a light collection efficiency map that is derived with the
merged mono-energetic signal of 83mKr [4]. Thereby, the electric field dependence
has to be separated from geometrical effects in order to achieve a purely geometrical
correction factor. Figure 2.7a shows a 2D geometric correction map for S1. With the
map, the local S1 is normalized to the mean S1=⟨S1⟩ of all events inside the TPC
with the correction factors Lc(r, z, φ):

Lc(r, z, φ) = LY (ϵLCE(r, ϕ, z))
⟨LY ⟩

= S1(ϵLCE(r, ϕ, z))
⟨S1⟩

, (2.4)

where ⟨LY ⟩ is the mean light yield. The corrected signal cS1 is is then given by:

cS1 = S1
Lc(r, z, φ) . (2.5)

S2

For the S2 signal, two corrections are applied, one for the horizontal (x, y) dependence
and one for the vertical dependence (z) [4]. The horizontal dependence originates from
light collection efficiency ϵLCE(x, y), the extraction efficiency ϵext, and the gas gain
G(x, y). The efficiency ϵLCE(x, y) is defined as in sec. 2.5 but is only horizontally
dependent because for S2, all scintillation light is produced in the gas layer at the top
of the TPC. The extraction efficiency ϵext indicates the probability for a drift electron to
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(a) (b)

Figure 2.7: a) Geometric correction map for the light collection efficiency of S1 in r
and z. b) Geometric correction map for the horizontal dependencies of S2 in x and y.
The two visible lines result from a locally higher electric field due to two wires installed
to prevent the gate electrode from sagging. The color scale in both maps indicates the
correction factors. Figure b) from [58].

be extracted at the liquid-gas interface. The gas gain G(x, y) is defined as the number
of produced photoelectrons per electron that is extracted into the gas phase. G(x, y)
and ϵext vary due to inhomogeneities of the extraction field and a tilted liquid level.
Similarly to the S1 correction, a correction map of the horizontal (x, y) dependency
of S2 is derived with 83mKr, shown in fig. 2.7b. The correction factors normalize the
horizontal variation to the mean response of the detector [59]:

gc(x, y) = G(x, y) · ϵLCE(x, y) · ϵext(x, y)
⟨G · ϵLCE · ϵext⟩

. (2.6)

The vertical (z) dependence is due to the absorption of the drift electrons by elec-
tronegative impurities. The greater the depth z, or the longer the drift time t of an
electron, the likelier it is absorbed, resulting in a smaller S2. This attenuation can be
described by an exponential decay law with a characteristic electron lifetime τ :

S2 = S20(F (x, y, z)) · exp
(

− t

τ

)
, (2.7)

where S20 is the initial charge signal and the horizontal dependence is neglected for
a moment. The electron lifetime is measured with the two sources 83mKr and 222Rn.
The correction is then given by the inverse of eq. (2.7). Due to the constant removal
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of impurities in XENONnT, electron lifetimes above 10 ms are achieved, which is
significantly larger than the maximum drift time of 2.2 ms [60].
For the horizontal and vertical correction, the drift field dependence of S20 needs to
be factored out. Furthermore, the two corrections cannot be decoupled. To obtain
one correction, it has to be assumed that the other correction is already done. This
problem can be solved by iterating the corrections several times until they converge.
Finally, all parameters of S2 together yield:

S2 = S20(F (x, y, z)) · ϵLCE(x, y) · ϵext(x, y) ·G(x, y) · exp
(

− t

τ

)
. (2.8)

Both corrections combined give then the corrected signal cS2:

cS2 = S2
gc(x, y) · exp

(
− t

τ

) . (2.9)

In conclusion, the corrections applied to the S1 and S2 signal remove their position-
dependencies, with the exception of the drift field dependence. As explained, the
reconstructed energy, that is used for signal searches, is independent of the drift field.
However, this is only true, if the field dependence of S1 and S2 is factored out of the
S1 and S2 corrections. Otherwise, the corrections are biased by the field dependence
of a certain calibration source and the anti-correlation is no longer given. Therefore,
the electric drift field inside the TPC has to be known to correct the possible impact
of a non-uniform field.
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Chapter 3

Characterization of the electric
drift field

The application of the electric drift field enables the measurement of ionization electrons
by suppressing the recombination of electron-ion pairs and drifting the free electrons to
the liquid-gas interface. However, its non-uniformity affects the position measurement
as well as the amount of scintillation and ionization produced in an interaction. Section
2.5 showed that these effects need to be taken into account in the corrections of recon-
structed signals. In order to remove field effects in the corrections, the actual electric
field in the detector needs to be simulated or reconstructed from data. A simulated
map can offer a high resolution and is not limited by statistics of calibration data.
However, it needs to be validated with such data. Therefore, this work reconstructs
the electric drift field with 83mKr calibration data.

The chapter is organized as follows: The configuration of the electric field in XENONnT
is detailed in section 3.1. Section 3.2 presents the field simulations of XENONnT. Sec-
tion 3.3 covers the data-driven reconstruction of the drift field. Section 3.4 investigates
the impact of the non-uniformity of the drift field. The last section 3.5 discusses the
obtained results and the potential of the data-driven approach for the field reconstruc-
tion.

3.1 Electric field configuration in XENONnT

In XENONnT, the electric fields are generated by five electrodes and two sets of con-
centric field-shaping rings [4]. Figure 3.1 shows the different contributing parts and
their positions in the TPC. Table 3.1 summarizes the voltages that were applied during
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Figure 3.1: Sketch of the TPC with zoom into the top and bottom region, where the
five electrodes are situated. Image credit: XENON collaboration.

Electrode Potential [kV]

Top screen - 0.9
Anode + 4.9
Gate + 0.3
Top field-shaping wire + 0.65
Cathode and bottom screen - 2.75

Table 3.1: Configuration of the electric field during the first science run of XENONnT.

the first science run of XENONnT.
All five electrodes are made of parallel stainless-steel wires. Two of them are installed
slightly above the anode and below the cathode to screen the two PMT arrays from
from high electric fields. The extraction field of 2.9 keV/cm across the liquid-gas
interface is generated by the anode and the gate grid. The wires of these two grids
have a pitch of 5 mm. In addition, the anode and the gate are supported by four and
two perpendicular wires, respectively, to minimize the sagging of the grid.
The drift field is generated by the negatively biased cathode, the positively biased gate
grid and the field cage. With 23 V/cm on average, it is about four times lower than in
XENON1T due to a short-circuit between the cathode the bottom screen, limiting the
voltage that can be applied. The wires of the cathode have a pitch of 7.5 mm. The field
cage consists of two sets of alternating field-shaping wires and guard rings, surrounding
the drift region of the TPC to make the drift field as uniform as possible. The rings
are connected by two redundant chains of resistors. The bottom ring is connected to
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the cathode, while the top ring is biased independently at 0.65 kV.
It was observed in XENON1T that free electrons accumulated on the PTFE side walls
of the TPC [61]. This induced a contribution to the drift field that increased over
time. As this charge-up effect was also expected for XENONnT, avoidance measures
were put in place: the field shaping wires are installed in direct contact with the PTFE
walls, and 360 holes are placed in the wall panels such that the accumulated charge
can more easily be collected by the wires. For the drift field simulations, the charge-up
effect needs to be taken into account and yields an effective drift field. The data-driven
approach directly reconstructs the effective drift field present in the detector.

3.2 Simulation of the electric drift field

In XENONnT the COMSOL Multiphysics software is used to simulate the electric
drift field [62]. COMSOL allows to simulate the electric field for a given geometry
and configuration of electrodes in two and three dimensions. Using the approximately
axisymmetric geometry of the TPC, the simulation for XENONnT is done in 2D, in
the radius r and the depth z [61]. To make the simulation faster, the field of each
contributing electrode is simulated individually. By the superposition principle, the
sum of the individual parts then yields the total drift field.
To include the charge-up effect, an individual map of the electric field induced by the
accumulated charge can be produced with COMSOL. However, the charge distribution
at the PTFE walls is unknown. To find the correct charge distribution, different con-
figurations are simulated and matched against the radial distribution of 83mKr events
that is only dependent on the drift field. The charge distribution is modeled as a linear
gradient on top of a constant charge. The total drift field is then simulated with around
1000 different configurations of the charge distribution. For each simulated total field,
the radial event distribution is simulated by propagating electrons along the field lines.
The resulting distribution is compared to the measured distribution of 83mKr events.
The best matching values for the charge distribution are -0.5 µC/m2 at the top and
-0.1 µC/m2 at the bottom of the TPC, with a linear gradient in between.
Figure 3.2 shows the resulting simulated maps with and without charge-up effect. There
is a clearly visible difference between the two maps. The charge-up effect diminishes
the field at the walls and the bottom, whereas it enhances the field towards the top.
The electric field map that was derived from simulations and 83mKr drift electron paths
can be validated further by a field reconstruction based on 83mKr S1 yields.
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(a) (b)

Figure 3.2: Simulated map of the drift field a) without the charge-up effect b) in-
cluding the charge-up effect. The black contour lines connect positions of equal field
strength.

3.3 Data-driven reconstruction with 83mKr

In the following, the electric drift field is reconstructed with 83mKr calibration data.
The electric field strength is thereby mapped in two and three dimensions for the
entire drift region of the TPC. Whereas the three dimensional map can evaluate the
non-uniformity of the drift field across the entire TPC, the two dimensional map will
be used for the comparison with the simulations. First, the data-driven reconstruction
method is introduced, followed by the selection and analysis of the 83mKr data, the
presentation of the resulting drift field maps and the comparison with simulated maps.

3.3.1 Electric field dependence of the light yield

To reconstruct the electric drift field across the TPC, the data-driven approach makes
use of the field dependence of the light yield [54]. The light yield LY was introduced
in sec. 2.5 and is defined by eq. (2.3). LY depends on the local field strength at the
interaction position but also the measurement efficiencies of the detector. However, by
taking the ratio of the areas of two S1 signals, S1a

1 and S1b of different energies Ea

and Eb, that occur at the same position, the PMT-related efficiencies ϵQE and ϵCE as
well as the light collection efficiency ϵLCE cancel out:

1The non-italic font refers to the signals themselves, while the italic font refers to the
measured peak areas of the signals. 31
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S1b

S1a

= PYa(Eb, F (r, ϕ, z))
PYb(Ea, F (r, ϕ, z)) · Ea

Eb

. (3.1)

For two signals S1b and S1a that originate from interactions with a different field de-
pendence, the peak area ratio S1b/S1a is a measure that varies only with the local drift
field strength F (r, ϕ, z). With a model describing the field dependence of the photon
yields PYa and PYb, the ratio can then be converted into an electric field strength.
Hence, with measurements of the scintillation light from two distinct interactions, the
electric field can be reconstructed.
The calibration source 83mKr is well suited for this data-driven reconstruction method.
As described in sec. 2.4, the two-staged decay of 83mKr delivers events with two mono-
energetic S1 signals at 32.1 and 9.4 keV that yield S1a and S1b, respectively, at the
same interaction position. The homogeneous distribution of the events further allows
to reconstruct a field map of the entire detector. And due to the practical employment
and wide use in XENONnT, calibrations with 83mK are conducted regularly such that
a significant amount of data is available.

Yield-to-field models

Different models are available for converting the photon yield to the electric field
strength. One option is the semi-empirical model provided by the simulation software
Noble Element Simulation Technique (NEST) [63]. NEST can be used to simulate the
energy deposition process in liquid noble element detectors, from the energy deposition
up to the Pulse shape in PMTs [64]. It provides models for different interaction types,
also one specifically for 83mKr. Nevertheless, the tool is not used for the reconstruc-
tion of the drift field because a more recent model is available that is based on direct
measurements of the dependence between the light yield ratio of 83mKr and the field
strength.
The empirical model was obtained with a dual-phase xenon TPC called HeXe at the
Max Planck Institute for Nuclear Physics [65]. HeXe is a cylindrical TPC with a drift
volume of 5.6 cm in diameter and 5 cm in height and was developed for research and
development purposes. It is equipped with two 2-inch PMTs. The electric extraction
and drift fields are applied with a field cage and electrode meshes, whose design is
optimized for a uniform drift field. To obtain a model for the relation between S1a/S1b

and the drift field strength F, the signals from 83mKr decays were measured for different
applied voltages. Note that this model uses, by convention, the inverted ratio of eq.
(3.1), such that the larger S1a (32.1 keV) is divided by the smaller S1b (9.4 keV). The
results and the fit of the data are shown in fig. 3.3. The ratio decreases as a function
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Figure 3.3: HeXe model for the light yield ratio of 83mKr as a function of the electric
drift field. The measurements are fitted with a phenomenological function. The model
from NEST is shown in blue with a shaded area indicating the range for different delay
times. Figure from [65].

of the field strength because the light yield of the first decay decreases faster than the
light yield of the second. The measurements cover drift fields down to 7.5 V/cm and
thus the relevant range for XENONnT, that has a mean drift field of 23V/cm. For the
fit, a function purely motivated by the observed phenomenology was used:

R(F ) = LYa(32 keV)
LYb(9 keV) = S1a(32 keV)

S1b(9 keV) · 9 keV
32 keV = b1 · e−b2·F + b3, (3.2)

where b1, b2 and b3 are the fit parameters. The fit describes the data well and agrees
at lower electric field with the model from NEST [66].

Delay time dependence of the ratio S1b/S1a

As both S1 signals from 83mKr originate from subsequent decays of the same nucleus,
they have to be separated far enough in time to be registered as two signals as men-
tioned in sec. 2.4. This capability depends on the physical delay of the two decays
as well as on the signal reconstruction in the detector. Moreover, the timescale of the
recombination physics determining the signal yields induces a delay-time dependence
of the second S1 that affects the measured ratio S1b/S1a. As observed here [67] and
here [68], the photon yield of the second decay of 9.4 keV depends on the time between
the first and the second decay, denoted as delay time in the following. If the delay time
is short, the cloud of electrons left over from the first decay enhances the recombination
of electron-ion pairs in the second decay, resulting in an increased photon yield.
The delay time dependence can introduce a systematic bias for the drift field recon-
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struction in two ways. First, if the delay times of the events are not distributed equally
across the detector, the ratio S1b/S1a does not only vary with the drift field strength
but also with the delay time distribution. Therefore, the delay time needs to be consid-
ered when selecting events for this analysis, as discussed in sec. 3.3.2. Second, the use
of the HeXe model for this analysis can introduce a bias if the delay time distribution
of the events used for the HeXe model is not the same as in XENONnT. To minimize
the delay time dependence as much as possible, the HeXe model only selected events
with a delay time above 300 ns, even though the detector could resolve two distinct S1
peaks for delay times above 50 ns [65]. However, XENONnT can only resolve distinct
S1s with time differences above around 350 ns. This problem will be addressed in sec.
3.3.3.

3.3.2 Data selection

The goal of the data selection is to select as many 83mKr events as possible with two
reconstructed S1 peaks, one from the first decay of 32.1 keV and one from the second
decay of 9.4 keV. During the first science run of XENONnT, calibrations with 83mKr
were conducted approximately every two weeks. The data used for this analysis was
collected between May and November 2021 and includes in total 17.5 (live) days of
calibration data. Livetime as opposed to real time is corrected for busy periods of the
data acquisition system.
Figure 3.4 shows all events of the dataset that contain a main S1 (S1a) and an alternate
S1 (S1b). The peak areas of the S1 signals are thereby not corrected for the varying
light collection efficiency in the TPC. The cluster in the middle with S1b ≈ 100 PE
corresponds to the 83mKr events with two resolved S1 peaks. These are the events
that are selected to perform the reconstruction of the electric drift field. The events
in the bottom cluster are merged S1 peaks from 83mKr with a small S1b originating
from noise. The smeared-out cluster at the top consists of pile up events from multiple
83mKr decays.
The specific parameters to select the 83mKr events with two S1 peaks and one S2 peak
are adopted from the XENON collaboration and are summarized in tab. A.1 in the
appendix [56]. As the different event populations in fig. 3.4 overlap to some extent, the
events are not selected directly in the space of S1a and S1b, but a variety of other event
parameters are used. Three selection cuts are applied to remove events that contain
an S1b signal that is merged with an afterpulse signal. An afterpulse is generated
inside the PMTs by the ionization of residual gas atoms or molecules from an initial
photoelectron. The ions then hit the photocathode and eject a delayed photoelectron,
with the delay time being characteristic for the ion and the PMT type. Figure 3.5 shows
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Figure 3.4: Histogram of all events recorded during 83mKr calibrations, plotted in the
space of the uncorrected S1a and S1b with a binning of (2×2) PE2. The main S1 is
denoted as S1a and the smaller alternate S1 as S1b.

one of the selection cuts that removes events containing an S1b peak merged with a
He+ afterpulse. It is important to remove those events because the afterpulse increases
S1b and thus would affect the electric field reconstruction that relies on S1b/S1a.

Another quantity that could affect the field reconstruction is the delay time of the
events as discussed in sec. 3.3.1. Figure 3.6 shows that the delay time distribution of
the events is not the same for all slices of the detector along the vertical axis z. For
short delay times below 500 ns it becomes more difficult for the peak splitting algorithm
to reconstruct the two S1 peaks individually, especially at the top of the TPC, where
the light collection efficiency is lower. To avoid differing delay time distributions from
slice to slice, which would introduce a position dependent bias, only events are selected
with a delay time larger than 500 ns. For the range above 500 ns, fig. 3.6 demonstrates
that the delay times are distributed equally. Note that this cut is specified for this
analysis and deviates from the default selection of XENONnT for 83mKr events with
two S1 peaks. The default cut for the upper limit of the delay time is adopted. The
cut removes events with a delay time larger than 2000 ns, where more afterpulses are
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Figure 3.5: Selection cut to remove events where the S1b peak is merged with an
afterpulse. The events above the red line are removed. The delay time is defined as
the observed time between the S1b and S1a signal. The histogram has a binning of
(4.3×6.7) ns2.

observed.
The remaining 3.4 × 106 events after all selection cuts are depicted in fig. 3.7a. As
shown in fig. 3.7b, the selected events are not distributed completely homogeneously
across the TPC. The inhomogeneity is present because part of the data was collected
while the calibration source 83mKr was injected into the detector and had not yet
distributed throughout the detector. This increases the amount of available statistics,
while the small inhomogeneity is not an issue for this analysis. The selected events
show a good agreement with the expected half-life of 83mKr. To extract the half-life,
a χ2-fit is performed on the histogram of the delay times with an exponential decay
law, shown in fig. 3.8. The fit-region is restricted to delay times between 800 and 1500
ns, because the reconstruction efficiency is not only decreasing for shorter but also for
longer delay times. It becomes increasingly likely for longer delay times, that the S1b

overlaps with an S2 from another event and cannot be reconstructed. The best-fit
half-life is relatively close to the literature value of 154 ns for the intermediate state of
83mKr. Some deviation is expected since the time of an event is defined in the middle
of the peak and not at the beginning, which limits the time resolution.
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Figure 3.6: Histograms of the delay time between S1b and S1a for 7.4 cm thick vertical
slices of the TPC drift region. Slice 1 is the most bottom and slice 20 the most top
slice, respectively. The bin entries are normalized by the bin entry at 500 ns.

(a) (b)

Figure 3.7: a) Histogram of the selected event for the reconstruction of the electric
field, plotted in the space of the uncorrected S1a and S1b area with a binning of (2×1)
PE2. b) Histogram of the spatial distribution of the selected events in bins of equal
volume in z and r2 with a binning of (44×1.5) cm3.
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Figure 3.8: Histogram showing the delay time distribution of all selected events. The
black line represents the best fit from a χ2-fit with an exponential function for delay
times between 800 and 1500 ns.
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3.3.3 Data analysis

The drift field is reconstructed with the selected data in two main steps, following the
approach outlined in sec. 3.3.1. The first step is to make a map of the peak area ratio
S1b/S1a of all 83mKr events in 2D and 3D. The second step consists of converting the
mapped ratios into an electric field strength using the HeXe model presented in sec.
3.3.1.

Map of the peak area ratio S1b/S1a

To obtain a map of the ratio S1b/S1a across the TPC in two and three dimensions, the
TPC is divided into smaller segments, or bins, for which the mean ratio is extracted.
The chosen number of bins is a trade-off between statistics and spatial resolution: the
more events per bin, the more 83mKr events are contained for determining the mean
S1a and S1b, but the worse the resolution. To reconstruct the drift field as locally as
possible, a number as high as possible is chosen without statistical fluctuations making
trends unrecognizable. The bins are chosen to have an equal spatial volume, such that
they contain approximately the same number of events. For the 2D map, the TPC is
divided into 500 bins in the r- and z-direction. In the r-direction, the subdivision is
made in r2 that is proportional to the volume of each bin. For the 3D map, the TPC
is divided into 540 bins in the r-, φ-, and z-direction. The bins are spaced equally in
r and z, but the covered angle φ decreases with higher radii such that the bins are of
equal volume. The drift region of XENONnT considered for this analysis spans in the
vertical direction from z = -148 cm at the bottom to z = 0 cm at the top, and in the
radial direction from r = 0 cm to r = 66 cm. The origin of the TPC coordinate system
is defined by the height of the gate grid (z = 0) and the middle of the center PMT (r
= 0).
In each bin, the mean S1a and S1b of all events is extracted from an unbinned maximum
likelihood fit with a Gaussian function. An example of the S1a distribution in one 3D
bin is presented in fig. 3.9 together with the corresponding best fit. In all bins, the
distribution of the S1a and S1b is in good agreement with a Gaussian function. This
implies that the chosen bin volume is small enough such that the impact of the light
collection efficiency is negligible inside the bin. Otherwise, the position-dependent
efficiency would skew the distribution so that it is no longer Gaussian.
Taking the ratio of the extracted mean S1b and mean S1a in each bin yields the
targeted maps. Figure 3.10a shows the map in 2D, the map in 3D is not shown for this
intermediate step. The map in fig. 3.10b indicates the statistical uncertainties for each
bin, that are based on the propagated uncertainties from the fit of S1a and S1b. The
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trend in the uncertainties originates from the non-uniform distribution of the number
of events in the TPC, as higher per-bin statistics lead to lower statistical uncertainties.

Figure 3.9: Top panel: histogram of S1a for one bin of the 3D map. The blue
line represents the best-fit from an unbinned maximum likelihood fit with a Gaussian
function with the mean µ and the standard deviation σ. Bottom panel: residuals of
the fit normalized by the uncertainty on the number of events Ni in each bin, given by√
Ni.
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(a) (b)

Figure 3.10: a) Map of the peak area ratio S1b/S1a in r and z. b) Map of the relative
statistical uncertainties of the peak area ratio. Both maps are divided in 20 bins in r2

and 25 bins in z, leading to 500 bins of equal volume in total.

Conversion with the HeXe model

To convert the maps of S1b/S1a into maps of the electric drift field, the HeXe model
introduced in sec. 3.3.1 is used. However, the prediction of the model for the obtained
ratio maps gives negative values for the electric field in XENONnT (see fig. 3.10a and
3.12). This is clearly unphysical. Therefore, the model cannot be applied in its original
form but needs to be scaled for this analysis. The scaling of the model is supported
by several arguments presented in the following [69]: one probable cause for the wrong
prediction of the model is the delay time dependence of S1b/S1a discussed in sec. 3.3.1.
The HeXe model is based on events with a delay time > 300 ns, whereas for this analysis
events are selected with a delay time > 500 ns and < 2000 ns. The discrepancy induces
a bias to the ratio of unknown size, but if the delay time distribution of the events is
the same across TPC, the bias is a constant shift. This motivates the scaling of the
HeXe model with a constant factor. In addition, it is ensured that position-dependent
efficiencies or differences in the signal reconstruction process of the two detectors are
not the cause for the unphysical prediction, as the model is based on the ratio of two
signals with the same interaction position. For these reasons, the scaling of the model
with a constant factor is well-motivated.
The scaling factor is determined with the help of the simulation, which provides the
only estimate of the true drift field strength in XENONnT. The model is scaled such
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Figure 3.11: Simulated 2D drift field map including the charge-up effect. The red
box indicates control region that is used to scale the HeXe model.

that the mean electric field inside a control region in the 2D data-driven map matches
the mean of the same region in the simulated map, as illustrated in fig. 3.11. The
control region is defined by an approximately homogeneous region in the simulated
map. With the scaled model shown in 3.12, the data-driven maps of the drift field can
be generated in 2D and 3D.
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Figure 3.12: Scaled (black) and unmodified (blue) HeXe model for the relation be-
tween S1b/S1a and the electric drift field strength for 83mKr. The red point indicates
the mean electric field in the control region.

3.3.4 Electric drift field maps

The 2D map in fig. 3.13a and the 3D map in fig. 3.14 show similar trends to the
one observed in the simulated maps. In the middle of the TPC, the electric field
is relatively uniform. Towards the bottom and especially towards the top, the field
increases. Despite the large amount of events per bin, between 5000 and 8000, and
the Gaussian distributed S1a and S1b, there are rather large fluctuations between
neighboring bins. A statistical origin of the fluctuations is supported by the calculated
statistical uncertainties of 0.8 - 1.5 V/cm, corresponding to 3.5 - 6% in relative terms.
The uncertainty is derived from the statistical uncertainty on the peak area ratio. As
the drift field is highly sensitive to small variations of the peak area ratio and their
relation is non-linear (see eq. (3.2) or fig. 3.12), the small relative uncertainties on
S1b/S1a translate into larger relative uncertainties on the drift field. The non-linearity
further leads to an asymmetric uncertainty. However, the difference is small such that
only the slightly larger positive uncertainty is used. The uncertainties for the 2D map
are shown in fig. 3.13b, for the 3D map they can be found in fig. A.1 in the appendix.
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(a) (b)

Figure 3.13: a) Data-driven map of the drift field in 2D. The color scale covers the
whole range of observed field strengths. b) Map of the absolute statistical uncertainties
of the reconstructed drift field strengths.

The data-driven map in 3D does not show a noticeable trend that would point to a
broken axisymmetry of the electric drift field. On the other hand, the precision of the
data-driven map is clearly limited by the available amount of data, such that small
changes of the field strength cannot be resolved.
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Figure 3.14: Data-driven map of the drift field in 3D consisting of 540 bins of equal
volume in 15 z-slices. The color scale is fixed to the same range as the map in 2D to
enable a comparison of the two maps.
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3.3.5 Comparison with field simulations

For the validation of the simulated field map with the data-driven maps, both need
to be compared. Moreover, it needs to be evaluated if the simulation including the
charge-up effect describes the data better than the simulation without the charge-up
effect (see sec. 3.2). For the comparison, the simulated maps are subdivided into the
same bins as the data-driven map and the mean electric field is calculated for each bin.
Figures 3.15a and 3.15b show the data-driven map divided by the simulated maps. The
data clearly favors the simulation with the charge-up effect over the one without. In
the upper part of the TPC, the data-driven field is up to 20% higher than predicted by
the simulated map without charge-up effect. On the other hand, the data-driven map
and the simulated map including the charge-up effect show less than 10% deviation in
most parts. Only at the top of the TPC, the simulation predicts much stronger fields.
This finding is further supported by the z-projection of the maps, shown in fig. 3.16.
The z-projection of the map is determined by calculating the mean electric field for
each row in the r-direction. The reduced dimension of the projected map diminishes
the spatial resolution but yields more precision in the direction of the largest non-
uniformity of the drift field, thanks to more statistics.
In conclusion, the data-driven map and the simulated map including the charge-up
effect are in good agreement, with the exception of the top of the TPC, where the
simulation predicts much stronger fields. The good agreement in the control region is to
some extent expected due to the scaling of the model with the simulation. Nevertheless,
the data-driven map shows the same trend as the simulation also outside the control
region and in regions where the drift field is clearly non-uniform, indicating a robust
validation of the simulated map.
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(a) (b)

Figure 3.15: Data-driven map divided by the simulated map of the drift field in 2D
a) without the charge-up effect and b) including the charge-up effect. The color scales
are constrained such that their range is symmetric around one.

Figure 3.16: Comparison between the simulated field maps with (solid dark blue line)
and without charge-up (solid light blue line) and the data-driven map (black markers),
shown as a projection of the 2D maps in the vertical z-direction.
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3.4 Impact of the non-uniform electric drift field

The results for the reconstructed electric drift field allow to investigate the impact of the
non-uniformity of the drift field. As discussed in sec. 2.5, the peak area of the S1 and
S2 signals is not corrected for the field dependence. On the one hand, it is not required
because the reconstructed energy, the space in which the signal search is performed, is
not affected by the non-uniform field. On the other hand, such a correction would be
challenging to do, as the field dependence of a signal varies with the interaction type.
Electronic recoil and nuclear recoil interactions can be distinguished in the detector,
but not β-electrons and γ-rays for example, such that an event-by-event correction
would not be possible.
The primary use of the reconstructed field maps is to factor out the field dependence
from the applied signal corrections, to avoid that the correction maps are biased by the
field dependence of a certain calibration source. Hence, before the correction factors for
S1 and S2 are calculated, a field correction map for the calibration source is required.
With the reconstructed field map and a model for the field dependence of the calibration
source, such as NEST (see sec. 3.3.1), relative correction factors Fc are determined,
relating the photon or charge yield for a given field to the yield at the mean field of
the detector:

Fc = Y (F (r, φ, z))
Y (Fmean) , (3.3)

where Y is the charge or photon yield. By dividing S1 and S2 by Fc, the effect of
the non-uniform drift field is removed and the corrections for the electron lifetime,
horizontal dependence of S2 and light collection efficiency of S1 can be determined.
Even though the data-driven map and the simulated map show a reasonable agreement,
there are some discrepancies, and the required scaling for the reconstruction is subject
to uncertainty. The calculation of a potential bias from a wrong field map is beyond the
scope of this work, but the impact can be estimated by comparing the field dependence
of the signal with the other applied corrections. Therefore, a field correction map for
the merged decay of 83mKr is derived. The events, where the S1 and S2 peaks are
merged to yield a combined mono-energetic 41.5 keV signal, are more abundant than
the events used for the drift field reconstruction and are the most used for the signal
corrections. The HeXe detector does not only provide a model for the field dependence
of the peak area ratio, but also for the photon and charge yields of the merged 83mKr
decay with an energy of 41.5 keV [65]. Because of the anti-correlation of charge and
photon yield, the corresponding field correction maps are the inverse of each other, and
therefore, only the one for the photon yield, and S1 respectively, is derived here.
The resulting correction maps, from both simulation and data are shown in fig. 3.17.

48



Chapter 3. Characterization of the electric drift field

They illustrate that the deviations with respect to the signal at the mean electric field
in XENONnT range from -2% to +0.5% in the data-driven map. In the most part of
the drift region, the deviations are below ±0.5%. Compared to the non-uniformity of
the drift field, ranging from 18 to 40 V/cm in the data-driven map, the deviations of
the signal are small. This is even more the case for the comparison with the corrections
applied to the S1 and S2 signal. The correction factors for the light collection efficiency
of the S1 signal range from around -20% to +50%, as illustrated in fig. 2.7a. The
horizontal correction of S2 covers a similar range, though large corrections are only
required close to walls and below the perpendicular wires of the gate grid (see fig.
2.7b). Contrary to the other two corrections, in the electron lifetime correction the
signal is not normalized to the mean response of the detector but to the initial S2 in
PE (see sec. 2.5). With an electron lifetime above 10 ms in XENONnT and a maximum
drift time of 2.2 ms, the charge loss ranges from 0% to a maximum of 20%. All in all,
the variation of the signals due to the non-uniform drift field is small compared to the
other position-dependent effects that impact the reconstructed signal.

(a) (b)

Figure 3.17: Data-driven (a) and simulated (b) field correction map for the merged
decay of the calibration source 83mKr. The yield for the local drift field strength is
divided by the yield at the mean field in XENONnT. The color scale covers the whole
range of the data-driven map, but is constrained for the simulated map that has very
high correction factors close to z = 0 cm.
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3.5 Conclusion

In this analysis, the electric drift field in XENONnT was reconstructed with 83mKr
calibration data. The resulting maps of the drift field in 2D and 3D show that the
electric field strength can be reconstructed from the peak area ratio S1b/S1a of 83mKr
with the empirical HeXe model. However, the model cannot be applied directly to
XENONnT but needs to be scaled for the conversion of the ratio to the field strength.
The discrepancy between the two detectors arises most likely from differences in the
reconstruction process or the delay time distribution of the 83mKr events, causing a
constant global shift. In the future, the delay time dependence of HeXe and XENONnT
can eventually be simulated to clarify the origin of the discrepancy. The precision of
the data-driven maps is limited by the amount of available 83mKr data. At the same
time, the limited precision is due to the fact that the drift field is highly sensitive to
small variations of the peak area ratio. In the middle of the TPC, where the drift field
is relatively uniform, the fluctuations as well as the bin size are too large to resolve
possible smaller trends. Because of the fluctuations, it is not feasible to use the data-
driven map to factor out the field dependence from the signal correction. Until more
data is available for the reconstruction, it is better to use the simulated field map for
this purpose. Nevertheless, the data-driven map is successfully used to validate the
simulated drift field. The data-driven map clearly favors the simulation including the
charge-up effect over the one without and shows that this effect needs to be taken into
account when simulating the drift field.
With the data-driven map and the validated simulation, the impact of the non-uniformity
of the drift field on the signal reconstruction was investigated. The analysis indicates
that the drift field is only a minor contributor to the observed inhomogeneity of the
signal response in XENONnT before corrections. On the one hand, a field depen-
dence of the reconstructed energy can be avoided by removing the dependence from
the applied signal corrections with help of the drift field map. On the other hand, the
non-uniformity has only a small impact on the amount of measured light and charge.
A field correction map for the merged decay of 83mKr was obtained to serve as an
estimate of the impact. It shows that the non-uniform drift field has small influence
on the reconstructed signal, compared to other inhomogeneities of detector, like the
light collection efficiency or the signal attenuation by electronegative impurities in liq-
uid xenon. This is especially true inside the fiducial volume, where the drift field is
relatively uniform.
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Chapter 4

Search for radiation from wave
function collapse

The low background, low energy threshold and large target mass of XENONnT offer
the opportunity to search for the x-ray emission from wave function collapse and test
the CSL model and the gravity-related DP model presented in chapter 1. Thereby, the
xenon of the detector serves as emitter and as target for the detection of the x-rays at
the same time. The predicted radiation would produce electronic recoils in the dual-
phase TPC. To search for this signal, this work makes use of the analysis framework
that XENONnT developed for the search of physics beyond the Standard Model in
electronic recoil interactions. In July 2022, XENONnT presented results of the analy-
sis of electronic recoil data from the first science run, setting stringent exclusion limits
on solar axions, an enhanced neutrino magnetic moment and bosonic dark matter [4].
The search for x-ray emission from wave function collapse is performed with the same
dataset.

The chapter is organized as follows: In sec. 4.1 the theoretical emission rate for the CSL
and the DP model, and the energy region of interest is introduced. The data selection
and the calculation of the efficiency is described in sec. 4.2. Section 4.3 presents the
background model and sec. 4.4 the statistical inference of the signal search. The results
for the test of the CSL and the DP model are reported in 4.5 and discussed in 4.6.

4.1 Emission rate and signal model

The collapse dynamics of the CSL and DP model imply that charged particles would
constantly emit radiation, predominately in the x-ray regime. Due to the similar
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structure of the modified Schrödinger equations of the two models shown in sec. 1.2,
the predicted emission rates of both models have a 1/E energy dependence.
For the CSL model, earlier studies derived the emission rate for a free electron and
applied it to the outer electrons of an atom, considered as quasi-free [70]. More recently,
an equation for a generic system of non-relativistic charged particles was derived that
can be used to describe the radiation emission of all charged constituents of an atom.
The differential rate for a system of N particles with charge qi is given by [33]

dΓ(E)
dE

= A · ℏλ
4π2ϵ0m2

0c
3r2

c

· 1
E
, (4.1)

where ℏ is the reduced Planck constant, ϵ0 is the vacuum permittivity, c is the speed of
light and m0 is the nucleon mass. The collapse rate λ and the correlation length rc are
the phenomenological parameters of the CSL model. The charge amplification factor
A differs depending on whether the N particles emit coherently or incoherently. If each
particle radiates independently, then the emission is incoherent and A = ∑N

i=1 q
2
i . This

is given when the typical distance between each particle is larger than the wavelength
λk of the emitted radiation. If the particles are separated less than λk, then the emission
is coherent, such that the N particles radiate like a single particle and A = (∑N

i=1 qi)2.
From these two types of emission it follows that the emission rate of an atomic system
is maximized for a certain range of wavelengths. First, the electrons and protons of
an atom should emit incoherently, otherwise, their respective radiations would cancel
due to their opposite charge. Hence, only λk smaller than the atomic radius ∼ 10−1

nm are considered. Second, the protons inside a nucleus should emit coherently, such
that their contribution scales quadratically with the number of protons. Hence, only
λk larger than the nuclear radius ∼ 10−5 nm are considered. This range of wavelengths
λk ∼ 10−5 − 10−1 nm corresponds to the energy range E ∼ 10 − 105 keV. However,
the subdominant linear contribution from the electrons, proportional to Z, can only
be considered for non-relativistic energies due to the non-relativistic derivation of eq.
4.1. The total emission rate for a detector with a target mass M , the number of atoms
per unit mass n, and the atomic number of the target material Z is then given by

dΓCSL(E)
dE

= n ·M · (Z + Z2) · e2 · ℏλ
4π2ϵ0m2

0c
3r2

c

· 1
E
. (4.2)

For the DP model, the considerations about the energy range for the emission rate of
an atomic system are also valid, yielding a similar emission rate with different charac-
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teristic constants [38]:

dΓDP (E)
dE

= n ·M · (Z + Z2) · e2 · 2G
3π3/2ϵ0c3R3

0
· 1
E
, (4.3)

where G is the gravitational constant and R0 the regularization scale of the DP model,
that needs to be determined experimentally.
The emission rates of the two models define the energy spectra that are used as sig-
nal models for the analysis. Considering the energy range, XENONnT has an energy
threshold as low 1 keV. This would allow performing the search for energies above 10
keV, where the protons and electrons start to emit radiation independently. However,
discussions with the authors of [33] revealed that the rate in eq. 4.2 and 4.3 is over-
estimated close to the lower bound of 10 keV because the transition from coherent to
incoherent emission is continuous and not discrete. Currently, no theoretical model is
available that describes the expected rate at these low energies. Therefore, this analysis
uses the same lower energy bound as the MAJORANA experiment, corresponding to
19 keV [34]. This allows for a comparison of XENONnT with MAJORANA that has
set the most stringent exclusion limits on the CSL and the DP model so far, as shown
in sec. 1.3. The upper bound for this analysis is 140 keV, defined by the provided
background model for electronic recoils in XENONnT. Due to the 1/E energy depen-
dence of both models, the high-energy cutoff is not expected to significantly reduce the
sensitivity of this analysis. In conclusion, the energy region of interest for this analysis
is between 19 and 140 keV.
This analysis constitutes the first search for radiation from wave function collapse with
a xenon-based detector. Compared to germanium, that was employed in the previous
experiments, xenon has a higher expected x-ray emission rate: Although xenon has a
smaller number of atoms per unit mass n than germanium [71], the larger atomic num-
ber of Z=54 compared to Z=32 results in a 1.6 times higher emission rate, following
eq. 4.2. However, the main advantage of XENONnT in terms of the expected rate is
its large target mass M = 4.37 t inside the fiducial volume, that is around 100 times
the target mass employed in MAJORANA.

4.2 Data selection and efficiency

The dataset used for the search was collected during the first science run of XENONnT
between July and November 2021 [4]. After removing the data taken during calibra-
tions and unstable detector conditions, the total livetime of data collection amounts
to 97.1 days. A variety of selection criteria are applied to ensure data quality and to
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improve the signal to background ratio in the data. Data quality cuts aim to ensure a
selection of valid pairs of S1 and S2 signals. The cuts target mis-classified and falsely
paired signals, based on event parameters, such as the S1 and S2 widths, PMT hit
patterns and reconstructed position [49]. The background is reduced by selecting only
electronic recoil events in the cS1-cS2 parameter space. Thereby, nuclear recoil events
are removed as well as background events from the PTFE walls of the TPC that is
contaminated by 222Rn progeny [59]. When these decay on a PTFE wall charge losses
occur and move events outside of the ER band. Multiple scatter events are removed
because the radiation from wave function collapse in the x-ray regime is expected to
deposit the whole energy in one interaction. The total efficiency for the detection of
signal-like events is the combination of the detection efficiency, driven by the smallest
size of S1 and S2 peaks that XENONnT can measure, and the efficiencies of the event

Figure 4.1: Efficiency in the region of interest between 19 and 140 keV. The detection
efficiency (black line) in combination with the event-selection efficiencies yields the
total efficiency (black line). The uncertainty for the total efficiency is shown as a
shaded band. The solid and dashed red line indicate the x-ray signal spectrum from
wave function collapse before and after applying the efficiency and energy resolution,
respectively. The signal rate is given by the currently most stringent limit for the
parameters λ and rc of the CSL model [34]. Figure adapted from [4].
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selection cuts. Figure 4.1 shows the detection efficiency as well as the combined total
efficiency. Whereas the total efficiency approaches zero close to the detector’s energy
threshold of 1 keV, it is around 80% and almost flat in the region of interest of this
analysis. The detection efficiency is close to 100% in the energy region of interest and
was determined by simulations and validated with 37Ar and 220Rn calibration data [4].
To determine the selection efficiency, the acceptance of all selection cuts was evaluated
with calibration and background data, as described in [49].
Finally, the dataset is restricted to events inside the fiducial volume. The shape of the
volume was optimized to achieve a low background, by removing the events close to
the TPC walls and the liquid-gas interface, and at the same time a large target mass.
The selected fiducial volume of 4.37 t combined with the livetime of 97.1 days, yield
a total exposure of 1.16 tonne-years. After applying all selection cuts, 3335 observed
events remain in the dataset with energies between 19 and 140 keV.

4.3 Background model

To test the signal hypothesis of x-ray emission from wave function collapse, a precise
background model B0 is required that serves as the null-hypothesis in the statistical
inference. In the energy region of interest, the background model of XENONnT consists
of eight components, listed in tab. 4.1 [4]. For five of them, there are constraints on the
expected number of events from independent measurements. The constraints are taken
into account for the fit of the data. While the background model B0 was developed,
the data in the electronic recoil signal region was blinded below 20 keV.
At low energies, the flat spectrum from the β decay of 214Pb is expected to dominate
the background. As mentioned in sec. 2.1, 214Pb is in the decay chain of 222Rn, which
is continuously emanated from detector materials. By measuring the activity of the
parent and daughter isotope 218Po and 214Po, a lower and upper bound is obtained
for the number of expected events of 214Pb in XENONnT. The second β-emitter 85Kr
is an intrinsic contaminant of xenon. The measured concentration of (56 ± 36) ppq
natKr in xenon together with the abundance of 85Kr in natKr as well as the half-life
allow to predict the expected background rate [4]. The background contribution from
the detector materials is induced by γ-rays reaching the fiducial volume. The γ decays
are simulated with the software Geant4 [72], using the results from the radioassay
measurements of the detector components [42]. The simulation shows that the material
background can be modeled with a flat energy spectrum in the region of interest and
yields an estimation for the rate. The two-neutrino double-beta (2νββ) decay of 136Xe
is expected to dominate the background spectrum at higher energies. The abundance
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Table 4.1: Electric recoil background components in the energy the region of interest
(19, 140 keV). The constraints and the best-fit values of B0 are given in terms of the
total number of observed events after the efficiency loss.

Component Constraint Fit for B0

214Pb (513, 1118) 818.2 ± 120.6
85Kr 78.2 ± 50.8 79.4 ± 50.5

Materials 232.1 ± 44.2 233.0 ± 43.9
136Xe 1507.0 ± 55.2 1491.8 ± 53.6

Solar neutrino 245.9 ± 24.6 247.7 ± 23.9
124Xe - 248.1 ± 28.1
133Xe - 146.4 ± 66.9
83mKr - 74.6 ± 16.1

of the isotope in xenon was measured to be 9%, allowing to determine a constraint with
the half-life of 136Xe. The theoretical spectrum of the decay is subject to uncertainty
due to the intermediate nuclear states. The mean of the higher state dominance and
the single state dominance spectrum is implemented and the uncertainty is taken into
account with a shape parameter (see sec. 4.4). The background originating from
the elastic scattering of solar neutrinos on electrons is the last component with a fit
constraint. The spectrum is modeled from the solar pp-neutrino flux and the interaction
cross section [73]. The rate uncertainty is set to 10%, informed by the currently most
precise pp-flux measurement from Borexino [74]. The intrinsic isotope 124Xe decays via
a double-electron capture process. The spectrum consists of several peaks originating
from captures from different atomic shells of 124Xe. The last two components 133Xe
and 83mKr are residuals from calibrations. Although datasets within 24 h of a 83mKr
calibration are not used for analysis, with its 1.83 h half-life, 83mKr is present in small
amounts in subsequent data. The spectrum of 83mKr is defined by a peak at 41.5 keV,
as shown in sec. 2.4. 133Xe decays via β decay with a coincident γ and was produced
by neutron capture in the 241AmBe calibration that was conducted before the first
science run.
The background model B0 is used to fit the selected electronic recoil data in the space
of reconstructed energy with an unbinned profile likelihood fit that is described in detail
in the next sec. 4.4. The best fit shows a good agreement with the data in fig. 4.2.
The extracted number of events for each component are indicated in tab. 4.1. The
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largest contribution over the whole energy range originates from 136Xe. However, at
low energies, where the x-ray signal rate is predicted to be the largest, 214Pb dominates.
The 83mKr contamination yields a non-negligible contribution. In the future, this could
be omitted by extending the exclusion period of post-calibration data, at the cost of a
loss of exposure.

Figure 4.2: Top panel: best fit of the electronic recoil data for the background model
B0. The colored lines represent the results from the unbinned fit, whereas the data
is shown as a histogram with a binning of 2 keV. Bottom panel: residuals of the fit
normalized by the uncertainty on the number of events Ni in each bin, given by

√
Ni.

4.4 Statistical inference

The inference for the search of radiation from wave function collapse is based on an
unbinned profile likelihood method implemented in the low-energy electronic recoil
analysis software package that is used for this analysis [73, 75]. It allows to fit the
signal and background model, test the signal hypothesis and set limits on signal rates.
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The unbinned likelihood is defined as follows:

L (µs,µb,θ) = Poiss (N | µtot)

×
N∏
i

∑
j

µbj

µtot
Pbj

(Ei,θ) + µs

µtot
Ps (Ei,θ)


×
∏
m

(Cµm (µbm)) × Cθ,

µtot ≡
∑

j

µbj
+ µs.

(4.4)

The likelihood is a function of the total number of expected signal events µs and the
nuisance parameters µb and θ, whereby µb is a vector of the expected events for all
background components and θ is the vector of the shape parameters for the uncertainty
on the efficiency. The probability distribution functions (PDFs) of the backgrounds and
the signal are denoted as Pbj

and Ps, respectively. The background PDFs are defined by
the shape of the energy spectra discussed in sec. 4.3. The CSL and DP signal models
share the the same PDF, as their spectra display the same energy dependence of 1/E
(see fig. 4.1). For each of the N observed events, the sum of all PDFs is calculated
with the corresponding energy of the event Ei. Index j runs over all background
components. The constraints on the expected number of background events, listed in
tab. 4.1, are denoted as Cµm and are multiplied with the summed PDFs. Except for
the background 214Pb, all constraints are represented by a Gaussian whose mean and
standard deviation are given by the expected number of events and the uncertainty.
The constraint for 214Pb is represented by a uniform distribution with a lower and
upper bound. Cθ is a shape parameter for 136Xe, allowing the fit to vary between the
two theoretical spectra.
By maximizing the likelihood, the best-fit number of signal and background events is
obtained. For the fit of B0 shown in fig. 4.2, the signal parameter µs is set to zero. To
evaluate the significance of the signal hypothesis H1 compared to the background-only
hypothesis H0 = B0, the following test statistic [76]

q (µs) = −2 ln
L
(
µs, ˆ̂µb,

ˆ̂
θ
)

L
(
µ̂s, µ̂b, θ̂

) (4.5)

is used, where
(
µ̂s, µ̂b, θ̂

)
is the set of parameters corresponding to the best fit, yielding

the unconditional maximum likelihood. The parameter set
(
µs, ˆ̂µb,

ˆ̂
θ
)

maximizes the
likelihood for a fixed number of signal events µs. The statistical discovery significance
is then given by q(0). The distribution of the test statistic q(µs) can be approximated,
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under a set of conditions, with a χ2 distribution with one degree of freedom [77]. This
allows to compute an upper limit on µs with a critical value for q(µs) that corresponds
to a certain confidence level (C.L.). In this analysis, the 95% C.L. upper limit is derived
to compare the results of this analysis to previous tests of the CSL and the DP model.
Thereby, the upper limit on the number of signal events can be converted into limits
on the phenomenological parameters of the two signal models, using eq. (4.2) and eq.
(4.3). The upper limit requires a one-sided test statistic that is given by

q̃(µs) =

q(µs) if µs > µ̂s,

0 else.
(4.6)

In the asymptotic case, the upper limit µs(95%) is obtained by scanning q̃(µs) for the
critical value q̃(µs(95%)) = 2.71 [75]. However, to ensure that the upper limit has
the correct coverage, the asymptotic approximation needs to be validated with toy
Monte Carlo (toy MC) simulations. The coverage is defined as the fraction of repeated
experiments where the true number of signal events is smaller than the obtained upper
limit [59]. If the coverage is larger than the targeted 95%, it is referred to as over-
coverage, in the opposite case as under-coverage.

Check of coverage and critical value

To estimate the coverage for a certain true number of signal events, repeated ex-
periments are simulated with toy MC datasets. The datasets consist of simulated
background and signal events. For each dataset, the upper limit µs(95%) is determined
using the asymptotic critical value and compared to the true injected signal rate. The
datasets are simulated by drawing for the signal and each background component a
Poisson sample of the expected number of events. The energies of the signal and
background events are distributed according to the respective PDFs. The number of
expected events for each background component is based on the best fit of B0 that was
evaluated in the energy region between 30 and 140 keV before the collected data was
unblinded. The coverage is determined for several true signal rates with 300 toy MC
datasets per data point for the injected rate. The results in fig. 4.3a show a slight
over-coverage for the best-fit number of signal events of H1, discussed in the next sec.
4.5. However, the results are limited at this point by the fact that the uncertainties
are unknown. The calculation of the uncertainties was beyond the scope of this work
but should be done in a future study.
A second check is performed, estimating the true critical value for the 95% C.L. from
the distribution of q̃(µs(true)). In the same way as for the coverage check, toy MC
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(a) (b)

Figure 4.3: a) Coverage for the 95% C.L. upper limits on the x-ray signal rate from
wave function collapse. The true injected signal rate is indicated per exposure. Each
point is based on 300 simulated toy MC datasets. (b) Simulation of the true critical
value at 95% C.L. for the same signal with 2000 toy MC datasets per true signal
rate. The blue dashed line in both figures represents the best fit for the signal in the
measured data.

datasets are sampled that contain a number of signal events. For each dataset the
test statistic q̃(µs(true)) is determined, whereby µs(true) is the true injected number of
signal events. The 95% percentile of the distribution q̃(µs(true)) then yields an estimate
of the true critical value, shown in fig. 4.3b. As this simulation requires around six
times less computation time than the simulation of the coverage, 2000 toy MC datasets
are sampled per signal rate. The critical values increase from below the asymptotic
limit, cross it close to the best-fit, and approach it for a large number of signal events.
The critical values should display the opposite trend than the obtained values for the
coverage. Figures 4.3a and 4.3b indicate that this is not always the case. However, the
deviation can probably be explained by the different amount of statistics for the two
checks and the unknown uncertainties. Based on the estimation for the true critical
value, which relies on more statistics, the asymptotic limit is used for this analysis.

4.5 Results

The result of the search for x-ray emission with electronic recoil data of XENONnT is
presented in fig. 4.4. The best fit is shown for the combined signal and background
model H1 as well as for the signal and each background component.
The best-fit value for the total number of signal events per exposure between 19 and
140 keV is 93+108

−93 events/(t·y) before the efficiency loss. However, no significant signal
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Figure 4.4: Top panel: best fit of the electronic recoil data for the combined back-
ground and signal model H1 (red solid line). The colored dashed lines represent the
backgrounds, the solid black line the radiation from wave function collapse, and the
data is shown in the form of a histogram with a binning of 2 keV. Bottom panel: resid-
uals of the fit normalized by the uncertainty on the number of events Ni in each bin,
given by

√
Ni.

was observed with a significance of 0.73σ for H1 compared to B0. The comparison
with the best fit of B0 in fig. 4.2 shows that primarily the background rate from 214Pb
is reduced at low energies for H1, allowing for a small signal with a maximum of 2
events/(t·y·keV). At high energies, the rate of 133Xe is slightly increased. The large
uncertainty on the signal rate can be explained by the relatively unspecific signature
of the wave function collapse signal, allowing for larger variations of the fit within the
uncertainty bounds. Figure 4.5 shows the test statistic q(µs) with the best fit and the
corresponding 1σ uncertainty band1.

As explained in sec. 4.4, the 95% C.L. upper limit is determined by scanning the
one-sided test statistic q̃(µs) for the asymptotic critical value q̃(µs(95%)) = 2.71. The
critical value corresponds to the upper limit of µs(95%) = 268 events/(t·y). This result
can be converted into limits on the phenomenological parameters of the CSL and the
DP model. For the the collapse rate λ and the correlation length rc of the CSL model,
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Figure 4.5: Log likelihood ratio curve as a function of the signal rate.

eq. (4.2) yields the limit
λ/r2

c < 3.04 × 10−3 s−1m−2.

For the DP model, the upper limit on the signal rate converts into a lower limit for the
regularization parameter R0. Following eq. (4.3) yields the limit

R0 > 1.4 × 10−9 m.

4.6 Discussion
The reported results for the search of radiation from wave function collapse represent
stringent tests of the CSL and the DP model. For the CSL model, this work sets
the most stringent upper limit for correlation lengths of rc < 10−5 m by excluding
the parameter space λ/r2

c > 3.04 × 10−3 s−1m−2 at 95% C.L. Figure 4.6 shows the
new constraint in comparison with other theoretical and experimental exclusion lim-
its. Compared to the MAJORANA [34], that set the previous best limit for the x-ray
emission, the upper limit obtained is an improvement by a factor of 162. For the DP
model, this work sets the most stringent lower limit on the regularization scale R0 by
1The uncertainty on the best-fit signal is derived by scanning the test statistic above
the best-fit for the rate where q(µs) = 1 and dividing it by 2. This is owed to the
fact the the likelihood is undefined for negative signals such that a symmetric interval
where q(µs) = 1 cannot be constructed. This does not affect the upper limit.
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excluding values below 1.4×10−9 m at 95% C.L. This is an improvement by a factor 2.8
compared to the previous best limit by MAJORANA. In contrast to the CSL model,
the improvement is more modest for the DP model due to the weaker dependence of
R0 on the radiation emission rate.
In general, the improvement of XENONnT compared to MAJORANA does not only
rely on the 1.6 times higher emission rate of xenon compared to germanium and the

Figure 4.6: Exclusion limits for the CSL collapse parameters λ and rc from non-
interferometric experiments and theoretical propositions. The upper bound obtained
by this work is shown as a solid blue line. The upper bound from the gravitational
wave (GW) detector LISA Pathfinder [29, 30] excludes the purple shaded parameter
space. The red exclusion area is obtained from a cantilever experiment [31], the green
area is from a cold atoms experiment [28], and the blue-green area is derived from the
measured heating rate in the CUORE experiment [32]. The two previous limits from
searches for x-ray emission are set by Donadi et al. (light blue) [33] and MAJORANA
(dark blue) [34]. The black dots and the circle represent the theoretical values suggested
by Adler [18] and GRW [15], respectively. The theoretical lower bound excluding the
gray area is based on the following requirement: a graphene disk of the minimum
size a human eye can resolve (≃ 0.01 mm) should be localized faster than the human
eye’s perception time (≃ 10 ms) [26]. The white area is the parameter space not yet
excluded.
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31 times higher exposure, but also on a lower background rate that was achieved by
several reduction measures. At low energies, where the x-ray signal rate is predicted
to be the largest, the dominating electronic recoil background originates from 214Pb in
XENONnT. In the future, this contribution will be further reduced due to an upgrade
of the XENONnT radon removal system discussed in sec. 2.1 [4, 43].
The exclusion limits from both this work and from MAJORANA are subject to the
theoretical uncertainty on the emission rate at low energies, as discussed in sec. 4.1.
Due to the transition from incoherent to coherent radiation emission at around 10 keV,
the CSL and DP emission rate for atomic systems and consequently the calculated up-
per limits are likely overestimated in this energy region. This might also hold around
the lower bound of the region of interest, but cannot be precisely quantified at this
time. According to the authors of [33], a new theoretical model that describes the
expected rate at low energies is expected to deliver a more specific spectral shape than
the 1/E spectrum. This would allow better discrimination between backgrounds and
the potential signal. Furthermore, it could allow to probe the signal below the applied
lower bound of 19 keV and make use of the low energy threshold of XENONnT. Hence,
an adapted model for the x-ray emission in the few keV region could weaken the set
exclusion limits if it predicted a lower emission rate around the lower bound of the
chosen energy region of interest in this work. This could, however, be compensated by
extending the region of interest to the low-energy threshold of XENONnT. Therefore, a
reanalysis of the XENONnT data presented in this work makes sense once an extended
model is available.
With the 1/E model, the upper limit on λ/rc obtained in this work rejects not only the
parameters suggested by Adler [18], but is the first to reject the parameters suggested
by Ghirardi, Rimini and Weber [15]. The two phenomenological parameters define at
which scale the collapse terms become dominant and suppress macroscopic superposi-
tion. Combined with the constraints from gravitational wave detectors, the obtained
limit also rules out the largest part of the parameter space defined by the theoretical
(gray) bound that is based on the collapse time for a small graphene disk. This makes
the CSL model in its standard formulation increasingly unlikely and motivates the
experimental test of theoretical extensions of the model, described in sec. 1.2.1. The
colored CSL model as well as the dissipative CSL model introduce new parameters
and thus widen the parameter space. With the demonstrated sensitivity, XENONnT
will be able to contribute to the test of these models. The interpretation of results for
the DP model is open at this point. Like previously established limits, the obtained
limit rejects the hypothesis that R0 can be identified with the size of a particle’s mass
density and thus the parameter-free version of the DP model [38].
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Conclusion and outlook

Wave function collapse models address the long-standing measurement problem of
quantum mechanics. They introduce a collapse mechanism that causes a breakdown
of quantum superposition at the transition from the microscopic to the macroscopic
realm. This work reports on a search for the radiation from wave function collapse with
the XENONnT dark matter experiment focusing on the continuous spontaneous local-
isation (CSL) model and the gravity-related Diósi-Penrose (DP) model. Both models
predict the emission of x-rays by matter as a consequence of the proposed collapse
mechanisms. The emission rate is proportional to the number of emitting atoms and is
the largest in the low keV energy region, requiring a detector with a large target mass
and a low energy threshold.

XENONnT accomplishes these requirements with a design optimized for the direct
detection of dark matter, providing a xenon target of 5.9 t and a 1 keV energy thresh-
old. The experiment employs a dual-phase time projection chamber (TPC) to measure
the light and charge signal generated by energy depositions in the detector. Due to
different position-dependent effects, the detector’s response to an energy deposition is
not uniform. This is addressed by different corrections to the reconstructed signals.
One contributor to the observed non-uniformity of the detector’s signal response is the
electric drift field that is applied to measure the charge signal.

This work reconstructed the electric drift field across the entire TPC with 83mKr cali-
bration data to quantify the variation of the drift field and investigate how it affects the
reconstructed signal. Two and three dimensional maps of the drift field were produced
by using the two light signals from the two-staged decay of 83mKr. The maps show that
the drift field is relatively uniform in the middle of the TPC but increases towards the
bottom and top. The maximum variation compared to the mean drift field ranges form
-20% to +70%. However, it was found that the observed non-uniformity has only a
small impact on the amount of measured light and charge and that the corresponding

67



University of Zurich

field corrections are of the order of 0 to 2% and subdominant compared to other signal
corrections. For the reconstructed energy of an interaction, the impact can be avoided
entirely by removing the field dependence from the signal corrections. The employed
data-driven method is limited in precision by the amount of calibration data available,
but proved useful to validate simulated maps of the drift field.

To search for radiation from wave function collapse, this work implemented the signal
model of the CSL and the gravity-related DP model into the analysis framework from
XENONnT for low-energy electronic recoil searches. The signal hypothesis was tested
against the background-only hypothesis with an unbinned profile likelihood method.
In the energy region of interest (19, 140) keV, the background model is defined by
the energy spectra of eight background components, of which five are constrained by
independent measurements. The signal spectrum is defined by the 1/E energy depen-
dence of the radiation emission rate that is shared by the CSL and the DP model. The
electronic recoil dataset used for the search was recorded during the first science run
of XENONnT and yields 1.16 tonne-years of exposure.

The search in the electronic recoil data showed no significant signal consistent with
radiation from wave function collapse. Given the low electronic recoil background in
the energy region of interest, this allowed to set the most stringent upper limit for
the CSL model for correlation lengths of rc < 10−5 m, excluding the parameter space
λ/r2

c > 3.04×10−3 s−1m−2 at 95% C.L., and the best lower limit on the DP model, ex-
cluding regularization scales R0 < 1.4×10−9 m at 95% C.L. By excluding large parts of
the CSL parameter space, the results indicate that theoretical extensions of the model,
that widen the parameter space, should be in the focus of future experimental tests.
The lower limit on the DP model confirms the exclusion of the parameter-free version
of the model that was established by previous experiments. The presented study repre-
sents the first search for radiation from wave function collapse with a dual-phase TPC
and demonstrates the potential of the detection technology beyond the search for dark
matter.

XENONnT continues to take data and potentially will achieve an even lower back-
ground with an upgraded purification system, enabling more sensitive tests of collapse
models. Together with other experiments and technological advances, this will allow
further investigation of whether quantum mechanics provides a fundamental descrip-
tion of nature or is merely a method for predicting the outcomes of measurements.

68



Appendix A

Appendix

Table A.1: Parameters for the selection of 83mKr event with two distinct S1 signals
and one merged S2 signal. The signal from first decay of 83mKr of 32.1 keV is denoted
as S1a and the signal from the second decay of 9.4 keV as S1b.

Selection

100 ≤ Number of contributing PMTs to S1a < 200
30 ≤ Number of contributing PMTs to S1b < 110
10 ≤ Number of distinct PMTs between S1b and S1a < 60
500 ≤ Delay time between S1b and S1a < 2000
S1a width at 90% of the area < 280
if Delay time between S1s < 1500 ns
→ -0.09 × Delay time between S1s + 400 < S1b width at 90% of the area
if Delay time between S1s > 1500 ns → S1b width at 90% of the area <265 ns
S1b width at 90% of the area < 265 ns

69



University of Zurich

Figure A.1: Map of the statistical uncertainties on the reconstructed drift field
strengths in 3D. The map consists of 540 bins in total of equal volume in 15 z-slices.
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