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Abstract

Inter-fraction motion of tumors and dose-limiting organs at risk interferes with the treatment
quality of radiotherapy. MR guided radiotherapy allows monitoring of inter-fraction motion and
direct adjustments of the treatment plan. Whereas standard treatments deliver the same dose in
each fraction, adaptive fractionation is an approach to exploit inter-fraction motion by increasing
the dose on days when the distance of tumor and organ at risk is large and decreasing the dose
on unfavorable days. To evaluate the concept of adaptive fractionation, a dynamic programming
algorithm is developed and evaluated on former patients treated at the MR-Linac for abdominal
tumors in five fractions to assess a potential tumor dose escalation. Further extensions and ad-
justments are discussed and evaluated on synthetic patient data to quantify the potential benefit
of adaptive fractionation.
On average, adaptive fractionation provided only a small increase in tumor BED. However, indi-
viduals with large anatomic variations in between fractions may yield substantial benefits when
the optimal patient geometries occur between fraction one and four. Thus, the order of the
sparing factors has the biggest impact on the quality of adaptive fractionation. Constraints like
minimum and maximum doses per fraction allow to modify the adaptive fractionation plans.
The analysis of such constraints only showed a marginal decrease in benefit from adaptive frac-
tionation.
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1 Introduction

1 Introduction

Radiotherapy treatments aim to kill cancer cells and achieve a tumor control. To do so, ionizing
radiation is used to inflict damage at a molecular level and thereby destroy cancer tissue. A
downside of radiation treatments is the simultaneous irradiation of healthy tissue close to the
tumor. In order to minimize the toxic effects on normal tissue, radiation treatments are usually
split up into several sessions, as normal tissue can tolerate higher doses of ionizing radiation if
the radiation is split up into fractions [1][2]. Since the tumor and the organs at risk are not
stationary, the geometry and distances between them varies from one fraction to another. This
interfractional motion worsens the trade-off between tumor coverage and normal tissue sparing.
Image guidance technology allows to measure interfractional motion and adapt the treatment
plan accordingly.

Adaptive fractionation is a method to exploit inter-fraction motion. The treatment plan is
optimized based on the daily patient geometry. Therefore, the dose is increased on favorable
treatment days, i.e. when the distance between tumor and dose-limiting organ at risk (OAR) is
relatively large and reducing the dose on unfavorable days, i.e. when the tumor and OAR are
closer to each other. The adaptation of the dose to the different geometries leads to an improve-
ment of total dose delivered to the OAR versus total dose delivered to the tumor compared to
treatment plans, where the same dose is given in each fraction [3][4][5].

Although the idea of adaptive fractionation has been presented previously, clinical translation has
been facing substantial hurdles. To implement adaptive fractionation, frequent image updates of
the treated region are required to measure and quantify the changes of patient geometry before
each irradiation [6]. Cone-beam CTs provided the required information to some degree, but the
limited soft tissue contrast limits the potential clinical applications. Magnetic-resonance (MR)
scans are well suited as guidance due to their high soft tissue contrast which captures potential
tumor motion and extends the range of potential applications to abdominal lesions in proximity
to bowel and stomach which exhibit a potential large inter-fraction motion. However, under
normal circumstances, acquiring MR-scans for each patient before treatment is not feasible. The
MR-Linac enables these daily scans before each irradiation and as a result direct treatment adap-
tation. In this master thesis an approach for adaptive fractionation at the MR-Linac is presented
and evaluated.

To compute an optimal dose for each fraction, different versions of dynamic programming algo-
rithms have been developed. The algorithms propose an optimal dose for each fraction based
on the daily patient geometry, dose prescriptions and data from former patients that have been
treated at the MR-Linac.
All algorithms have been tested on the data of 16 former MR-Linac patients of the university
hospital of Zurich. Additionally, artificially generated patient data with similar geometric vari-
ance has been produced to evaluate the adaptive fractionation algorithms on a larger scale.
Further, graphical user interfaces have been implemented to facilitate optimal dose calculations
even when several parameters can be adjusted.
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2 Context and problem

2 Context and problem

Before detailing the methods and implementation of adaptive fractionation, a few key-points of
radiotherapy are introduced and the MR-Linac and its operation are described. The resulting
problem of adaptive fractionation, that is discussed in this thesis, is then established.

2.1 Radiotherapy

In Radiotherapy the aim is to damage and destroy cancer tissue using ionizing radiation. The
MR-Linac is equipped with a 6MV linear accelerator which produces X-rays that interact with
matter by ionizing molecules within cells. The ejected electrons produced by the interaction
are accountable for most of the biological damage as they cause further ionizations in molecules
they collide with. This damage is distributed randomly. Whereas direct hits to the DNA are
often lethal to the cell, the free radicals produced by the radiation can react with the DNA and
therefore also deliver damage indirectly. Since the tumor and the radiation beam can practically
never be positioned such that only the tumor is affected by the ionizing radiation, the goal of
radiotherapy is to deliver a large dose of ionizing radiation to the tumor while sparing the normal
tissue in proximity.[7]

To setup an irradiation plan, in a first step the tumor must be outlined and differentiated from
normal tissue. In a standard treatment, computed tomography (CT) scans of the treated volume
are taken, which provide anatomical information and density data for radiation dose calculation.
If required, additional diagnostic imaging modalities, e.g. magnetic resonance (MR), positron
emission tomography (PET) or single photon emission computed tomography (SPECT) scans
can be conducted to optimize tumor localization and differentiation from normal tissue with
similar electron density to the tumor. The outlined tumor is then expanded to specific target
volumes which are embedded into each other. The central volume is the gross tumor volume
(GTV) which is the primary tumor mass shown by clinical examination or by imaging. This vol-
ume is then extended by the clinical target volume (CTV) which contains additional microscopic
diseases that need to be eradicated. A last extension is made with the planning target volume
(PTV) which takes setup errors during the future treatment or organ movement and changes
in size into account. Since in a standard treatment no additional CT-scans or MR-scans are
acquired in between the irradiation session, which can span over several weeks, the PTV margin
is essential to cover the uncertainties arising from geometrical variations.[8]

Apart from the target volume, OARs are delineated during treatment planning. The OARs are
defined as "those normal tissues which lie adjacent to tumors and may therefore be included
within treated volumes, with a risk that the radiation may impair their normal functioning"[8].
The OAR may overlap with the PTV which can significantly constrain the tumor dose prescrip-
tion as high doses to the tumor would also damage the OAR (see figure 1). Additionally, there
can be several organs close to the target volume which lead to multiple dose limitations. In this
work only tumors with one dose limiting OAR are considered and analyzed.

With the tumor and the OAR outlined, an optimal dose distribution can be computed. Prescrip-
tion doses and dose limits give a set of constraints and objectives that should be achieved. An
optimization algorithm then computes the optimal achievable dose distribution, given different
beam angles and considering the interaction of the ionizing radiation with the tissue.[6][9]
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2 Context and problem

Figure 1: Schematic figure depicting a hypothetical patient geometry. The PTV is in proximity
of the OAR and overlaps at some points leading to significant dose constraints.

2.2 Fractionation

Fractionation is considered a standard approach to radiotherapy [1][10]. The idea of fractiona-
tion is to split the prescribed tumor dose over several fractions and deliver the dose in multiple
sessions instead of one single treatment. By fractionating a radiotherapy treatment, a better
therapeutic ration, i.e. a better trade-off between tumor control probability and normal tissue
complication probability, can be achieved. To cope with the damage induced by ionizing ra-
diation, healthy cells have several repair mechanisms, which are capable of restore the altered
DNA. However, cancer cells are often deficient in such repair mechanisms to allow a fast and
error prone proliferation. Therefore, the reaction of cancer cells to cell damage is different than
in the normal tissue [11]. Splitting the dose to be delivered into several sessions enables normal
tissue to repair non-lethal damage in between fractions, while tumor tissue, which is often more
sensitive to radiation, does not recover as much from damage as normal tissue.

To model radiosensivity for fractionated treatments, the linear-quadratic cell survival model is
widely used. By assuming that all sublethally damaged cells are completely repaired during the
interfractions, the surviving cells are calculated for a n-fractionated treatment. Based on the
linear-quadratic cell kill survival model the biological effective dose (BED) can be derived that
is used to evluate the biological effect of fractionation.[12]
The standard BED model is given for a fractionation scheme, where a total physical dose D is
delivered over n fractions with constant fraction size D/n:

BED = D

(
1 +

D/n

α/β

)
(1)

The α/β ratio is a measure of the fractionation sensitivity of the cells (tissue specific): cells with
a higher α/β ratio are less sensitive to the sparing effect of fractionation [13].
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Figure 2: Schematic graph depicting fractionation effects based on the linear quadratic cell sur-
vival model. The superior repair capabilities lead to higher cell survival which can be
exploited in fractionated treatments. Adapted from Strahlentherapie und Onkologie by
R. Sauer[14].

A typical fractionated treatment normally consists of 30 to 40 fractions where a constant dose of
1-2Gy are delivered per fraction. A hypofractionated treatment, e.g. stereotactic body radiation
therapy (SBRT), can be conducted in five or less fractions and delivers similar amount of doses
in total as standard fractionated treatments. Such hypofractionated treatments are superior in
specifc cases and require high precision [15]. All patients considered in this thesis have undergone
SBRT at the MR-Linac and have been treated in only five fractions with high doses around 8Gy
to the PTV per fraction.

2.3 Image guided radiotherapy and adaptive radiotherapy

To improve the precision of the radiotherapy treatment and minimize the margins around the
target volume, due to organ motion as well as setup errors, and to reduce the number of frac-
tions for SBRT, image-guided radiotherapy (IGRT) is applied [16]. Instead of just relying on
the information provided by the planning scans, imaging functionalities are integrated into the
treatment machines themselves to guide the radiotherapy treatment by providing images before
or during each session. IGRT technology can therefore be used to confirm the patient position
at the time of each treatment fraction to reduce the safety margins. With these reduced mar-
gins, not just hypofractionation is enabled, but also direct adaptation to anatomical or biological
changes during the treatment (e.g. due to weight loss, intestinal gas movement or abdominal
bloating) are possible with the actual scans of the target area.[17]

IGRT can be conducted with different approaches. First procedures included X-ray images that
facilitated and optimized positioning. The technology of image guided therapy has evolved to the
application of CT and MR scans as image guidance[18]. MR-guided radiotherapy offers superior
soft-tissue contrast for detection of inter-and intrafractional changes [19]. The detected changes
can then be directly considered for treatment adaptation. Real-time imaging (cine MRI) further
allows the irradiation of moving targets (e.g. lung tumors) with gated dose delivery.
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2 Context and problem

The University Hospital Zürich (USZ) acquired a MR-Linac (MRIdian, Viewray) and has been
treating patients with the device since 2019. The system combines a 0.35T MRI with a linear
accelerator. As both MRI and linac share the same isocenter, the patient does not need to be
moved after imaging.
An integrated treatment planning system allows the creation and adaptation of treatment plans
based on MR scans and CT scans. The on-table treatment adaptation registers the daily scans
to the primary planning image and initial planning contours. The original treatment plans can
then be recalculated on the daily anatomy and corresponding contours.[20]
With the precondition set to perform adaptive radiotherapy, the MR-Linac is used to actively
adapt treatment plans before the delivery in each fraction. The standard approach at the USZ
is to use the updated plans for each fraction, but delivering a uniform dose in each fraction. The
fractionation size is therefore not adapted based on the daily anatomy. Thus, the objective of
this thesis is to develop and evaluate a procedure to conduct adaptive fractionation at the MR-
Linac. A potential application would consist of up- or down-scaling an adapted dose distribution
produced by the MR-Linac planning system.
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2.4 Adaptive fractionation rationale

As the patient geometry is not static over the course of a radiotherapy treatment, the adaptation
of the treatment plan can lead to significant benefits in OAR sparing and tumor dose escalation.
Especially, patients treated for abdominal tumors can stongly benefit from IGRT due to the
potential high interfractional motion [21]. Figure 3 illustrates interfractional motion captured at
the MR-linac. The distance between the tumor and the OAR varies significantly.

(a)

(b)

Figure 3: Example of interfractional motion. These scans were acquired on two different days
during a five fraction treatment. The slices show an obvious difference in distance be-
tween the abdominal tumor (outlined in red) and the OAR which is the bowel (outlined
in green)

The dose distribution has been adapted accordingly for both fractions at the time of treatment
while the fraction size was chosen to be the same in both days. Taking into account the relatively
large distance between tumor and OAR on the second day, one could consider delivering a lower
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2 Context and problem

dose on day one and a larger dose on day two, thereby taking advantage of the better OAR
sparing. If the prescribed tumor dose is constrained by the maximum dose to be delivered to the
OAR, the exploitation of more favourable days, where the distance between tumor and OAR is
large, can lead to tumor dose escalation while staying below the OAR maximum dose constraint.
If most of the treatment days consist of good patient geometries, an adaptation of fraction size
may further reduce the dose accumulated in the OAR.
A posteriori, when scans for all fractions are present, computing optimal doses for each fraction
to maximize tumor dose can be done by solving an optimization problem. In reality, we do not
have exact information about future anatomy geometries. Thus, the decision on what dose to
deliver in each fraction to maximize tumor dose is non trivial.

With the starting point, where adaptive radiotherapy plans are available from the MR-linac, this
work was intended to contribute in the following points:

1. To compute the optimal dose to deliver in each fraction, knowing today’s geometry and
the dose delivered in previous fractions, but not knowing the patient geometry in future
fractions, different dynamic programming algorithms have been developed - extending the
work of Ramakrishnan et al.[22].

2. The algorithms were tested on patients previously treated at the MR-Linac with 5-fraction
SBRT for abdominal lesions near bowel, stomach, or duodenum. Thus, the potential benefit
of adaptive fractionation was estimated for real patient data, extending previous work that
only conceptually introduced adaptive fractionation based on synthetic data.

3. To make adaptive fractionation and the developed codes more accessible, a graphical user
interface has been implemented and provided on GitHub.

7



3 Methods and materials

3 Methods and materials

In the following subsections, the general approach to adaptive fractionation is discussed. Firstly,
the information about organ motion and the biological effect of ionizing radiation are modeled
to be integrated into an optimization problem. Secondly, the mathematical framework for the
optimization algorithm is set up, followed by three different algorithms given in section 3.4,
which were developed to compute the optimal doses. The algorithms are all based on a dynamic
programming method but aim at different objectives.

3.1 Motion quantification

MRI scans and dose distributions of the treatment area provide a large amount of information.
To compress the information to be better suited for a reinforcement learning algorithm, the
interfractional motion is quantified with sparing factors δ:

δt =
dNt
dt

(2)

where dNt denotes the dose received by the dose-limiting OAR in fraction t and dt the dose
received by the tumor. The dose to the OAR dN is defined by the dose exceeded in 1cc of the
OAR (D1cc) while the tumor dose dt is defined by the dose exceeded in 95% of the PTV volume
(D95%). Thus, each fraction is described by a sparing factor where low sparing factors indicate
more favourable days with large distances between tumor and OAR. We further assume that
inter-fraction motion is random and is described by a Gaussian distribution over δ with a patient
specific mean µ and standard deviation σ.

δt ∼ N (µ, σ2) (3)

Similarly, a sparing factor can be set up by taking the ratio of the dose exceeded in 1cc of the
OAR and the dose exceeded in 95% of the GTV volume rather than the PTV. To compare and
assess the results of adaptive fractionation, the analysis of the extracted patients is conducted
on both PTV and GTV based sparing factors.

3.2 Biological effect of adaptive fractionation

The fractionation effect is modeled with the BED model, which is commonly used for isoeffective
dose fractionation calculations [23]. It is assumed, that the classic BED model can be extended
to varying doses per fraction such that the cumulative BED at the end of treatment is given by
the sum of the BED values delivered in individual fractions. Thus, the cumulative BED delivered
to the tumor is given by:

BT =

t∑
τ=1

(
dτ +

d2τ
(α/β)T

)
(4)

where dtau denotes the dose delivered to the tumor in fraction τ and t denotes the number of
the last delivered fraction. Consequently, the cumulative BED received by the OAR is:

BN =
t∑

τ=1

(
δτdτ +

δ2τd
2
τ

(α/β)N

)
(5)

In order to scale the tumor dose to the corresponding dose delivered to the OAR, the sparing
factor δτ in fraction τ is included in the equation. In this thesis, the rations for the OARs and
the tumors are the same for all patients and set to (αβ )N = 3 and (αβ )T = 10.
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3 Methods and materials

3.3 MDP model of adaptive fractionation

The goal of adaptive fractionation is to optimally decide on the doses dt that are to be delivered
to the tumor in each fraction. The choice of an optimal dose depends on the objective that is
to be accomplished. The clinical interest, to deliver a large amount of dose to the tumor, while
sparing the organs at risk, leads to three different objectives that were used to set up Markov
decision processes (MDP) models which are applied to describe the problem and find a potential
solution:

1. To treat a tumor where the desired prescription dose cannot be reached as the OAR is
too close to the tumor, the goal was set to maximize the cumulative BED delivered to the
tumor subject to the constraint on the cumulative OAR BED.

2. In a case where tumor and OAR are farther apart, the prescribed tumor dose can be
obtained without risking the overdosage of the OAR. Therefore, the goal is to minimize
the cumulative BED delivered to the OAR subject to delivering the prescribed dose to the
tumor.

3. Deciding on which algorithm to use is once again a nontrivial problem at the beginning of
a treatment. Hence, an objective has been set, where the goal is to reach the prescribed
tumor dose subject to the constraint on the cumulative OAR BED. If the prescribed dose
can be reached, the objective is to minimize OAR BED. If the prescribed dose can not be
reached, the tumor dose should be maximized.

By acquiring a MR-scan in each fraction and adjusting the dose distribution to the new anatomy,
the sparing factor δt for each fraction t can be determined. In addition, we know the accumulated
BED that has been delivered to the tumor and the OAR in previous fractions. The decision,
what dose to deliver in the current fraction, must be taken based on the given information. The
difficulty arises from not knowing, whether the remaining future fractions will have favorable or
unfavorable patient geometries. The sparing factors, i.e. the interfractional motion, are random
variables where the exact future value is unknown.

MDPs are mathematical frameworks to model decision making in discrete, stochastic, sequential
environments [24]. A MDP relies on the notion of states, describing the current situation of the
agent (the decision-maker), actions or decisions which affect the dynamics of the process and re-
wards that are observed for each transition between states [25]. Further, the transitions between
the states are not fully deterministic, instead they are influenced by probabilistic components.
Adaptive fractionation is well suited for such an approach, as each fraction can be described by
a state, where a decision must be made.

The adaptive fractionation problem can be formulated as an MDP, illustrated in figure 4, and
then be solved by a reinforcement learning approach. Here we first describe the MDP model for
a known probability distribution P (δt) of the sparing factors and afterwards we discuss how to
estimate and update the probability distribution. In this application, the notions for an algo-
rithm that maximizes the tumor dose while delivering the maximum OAR dose BN

max, the first
objective introduced above, are given by:

State: The state of a patient’s treatment is described in each fraction by three values, the fraction
number t and a tuple s = (δ,BN ) that specifies today’s sparing factor δ and the cumulative BED
of the OAR that has been delivered so far in previous fractions. Thus, the state of a treatment
in fraction t for a patient with previous sparing factors {δτ}tτ=1 treated with doses {dτ}t−1

τ=1 is

st =

(
δt,

t−1∑
τ=1

(
δτdτ +

δ2τd
2
τ

(α/β)N

))
(6)

9



3 Methods and materials

Action and policy: The actions correspond to the physical doses dt that are delivered to the
tumor in a fraction. Thus, a policy specifies for each fraction t and possible state of the treatment
the dose that should be delivered in this state. The doses to be delivered were discretized in
0.1Gy steps since not all possible continuous actions can be considered.

State transition: If in fraction t, the treatment is in state st = (δt, B) and a dose dt is
delivered to the tumor, the state transitions to

st+1 =

(
δt+1, B + δtdt +

δ2t d
2
t

(α/β)N

)
(7)

in fraction t + 1. The BED-component of the future state is calculated by adding the OAR
BED delivered in fraction t to the previously delivered BED B, which is assumed deterministic
(i.e. we don not consider uncertainty in the dose delivery). The sparing factor in fraction t+ 1
is random, making the state transition probabilistic. The probability distribution for the state
transition is simply given by the probability distribution over the sparing factors, P (δ).

Reward: In each fraction t, the immediate reward rt is given by the numeric value of the BED
delivered to the tumor in that fraction:

rt = dt +
d2t

(α/β)T
(8)

To account for the cumulative BED constraint in the dose-limiting OAR, the BED must be below
Bmax

N . To enforce this, a terminal reward of -∞ is assigned to all terminal states in which the
cumulative OAR BED delivered after the last fraction exceeds the constraint value.

Figure 4: Illustration of the applied MDP. Each state st can be seen as one fraction of a F-fraction
treatment that is defined by the accumulated BED and the observed sparing factor.
The anatomy rearrangement is a random process while the applied dose d is the action
that will lead to a state transition and reward.

In figure 4 the illustration depicts the state transitions between each fraction. Starting from the
first fraction, which is described by a state s1(δ1, B) where there is no accumulated OAR BED
(B = 0) and a sparing factor δ1 is observed, a state transition is executed by delivering a dose
d1 (the action). The subsequent state s2(δ2, B) has a probabilistic component since the sparing
factor δ2 can not be predicted in the first state and is assumed to be independent from the action
d1. In contrast, the accumulated OAR BED is computed by applying equation (5). Furthermore,
the reward is also dependent on the action that was realized in the first fraction. Continuing
form state s2, a state transition is realized again by the delivery of a dose d2. The resulting
state s3 which describes the starting point of the third fraction can be fully characterized by its
sparing factor δ3 and the accumulated OAR BED which is only dependent on the state s2 and
the action d2. As a result, each fraction can be used as a starting point to compute an optimal
dose if the current sparing factor δ and the accumulated OAR BED B are known without further
knowledge how this state has been achieved.
The MDPs for objective two and three are set up similarly. All major adaptations to the MDP
will be described in the following section.
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3 Methods and materials

3.4 Dynamic programming algorithms

To solve the MDP, a dynamic programming (DP) algorithm was developed following a similar
approach as Ramakrishnan et al.[22]. The DP computes the optimal policies when a perfect
model of the environment is given [26]. Within the scope of this thesis, three different algorithms
have been produced, where each algorithm handles one of the three objectives introduced in
section 3.3. In a first step, the general concept of DP aimed to solve adaptive fractionation is
introduced based on the first objective. Then the three different algorithms are described, which
are grouped in two 2 dimensional and one 3 dimensional approach.

DP algorithms rely on value functions, which describe the desirability of a state s. In our ap-
plication, the value function vt(δ,B) is dependent on the sparing factor δ and the accumulated
BED B and contains the information whether an action should be taken to reach that state.
The rewards in this application are chosen such that the value provides information about the
expected cumulative BED that will be delivered to the tumor. For example, the value function
for a specific sparing factor δ1 in the first fraction gives the expected value of the total BED that
can be delivered to the tumor starting from that state.

In general, the Bellman equation relates the value function in fraction t to the optimal policy π
and the value function in the subsequent fraction. For this application it is given as follows:

vt(δ,B) = max
d

[
d+

d2

(α/β)T
+
∑
δ′

P (δ′)vt+1(δ
′,B + δd+

δ2d2

(α/β)N
)

]
(9)

and

πt(δ,B) = argmax
d

[
d+

d2

(α/β)T
+
∑
δ′

P (δ′)vt+1(δ
′,B + δd+

δ2d2

(α/β)N
)

]
(10)

To compute the value for any given state st(δ,B), we must not just consider the reward, but also
the desirability of the reached state when applying a specific dose d. In equation (9) it is shown
that vt can only be calculated if the exact value of vt+1 is already known, which is the value of
the next fraction. Similarly, the optimal policy πt depends on the numeric value of the value
function in the subsequent state vt+1. As a consequence, the value functions and the optimal
policies must be calculated iteratively in backward recursion starting from the last fraction. The
hypothetical value function vF+1 corresponds to the terminal reward at the end of the treatment
after all F fractions are delivered and is initialized to:

vF+1(δ,B) =

{
−∞ (B > BN

max)

0 (B ≤ BN
max)

Given that the state transition is not deterministic in the dimension of the sparing factor, the
probability distribution of future sparing factors P (δ) is included in both Bellman equations (9)
and (10) as described in equation (6).

The optimal policy is found by discretizing both actions and states. A discretization is needed,
since policies and values can only be calculated for explict states, i.e. for a specific accumulated
BED B and a specific sparing factor δ. As the discritization leads to artifacts in the optimal
policy (see figure 5), two adjustments are included in the algorithm.
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1. The value function is interpolated in the BED-component of the state. Since equation (9)
is monotonically decreasing in the BED-component, the interpolation should not distort
the results. The discrete BED states before interpolation had a spacing of 1Gy BED. The
spacing was chosen, such that the resulting values and policies were equal to a discretezation
with a spacing of 0.1Gy BED, i.e. the results were equivalent to a more precise discretization
that was then interpolated.

2. One can exploit that in the optimal policy, the last fraction will simply deliver the maximum
residual BED to the OAR to maximize the dose to be delivered to the tumor and end up
at BN

max. This second adjustment can be used to directly initialize the value function and
optimal policy in the last fraction F using continuous values of dF instead of the discretized
actions. Thereby artifacts arising from the discretized actions can be avoided which lead
to final states, where the maximum OAR BED BN

max are not exactly reached.

By interpolating the BED component, not only do the artifacts disappear, but also the compu-
tation time is lowered drastically. DP algorithms must check the value and policy of every state.
If we consider an OAR limit BN

max = 90Gy BED3, then any dosage between 0 and 90 has to
be checked. Therefore, increasing the discretization spacing from 0.1 to 1, reduces the number
of calculations by 100 without a loss of quality in the results. An interpolation of the sparing
factors was not conducted at this point, but can be considered to reduce computation time.

Figure 5: Example of the impact of BED interpolation on the policy of the first fraction for
an arbitrary probability distribution. The curve without interpolation proposes higher
doses for higher sparing factors which should not happen for a monotonically decreasing
value function. The origin of this artifact is the rounding of the future BED for a given
dose d. Which can lead to higher or lower future values that do not correspond to the
true future value.

An illustration of the value function and the optimal policy for an arbitrarily chosen probability
distribution with P (δ) ∼ N (0.8, 0.1) is given in figure 6. The dependencies on the sparing factors
and the accumulated OAR BED in equations (9) and (10) can be clearly observed since lower
accumulated BEDs are associated with better states and result in high state values as depicted
in 6a, while high accumulated doses lead to a lower state value as the limit is nearly reached.
A clear impact of the observed sparing factors can also be seen, since the values, the expected
tumor BED to be delivered starting from the actual state, reaches the highest values with the
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lowest sparing factors. Similarly, the policy in 6b gives an impression of the decision making for
any given sparing factor and accumulated BED in the OAR.

(a) (b)

Figure 6: a) Illustration of a value function given a normal distribution. b) Illustration of a policy
function based on a normal distribution

3.4.1 2D algorithms

The 2D algorithms are defined by their state space which is two dimensional, i.e. depending on
two variables, the sparing factor δ and the accumulated BED B. Based on a two dimensional
state space, two of the specified objectives can be pursued.

The first objective is to maximize tumor dose subject to the BN
max. This means the MDP model

is defined as the first introduced objective in section 3.3. Thus, the reward is given by the dose
delivered to the tumor and the value function represents the expected cumulative BED that
can be delivered to the tumor in the remaining fractions, starting from that state and acting
according to the optimal policy.

Algorithm 1 Tumor BED maximization
for t = F to 1 do ▷ Loop through all fractions fractions starting from the last

if t = F then ▷ Initialization
Bres ← BN

max −BN ▷ residual BED given by difference to the maximum OAR BED
dres ← d|BED3(d, δ) = Bres ▷ respective physical dose to deliver Bres to OAR
V (t, δ, BN )← BED10(dres) ▷ The value is only given by the reward
π(t, δ, BN )← dres

else
V (t, δ, BN )← maxd

[∑
δ P (δ) ·V(t+ 1, δ, BN + BED3(d, δ)) + BED10(d)

]
π(t, δ, BN )← argmaxd

[∑
δ P (δ) ·V(t+ 1, δ, BN + BED3(d, δ)) + BED10(d)

]
return V, π ▷ The policies and the Values for all states are returned

A schematic overview of the 2D algorithm for tumor dose maximization is illustrated in the code
block 1. To compute the optimal values for each fraction, the algorithm will loop through all
relevant sparing factors δ and all possible OAR BEDs BN . The computation starts at the last
fraction F , where the optimal dose to be delivered is strictly given by the residual dose that can
be delivered to the OAR Bres to precisely reach the OAR limit BN

max. Based on the residual dose,
the respective physical dose to be delivered to the tumor dres is computed based on equation
(5) depicted by BED10(d, δ). Once the residual physical dose is known, the value for all states
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in fraction F can be computed by assigning the reward (equation 8) since there are no more
future states. Similarly, the optimal policy is given by dres. For all other fractions t, the value
function is not just given by the reward BED10(d), but we also have to consider the value of
future states that are reached by an action d. Since the delivery of the dose d can result in
any future BED value, the value function is interpolated (not described in the code block). The
matrix V (t, δ, BN ) only stores values for discrete BN steps which would lead to artifacts in the
policy as described in figure 5, if only the discrete BED values would be considered by rounding
the future BED values. In the same manner the policy for all states of fraction t are computed.
Vector operations allow to bypass the additional loop through all sparing factors which reduces
the computation time, which is not illustrated inside the code block for simplicity. The imple-
mented code also does not loop through all possible OAR BEDs BN in fraction t = 1 since at
the very beginning, the OAR BED is set to zero.

A drawback from such an algorithm is a potentially overdosed tumor, as the algorithm does
not stop at a prescribed dose, since the accumulated tumor dose is not tracked and considered
for a decision. Therefore, another approach is to aim at the prescribed tumor dose BT

pre while
minimizing the dose delivered to the OAR. The algorithm then always satisfies the prescribed
tumor dose, but may overdose the OAR, pursuing the second objective. Such an algorithm would
be better suited when the distance between OAR and tumor is rather large in most fractions.
The fundamental change of this second 2D algorithm is that state is now dependent on the
sparing factor and the accumulated tumor BED, i.e. s(δt, BT ) and a new reward definition. The
whole set of MDP functions are given by:

st =

(
δt,

t−1∑
τ=1

(dτ +
d2τ

(α/β)T
)

)
(11)

st+1 =

(
δt+1, B + dt +

d2t
(α/β)T

)
(12)

rt = −
(
δtdt +

δ2t d
2
t

(α/β)N

)
(13)

The respective rewards for each action are negative, thus it is considered a penalty to deliver dose
to the OAR and the value function now represents the expected cumulative BED that will be
delivered to the OAR in the remaining fractions, starting from that state and acting according
to the optimal policy. Therefore, the algorithm now minimizes the dose to be delivered to the
OAR while delivering precisely the prescribed tumor dose. Another adaptation must be made
at the initialization of the value function to deliver the remaining dose to reach the prescribed
tumor dose:

vF+1(δ,B) =

{
−∞ (B ̸= BT

pre)

0 (B = BT
pre)

The adaptation of the state dependency, the reward and the initialization are the only modifi-
cations as shown in code block 2, where the computation of the first fraction was limited to the
case of BN = 0 similar to the previous code.
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Algorithm 2 OAR BED minimization
for t = F to 1 do ▷ Loop through all fractions fractions starting from the last

if t = F then ▷ Initialization
Bres ← BT

pre −BT ▷ residual BED given by difference to reach BT
pre

dres ← d|BED10(d) = Bres ▷ respective physical dose to deliver Bres to tumor
V (t, δ, BN )← −BED3(dres, δ) ▷ penalty from dose delivered to OAR
π(t, δ, BT )← dres ▷ Optimal policy is given by the residual dose

else
V (t, δ, BT )← maxd

[∑
δ P (δ) ·V(t+ 1, δ, BT + BED10(d))− BED3(d, δ)

]
π(t, δ, BT )← argmaxd

[∑
δ P (δ) ·V(t+ 1, δ, BT + BED10(d))− BED3(d, δ)

]
return V, π ▷ The policies and the Values for all states are returned

Both of the 2D algorithms allow a fast calculation of five fraction treatment, given the proba-
bility distribution. A whole treatment plan can be optimized in a few seconds thus making the
algorithms well suited for an online treatment adaptation.

3.4.2 3D algorithm

The application of a 2D algorithm requires the determination whether a patient will have several
treatment days where the OAR and the tumor are in close proximity and therefore the prescribed
dose may not be applied or whether the patient will surely reach the prescribed dose and hence
a OAR dose minimization is of interest. These two objectives can be combined to an algorithm
that seeks to reach the prescribed tumor BT

pre dose subject to the maximum OAR dose BN
max

while minimizing the OAR BED if the prescribed dose can be reached as given by the third
objective.
Combining the two objectives leads to a MDP structure that is now defined by a state that is
dependent on three variables: The sparing factor δ, the OAR BED BN and the tumor BED BT

hence its name 3D algorithm. The resulting notions are given below.

st =

(
δt,

t−1∑
τ=1

(δτdτ +
δ2τd

2
τ

(α/β)N
),

t−1∑
τ=1

(dτ +
d2τ

(α/β)T
)

)
(14)

st+1 =

(
δt+1, B

N + δtdt +
δ2t d

2
t

(α/β)N
, BT + dt +

d2t
(α/β)T

)
(15)

The reward would still be shaped as a penalty for each fraction. But since the OAR BED is
be tracked, the penalty does not have to be computed for each fraction but can be integrated
into the computation of the final state value. Furthermore, the initialisation of the algorithm is
chosen such that the prescribed tumor dose nor the maximum OAR BED are surpassed. Thus,
the penalty applied after the last fraction is given by:

vF+1(δ,B
T , BN ) =

(
BT −BT

pre

)
· f −BN (16)

The final reward/penalty in equation (16) penalizes whenever the tumor is underdosed i.e. when
the difference between the prescribed tumor dose and the accumulated tumor BED after the
treatment is not zero. The difference is then multiplied by a factor f to assure that the penalty of
underdosing the tumor is weighted more than sparing the OAR. Also, the total accumulated BED
in the OAR is subtracted to penalize any dose delivered to the OAR. Altering the multiplication
factor sets a limit at which sparing factor OAR sparing becomes more important than delivering
dose to the tumor. This becomes clear when the difference between the OAR penalty and the
tumor underdosing penalty is considered for a single fraction:
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rdiff = f ·
(
d+

d2

(α/β)T

)
−
(
δd+

δ2d2

(α/β)N

)
(17)

As long the multiplication factor f is large enough, rdiff will always be positive and thus, the
algorithm prefers to deliver more dose into the OAR instead of underdosing the tumor (except
when the OAR dose surpasses BN

max). The resulting minimum value for f , so that the reward is
positive for all delivered doses d, is given by:

f >
δ2

(α/β)N
· (α/β)T (18)

(a)

(b)

Figure 7: Reward properties based on sparing factor δ and physical dose d. a) Is the reward
function with a factor f = 1. b) Shows the behaviour at f = 10

Following equation (18) a suitable multiplication factor f can be chosen. As the α/β ratios
are chosen to be constant in this work, the multiplication factor only depends on δ which can
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be regarded as the upper sparing factor limit, where the algorithm still prioritizes to maximize
tumor dose instead of keeping the dose to be delivered to the OAR low. Figure 7 illustrates the
properties of the reward function. If the multiplication factor f is not chosen high enough the
reward becomes negative at high d values. We decided to use a multiplication factor of 10 which
leads to an upper limit of sparing factors at 1.732. This guarantees that for all observed sparing
factors improving tumor dose escalation will be prioritized.

Algorithm 3 3D algorithm
for t = F to 1 do ▷ Loop through all fractions fractions starting from the last

if t = F then ▷ Initialization
BN

res ← BN
max −BN ▷ residual BED given by difference to reach BN

max

BT
res ← BT

pre −BT ▷ residual BED given by difference to reach BT
pre

d1 ← d|BED3(d, δ) = BN
res

d2 ← d|BED10(d) = BT
res

dbest ← min (d1, d2) ▷ optimal dose given by the lower physical dose
π(t, δ, BN , BT )← dbest
V (t, δ, BN , BT )← (BT + BED10(dbest)−BT

pre) · f − (BN + BED3(dbest, δ))
else

BN
dose ← BED3(d, δ) ▷ BED3 given by a physical dose d

BT
dose ← BED10(d) ▷ BED10 given by a physical dose d

V (t, δ, BN , BT )← maxd
[∑

δ P (δ) ·V(t+ 1, δ, BN +BN
dose, B

T +BT
dose)

]
π(t, δ, BN , BT )← argmaxd

[∑
δ P (δ) ·V(t+ 1, δ, BN +BN

dose, B
T +BT

dose)
]

return V, π

The adjustment of the initialization with the final penalty vF+1 can be seen in code block 3,
where the multiplication factor is depicted as f . Before computing the value in the last fraction,
the optimal dose is computed by the action dbest which would precisely reach one of the two limits
given by the OAR limit or the prescribed tumor dose and preventing the overdosage of both vol-
umes. With the optimal dose decided for the last fraction, the value is assigned for the final state
consisting of equation (16). In a next step, the interpolation between the discrete states is done
similarly to the algorithms before with the only difference, that there are two BED values that are
interpolated. The optimal doses for fractions 1 to 4 are more simple to calculate as no additional
penalty or reward must be assigned. The optimal dose d is solely dependent on the future values
V (t+ 1) and the probability distribution P (δ). To speed up the calculation of fraction one, the
state space was limited to BT = 0 and BN = 0 as no dose should be accumulated in fraction one.

By tracking both OAR BED and tumor BED, the 3D algorithm has a clear advantage over
the 2D-algorithms which can only pursue one objective. However, the extension of the state
dependencies leads to more potential states that need to be calculated, consequently increasing
computation time. A whole five fraction treatment plan can take several minutes to be calculated
and is therefore limited in a potential online application.
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3.4.3 Code extensions

Considering additional fractionation schemes and treatment limitations due to maximum dose
constraints to the tumor in one fraction, two additional features have been added to all three
algorithm types.

The first extension allows to compute treatment plans for an alternative amount of fractions.
Since the MDP models consist of several subproblems, which are given by the different frac-
tions, the increase or decrease in the amount of fractions does not change the architecture of
the code and can easily be implemented. Nevertheless, the 3D algorithm is not well suited for
a higher amount of fractions, as the computation time increases up to half an hour when evalu-
ating fractionation schemes with for example 20 fractions. The 2D algorithms are still capable
of computing treatment plans in a reasonable time when extending the number of fractions by
keeping the computation time at a few minutes for treatment plans with 30 fractions.

A second extension was added to set maximum and minimum doses per fraction. In radiotherapy
it might not be desirable to deliver little to no dose in a single fraction. Hence, a minimum dose
can be chosen to assure that each fraction conforms with a standard dose. An upper limit
guarantees that the optimal calculations do not surpass established fraction sizes.
The implementation of such constraints requires more adaptation of the original codes. In a first
step, the action range is limited to the doses between maximum and minimum dose. Delivering
a minimum dose in each fraction can lead to exceeding the OAR limit in the 3D algorithm and
the 2D algorithm that maximizes tumor dose, which was limited by an infinite penalty or simply
adapted by delivering the remaining difference to the objective. The algorithm would therefore
deliver as much dose as possible in each fraction, as the penalty can not get more negative
than −∞. To bypass this problem, the overdosing penalty is not chosen as −∞ but, by a large
negative number e.g. −10000. Additionally, a new penalty is introduced after the last fraction
which is dependent on how much has been overdosed.

vF+1(δ,B) =

{
−10000 (B > BN

max)

0 (B ≤ BN
max)

rF+1 = −
[
(BN −BN

max)
]
+

(19)

If the algorithm is forced to overdose, the new penalty will lead to a minimization guaranteed by
the overdosing penalty in equation (19) while overdosing is still prevented by all means as the
fixed penalty is less desirable than any under-dosage of the tumor.

Another approach to modify the algorithm is to introduce heuristic techniques to potentially
improve the code or lower the probability of getting an adaptive fractionation plan that is inferior
than the reference treatment. Such a heuristic technique has been introduced with a risk factor
R. Motivated by the idea to force the algorithm to stay closer to the reference treatment, the
risk factor R introduces a new reward that is applied in each fraction t, except the last when
t = F :

rR = −|dR − dt| ·R (20)

The dose dR denotes the dose that would be delivered by the reference treatment in fraction
t. With the additional risk factor penalty given by equation (20), a penalty is assigned to
doses dt that gets larger, the farther it deviates from the reference treatment. Consequently, the
algorithm will additionally restrict the deviation from the reference dose to minimize the penalty.
By altering the risk factor R, the restriction can be controlled. The larger R is chosen, the less
the algorithm will deviate from the reference dose dR. The risk factor can now be fixed at a
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certain value or even be chosen to change dynamically based on the probability distribution of
the sparing factors. An exploration of the effect of different risk factors showed, that risk factors
above 1 always force the algorithm to follow the reference treatment. For this reason, a fixed
risk factor of 0.1 was arbitrarily chosen for a larger analysis.

3.5 Probability updating

DP algorithms rely on a proper description of the environment to compute an optimal policy. In
the application of adaptive fractionation, we do not have an exact description of the environment,
the patient, as the probability distribution of the sparing factor P (δ) is not precisely determined
for each new patient. At the beginning of the treatment only little data is available to set
up a probability distribution that describes a patient accurately. To improve the estimation
of patient specific interfractional motion, one can rely on previous patient data to get a better
initial probability distribution. As more information is gathered during the treatment, it is
advantageous to integrate the patient specific information into the probability distribution.
For the sparing factor distribution a truncated normal distribution δ ∼ N (µ, σ2) was chosen
which has a lower limit at 0 and is defined by mean µ and standard deviation σ. A first patient
analysis displayed a large variation in sparing factor means between patients. Thus, the mean of
the probability distribution is not dependent on a prior but calculated from the specific patient
by updating the mean of the observed δ. For any fraction t the mean of the sparing factor
distribution is given by:

µt =
1

t+ 1

t∑
τ=0

δτ (21)

The variance of the distribution is often under- or overestimated if estimated from only two
samples at the very beginning of the treatment. Therefore, the variance is computed via Bayesian
inference after each new acquired sparing factor. Bayesian inference allows to calculate posterior
probabilities based on a hypothesis H and evidence E.

P (H|E) =
P (E|H) · P (H)

P (E)
(22)

Here we want to compute the most probable variance σ2 that fits the observed data:

f(σ2|δ0, ..., δn) =
P (δ0, ..., δn|µ, σ2) · f(σ2; k, θ)

P (δ0, ..., δn)
(23)

The hypothesis P (H) is the prior probability distribution of the variance σ2, which includes
information about the expected distribution and is described by f(σ2; k, θ). On the left side of
equation (23) is the posterior probability P (H|E), the probability of H given E. When used to
estimate parameters, the posterior probability describes how probable the hypothesis is, e.g. a
model parameter, given the observed evidence. In this application, the probability of σ2 being an
appropriate value to describe the observed sparing factors δ0, ..., δn (the evidence). Hence, to find
the best fitting value, the posterior probability must be maximized. The probability P (E|H) is
called the likelihood and indicates the compatibility of the evidence with the given hypothesis.
To estimate the variance σ2, we have to apply the probability of observing the sparing factors
δ0, ..., δn given a mean µ and σ2 which is defined by the probability P (δ0, ..., δn|µ, σ2). P (E)
contains the information derived from previous patients and must be chosen accordingly to the
parameters that need to be estimated. Here, we can depict this probability as P (δ0, ..., δn) which
normalizes the probability and can be dropped out as we are only interested in the maximum
value of equation (23).

19



3 Methods and materials

As the sparing factors are assumed to follow a normal distribution with unknown variance, an
inverse-gamma distribution is chosen as prior distribution to compute the variance [27]:

f(σ2; k, θ) =
θk

Γ(k)
(1/σ2)k+1 exp

(
−θ
σ2

)
(24)

One can get rid of the scaling factor θk

Γ(k) and estimate the hyper-parameters k and θ with a
maximum likelihood estimator by using patient data from the same population:

f(σ2; k, θ) ∝ (1/σ2)k+1 exp

(
−θ
σ2

)
(25)

Once the hyperparameters are known, the posterior probability P (H|E) is computed by multi-
plying the prior distribution (25) with the likelihood P (δ0, ..., δn|µ, σ2) which is defined by the
normal distribution N (µ, σ2):

(δ0, ..., δn|µ, σ2) =
n∏

i=0

1

σ
√
2π

exp

(
−1

2

(
δi − µ

σ

)2
)

(26)

The resulting posterior probability is then:

f(σ2|δ0, ..., δn) ∝
(σ2)−(k+1)

σn
exp

(
− θ

σ2

)
exp

(
− 1

2σ2

n∑
i=0

(δi − µ)2

)
(27)

The parameters δi denote the measured sparing factor at fraction i, where δ0 is the sparing factor
observed at the planning session.
The variance for each fraction can then be computed by maximizing the likelihood of equation
(25):

σ2
t = argmaxσ2 [f(σ2|δ0, ..., δt)] (28)

With equations (21) and (28) the Probability distribution P (δt) for each day can be updated.

3.6 Quantification of benefit

To quantify potential treatment improvement the treatment plans produced by adaptive frac-
tionation are compared to three different treatments:

1. A reference treatment in which 6Gy physical dose (18Gy BED3) is delivered to the OAR
in each fraction. Hence, the reference treatment delivers exactly the upper limit of 90 Gy
BED3 to the OARs. The reference treatment is not equal to the treatment plan that was
delivered at the time of treatment of the discussed patients.

2. We calculate an upper bound for the benefit of adaptive fractionation. To do so, we consider
the hypothetical situation that all sparing factors δt are known before treatment. In such
a case, the optimal dose for each fraction to maximize tumor BED is calculated by solving
the following optimization problem:

maximize
d

F∑
t=1

(
dt +

d2t
α/βT

)

subject to:
F∑
t=1

(
δtdt +

δ2t d
2
t

α/βN

)
≤ Bmax

N

(29)
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The resulting treatment would optimally exploit the variation in δ and can thus be used to
benchmark the benefit of adaptive fractionation. However, it represents an unachievable
upper bound for any realistic approach to adaptive fractionation where future sparing
factors are unknown.

3. The clinically delivered plan at the time of treatment.

In the clinic, the delivered doses in each fraction are constrained by the maximum OAR BED
but this dose is not a minimum dose to be delivered in each fraction. Hence, the executed plans
deliver less than 6Gy to the OAR in some fractions. The reference plan was chosen to compare,
what tumor doses can be reached, when fully exploiting the OAR constraint.

3.7 Patients and treatment plans

In the scope of this work we consider patients with abdominal tumors in proximity to either bowel,
stomach or duodenum who received 5-fraction SBRT treatments at the MR-Linac system. The
selection was motivated by the potential interfractional motion of abdominal tumors. In all cases
tumor coverage was compromised due to the dose received by the dose limiting OAR. Hence, an
adaptive fractionation treatment that escalates tumor dose may be of interest. The prescription
doses and OAR constraints were not exactly equal throughout all patients. As a consequence,
a uniform dose limit to the OAR has been set at 90Gy BED3 to better compare the influence
of adaptive fractionation. In general, the prescription doses and OAR constraints were quite
similar and only deviated in a few Gray per fraction.
All patients were treated according to institutional practice. In addition to a pre-treatment
planning MR-scan daily MR scans were aquired for online radiotherapy. Tumors and OARs were
recontoured and daily adaptive treatment plans were created. Thus, the dose distributions were
reoptimized in each fraction to adapt to inter-fractional changes without altering the prescription
dose. For the purpose of this project, dose-volume histograms (DVH) of 16 patients were exported
from the treatment planning system. DVHs were exported for GTV, PTV and the relevant OARs
for six treatment plans, corresponding to the the five delivered plans and the initial plan based on
the planning MR. Based on this data the developed algorithms have been tested and analyzed.
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4 Results and evaluations

4.1 Evaluated patients

Figure 8 shows the PTV sparing factor distribution for each patient and the respective dose-
limiting OAR. Patients 1-6 were used to estimate the hyperparameters of the inverse-gamma
distribution. Nonetheless, the patients were analyzed with the algorithms considering that there
is a bias introduced by the conjugate prior for these six patients. Some patients show substantial
variation with standard deviations of up to σ = 0.190 (patient 13), whereas other patients show
little variation of the sparing factor between fractions where the lowest standard deviation was
observed in patient 2 with σ = 0.011. The respective csv-files with the DVHs for all patients
can be accessed from a link in section 10.1. Additionally, the DVHs of patients 7,8 and 13 are
provided in section 10.2 as well as the numerical values of the sparing factors for all patients.
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Figure 8: Scatter plot of all acquired sparing factors. The planning session and the last fraction
have been highlighted.

In figure 8 the variation of the patient specific mean µ of the sparing factors is visualized. Not
just the standard deviation differs a lot in between patients, but also the patient specific mean.
With the first six patients the hyperparameters of the inverse-gamma distribution were fit. The
resulting distribution is shown in figure 9.
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Figure 9: The inverse-gamma distribution used for adaptive fractionation is depicted in blue with
the respective standard deviations of patients 1-6 marked with red lines. The inverse-
gamma distribution based on all acquired patients is shown in the orange curve.

As an addition, all observed standard deviations were marked in figure 8. The distribution of
standard deviations of the prior patients overlaps well with the distribution of the analyzed
patients. One clear outlier can be observed which is the standard deviation of patient 13, which
has a larger spread due to an extraordinary low sparing factor.

4.2 Illustration of adaptive fractionation for an example

To illustrate adaptive fractionation based on the DP algorithms, patient 7 is discussed thoroughly.
Due to the high sparing factors and the compromise on the tumor dose for all fractions, the 2D
algorithm that maximizes tumor dose subject to the maximum OAR dose is chosen for the
analysis.
The sparing factors observed are δ0 = 0.88 for the planning MR and [0.99, 0.87, 0.98, 1.04, 1] for
the 5 fractions. In the first fraction, two sparing factors are known, δ0 and δ1. These two sparing
factors lead to an initial probability distribution P (δ;µ1, σ1) shown in figure 10a, with a mean of
µ1 = 0.94 and σ1 = 0.036. Based on this probability distribution the values and optimal policies
for all states can be computed by applying the Bellman equations (9),(10). The nature of the
DP algorithm provides a solution for all fractions since the algorithm has to be initialized in
the last fraction and then derives all states in a backwards sweep. In the fifth fraction the dose
is defined by the difference between the maximum OAR BED and the accumulated dose of the
fourth fraction, thus only fraction one to four are visualized. Starting from fraction two, the state
space becomes two dimensional, since the accumulated OAR BED is non zero. Figures 10b,c,d
depict the optimal doses based on the observed sparing factor and accumulated OAR BED. With
the set of policies acquired from the initial sparing factor distribution a whole treatment plan
can be computed (Figure 10a,b,c,d).
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(a) (b)

(c) (d)

Figure 10: Initial policies of fractions one to four with the respective optimal policy, given that
the optimal policy of the former fraction has been delivered

Since δ1 is relatively high compared to the sparing factors to be expected given P (δ;µ1, σ1) a
relatively low dose of d1 = 4.4Gy is delivered to the tumor. The sparing factor in fraction two
δ2 = 0.87 is significantly lower. Hence, the optimal dose is now given by 10.7Gy as depicted in
Figure 10b. The third and fourth fractions are evaluated similar to the second fraction where
the OAR BED is always given by the accumulated OAR BED so far.

In figure 10b,c,d it is clearly depicted that low sparing factors are favorable and lead to larger
dose actions. Furthermore, low accumulated BEDs in the dose-limiting OAR are also preferred
as that would mean that larger doses would not surpass the limit, nor would they prevent us from
delivering doses in future treatments as the limit has not been exhausted. Therefore, a larger
dose is suggested for lower accumulated OAR BEDs. Even though low accumulated BED states
are favourable, to maximize the final accumulated tumor BED, the trade-off between landing in
a low future OAR BED and delivering a large tumor dose must be optimized. To underline the
impact of the observed sparing factor, the value function for the first fraction is illustrated in
figure 11. Based on the sparing factor distribution set up by the observed sparing factors δ0 and
δ1, the expected tumor BED is computed to be 52.4 Gy BED10.

24



4 Results and evaluations

Figure 11: Values of the first fraction depending on the sparing factor. The sparing factor δ1 is
highlighted at the respective value of 52.4.

The dependence of the value on the accumulated OAR BED is illustrated in figure 12. The more
BED has been accumulated, the less biological effective dose is expected to be delivered to the
tumor since the bound of the OAR is reached earlier. Therefore, the states with low accumulated
OAR BED are preferred.

Figure 12: Values of the second fraction depending on the accumulated OAR BED with δ = 0.87.
The accumulated OAR BED resulting from fraction one is highlighted at the respective
value of 47.5.

Integrating the acquired information about patient specific organ motion, the sparing factor
probability distribution P (δ) can be updated in each fraction. In fraction two P (δ;µ2, σ2) is
given with µ2 = 0.91 and σ2 = 0.039. The new distribution has an impact on the computation
of the optimal policy, thus all optimal doses for fraction two are recomputed. In this case the
optimal dose for fraction two is given by 9.0Gy. The updating of the probability distribution is
supposed to improve the description of the environment, the patient. Thus, the optimal plan is
recomputed in each fraction and then compared to the reference treatments (Table 1).
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fraction sparing factor upper bound adaptive fractionation reference plan
first fraction 0.99 4.4 4.4 6

second fraction 0.87 12.6 9 6.9
third fraction 0.98 4.7 4.6 6.1
fourth fraction 1.04 3.3 4.3 5.8
fifth fraction 1.00 4.1 7.9 6

total BED tumor - 51.7 50.4 50

Table 1: Dose delivered to the tumor based on different plans. The upper bound denotes the
maximum tumor BED dose that could be achieved. The results for adaptive fractiona-
tion in this table are computed with probability distribution updating. Thus, the doses
are not identical to the ones depicted in figure 10

The modification of the optimal policy of fraction four throughout the treatment, when more
information about the patient specific motion is integrated, is shown in figure 13a. Progressively
adding information lead to optimal policies that differed up to 1Gy in fraction four. Figures
13b) and 13c) visualize the adjustment of normal distributions for patient 7, where all sparing
factors are relatively close to each other and for patient 8, where an excessively low sparing
factor was observed in fraction 3 resulting in a more substantial adaptation of the probability
distribution. The final probability distribution of patient 7 has a slightly larger mean than
the initial distribution which explains why the total BED delivered to the tumor is lower than
expected in fraction 1 (value of 52.4). In fraction 3-5 the sparing factors were all above the mean
of the distribution in fraction 1 resulting in a worse result than anticipated.
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(a)

(b) (c)

Figure 13: optimal policy and probability distribution progression.
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4.3 Evaluation of patients

The 2D algorithm for tumor dose maximization has been run on all 16 patients and was then
compared to the reference treatments bearing the following results:

patient number reference plan BED upper bound adaptive fractionation difference
1 49.1 49.4 49.2 0.1
2 55.6 55.7 55.6 0.1
3 81.0 108.7 98.7 17.7
4 49.7 50.6 50.2 0.5
5 49.7 53.9 51.7 2.0
6 43.4 43.8 43.5 0.1
7 50 51.7 50.4 0.4
8 71.3 93.1 84.4 13.1
9 46 46.3 46.2 0.2
10 67.3 68.8 67.3 0
11 61.2 62 61 -0.2
12 54.1 55.3 54.9 0.8
13 69.3 108.4 62.9 -6.4
14 63 63.6 63.3 0.3
15 69.1 70.9 70 0.9
16 52.5 63 51.3 -1.2

Table 2: comparison of treatment plans in Gy BED. The difference column is calculated as adap-
tive fractionation BED - reference plan BED. All delivered doses and sparing factors
are listed in table 10

The delivered doses in each fraction for each patient are illustrated in figure 14 and all delivered
doses and sparing factors are listed in table 10. Seven of the ten patients that have not been
included in the prior calculation, have a positive difference while two of those show extreme
results caused by outliers. No negative plans were computed for the six patients included in the
prior estimation whereas patient 3 has an extreme result which is attributed by an extremely low
sparing factor as well. The upper limit of adaptive fractionation for patients 1,2,6 and 9 was only
0.3-0.4Gy BED10 above the reference plan. Consequently, adaptive fractionation did not have
much room for improvement and the respective optimized plans are only slightly superior. In
general, the difference between the adaptive fractionation and the reference plan is only around
1Gy BED10 in the extracted patients. However, Patients 3, 8 and 13 show an exceptionally large
deviation from the reference plan, which is owed to the larger variation in its sparing factors.
For patient 8, a sparing factor of 0.58 is observed in the third fraction which is exploited by the
delivery of 19.6Gy. This dose corresponds to most of the residual BED3 that is allowed in the
OAR. Thus, the algorithm expects worse sparing factors in future fractions, where delivering
a large dose is not advantageous. A similar behaviour can be observed for patient 3, where a
sparing factor of 0.53 shows up in the third fraction resulting in a physical dose to the PTV95

of 20.7Gy. For both cases, the following sparing factors in fraction 4 and 5 are much larger than
the sparing factor in fraction two. Therefore, delivering a large dose in fraction 3 was indeed a
good decision, resulting in large improvements. Patient 7 has a substantial decrease in tumor
BED when using adaptive fractionation. In this case the last sparing factor was exceptionally
low. As the algorithm does not expect such a low sparing factor in the last fraction, the adaptive
fractionation plan is inferior compared to the reference plan.
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Figure 14: sparing factors and their respective doses for each fraction. Low sparing factors are
often paired with high doses.

The clinically delivered treatment for patient 8 was based on a fixed prescription of 7Gy per
fraction to the PTV and an OAR constraint of 6Gy per fraction. An illustration of the DVHs is
given in figure 33. As the clinical treatment did not surpass the 7Gy per fraction to the PTV, the
lower sparing factor in fraction three translates into a lower OAR dose instead of a larger PTV
dose. In the clinical treatment, the OAR accumulated 76.4Gy BED3 and stayed below the limit
of 90Gy. As a consquence, only 59.2Gy BED10 was delivered to the PTV. Hence, the prescribed
dose of 72Gy could not be delivered to the PTV.
Similarly, the treatments for patient 13 (figure 34) can be compared to the clinically delivered
treatment. The accumulated tumor BED was given by 58.6Gy BED10, 4.3Gy less than adaptive
fractionation. Just as in patient 7, the inferiority is explained by the superior OAR sparing. At
the time of treatment, only 79.9Gy BED3 was accumulated in the OAR.
For all patients, adaptive fractionation always achieved a larger tumor dose, owning to the fact,
that the clinically applied plans do not aim on the maximum OAR dose. A comparison with
the clinically delivered plans therefore does not offer a good measurement for treatment plan
improvement.

Optimal treatment plans, as they have been calculated in this subsection, can also be computed
based on the GTV sparing factors. The resulting doses can then be applied to the PTV. Fur-
thermore, the optimized treatment plans based on PTV sparing factors that have been described
in table 2 can be applied to the GTV. Given that the reference plan is calculated with reference
to the OAR the optimized treatment plans are compared to the same reference treatments as in
table 10.
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optimization type GTV optimized
Patient number GTV difference to reference plan PTV difference to reference plan

1 0.5 0.0
2 0.0 0.0
3 23.3 11.9
4 4.9 0.2
5 2.0 2.2
6 1.6 -0.1
7 -0.2 0.4
8 17.3 12.9
9 1.6 0.1
10 -0.1 0.0
11 -0.9 -1.9
12 1.6 1.2
13 8.7 3.9
14 0.4 0.0
15 2.1 0.7
16 2.4 -0.8

Mean 4.1 1.9
Mean unbiased 3.3 1.7

Table 3: Plan differences based on GTV optimization. The optimal doses have been computed
based on the GTV sparing factors and then the difference to the reference plan has been
calculated.

Optimization type PTV optimized
Patient number PTV difference to reference plan GTV difference to reference plan

1 0.1 0.4
2 0.1 0
3 17.7 32.9
4 0.5 2.5
5 2.0 1.5
6 0.1 -0.7
7 0.4 0.3
8 13.1 16.7
9 0.2 0.3
10 0 0.5
11 -0.2 4.9
12 0.8 1.0
13 -6.4 -8.2
14 0.3 -0.9
15 0.9 1.9
16 -1.2 -0.2

Mean 1.8 3.3
Mean unbiased 0.8 1.8

Table 4: Plan differences based on PTV optimization. The optimal doses have been computed
based on the PTV sparing factors and then the difference to the reference plan has been
calculated.
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Comparing the results in tables 3 and 4, the mean of the differences is surprisingly larger for
both PTV and GTV dose, based on the GTV sparing factors. Patient 13 stands out in table 3
with a benefit from adaptive fractionation. Based on the PTV sparing factors, an inferior plan
was achieved with adaptive fractionation. Even though the lowest sparing factor is still in the
last fraction in the GTV approach, the sparing factor in fraction 4 was higher than all previously
observed sparing factors. Furthermore, the sparing factors of previous fractions did not have
such a large variation as the PTV sparing factors. Thus, the GTV based adaptive fractionation
was superior compared to the reference plan as a larger residual dose is available to be delivered
in the last fraction.
To quantify the difference between the PTV and GTV sparing factors, their respective means
and differences are listed in table 5.

Patient number PTV mean GTV mean difference means PTV std GTV std
1 0.99 0.85 0.14 0.027 0.044
2 0.90 0.80 0.11 0.014 0.011
3 0.72 0.55 0.18 0.119 0.091
4 0.97 0.76 0.21 0.051 0.091
5 0.98 0.85 0.13 0.102 0.062
6 1.07 0.86 0.21 0.043 0.108
7 0.96 0.79 0.17 0.070 0.063
8 0.78 0.66 0.12 0.106 0.083
9 1.03 0.86 0.18 0.028 0.059
10 0.80 0.61 0.20 0.041 0.038
11 0.87 0.77 0.10 0.080 0.073
12 0.91 0.66 0.26 0.048 0.029
13 0.86 0.50 0.36 0.190 0.065
14 0.83 0.56 0.27 0.027 0.023
15 0.77 0.56 0.22 0.040 0.023
16 0.97 0.59 0.38 0.126 0.061

Table 5: Comparison of PTV and GTV sparing factors.

Over all patients the GTV sparing factors are lower than the PTV sparing factors but with no
uniform scaling factor between the patients. In figure 15 the order of the sparing factors shows
that if a PTV sparing factor in one fraction is larger than the PTV sparing factor in another
fraction the same does not have to count for the GTV sparing factor. Hence, the optimality
of a fraction is not unambiguous (e.g. fraction one and four of patient 8). Furthermore, the
standard deviations of the two target volumes are sometimes larger in one set of sparing factors
and sometimes in the other giving rise to potentially large differences in fractionation as it was
the case for patient 13.
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Figure 15: PTV and the corresponding GTV sparing factors of the unbiased patients.

4.4 Permutation of extreme results

In table 2 the differences for patient 3, 8 and 13 are exceptionally large. To investigate the im-
pact of the sparing factor order, when having exceptionally low sparing factors, the PTV based
sparing factors have been permuted for patients 8 and 13 and all resulting adaptive fractiona-
tion treatment plans have been compared to the reference treatment plans with the new sparing
factor order.

Figure 16: histogram of differences adaptive fractionation BED - reference plan. The blue bars
show the results where the lowest sparing factor, 0.58, was at the last fraction and
the red bars show the differences where the lowest sparing factor came up during the
planning session. In green an optimal case is depicted where the lowest sparing factor
was in the second fraction. The bars are stacked on each other to show the percentage
of all patients in a certain bar. Results overall: 18.2% < 0
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The permutation of the sparing factors of patients 8, [0.77, 0.88, 0.8, 0.58, 0.86], lead to the dis-
tribution shown in figure 16.

Figure 17: histogram of differences adaptive fractionation BED - reference plan. The blue bars
show the results where the lowest sparing factor, 0.53, was at the last fraction and
the red bars show the differences where the lowest sparing factor came up during the
planning session.In green an optimal case is depicted where the lowest sparing factor
was in the second fraction. The bars are stacked on each other to show the percentage
of all patients in a certain bar. Results overall: 18.0% < 0

In figure 17 the sparing factors [1.06, 0.92, 0.84, 0.82, 1.01, 0.53] were permuted, where the special
cases of having the lowest sparing factor at the planning session, in the second fraction or at the
very end of the treatment have been highlighted. A clear trend of having worse results, when
the exceptional sparing factor emerges in the planning session or in the very last fraction can be
read from the diagrams. While an extreme sparing factor in fraction two always leads to positive
results.

4.5 Artificial data

Since the sample size of extracted patients is quite small, additional patient data has been
produced by randomly drawing sparing factors form a predefined distribution to analyze the
effect of adaptive fractionation. The artificial data has been chosen such that the distribution is
similar to observed sparing factor distributions of the 16 patients. In a first step, two populations
were considered where both populations have the same mean of µ = 0.9. Two different standard
deviations were used to simulate one cohort with large interfractional motion and one with more
static patient geometry. Thus, one standard deviation was set at σ = 0.04 and the other at
σ = 0.07. Based on these distributions, 5000 patients have been drawn and a subset of 10
patients for each of these 5000 patients, which was used to define the hyper parameters of the
prior distribution. The redrawing of the 10 prior patients assures that the results are not affected
by one single randomly drawn prior.In figure 18 the differences between the adaptive fractionation
and the reference plan for this setup are visualized. Additionally, 5000 randomly drawn patients
have been analyzed, where the probability distribution was known and therefore, better results
are to be expected.
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(a) (b)

Figure 18: Differences of adaptive fractionation plan minus reference plan. a) unknown distri-
bution: mean = 0.32, 15.9%<0. known distribution: mean = 0.47, 10.1%<0. b)
unknown distribution: mean = 0.98, 16.7%<0. known distribution: mean = 1.48,
11.0%<0

To study the effect of a discrepancy between the prior population and the treated population, the
prior data and the treated data have been drawn from different distributions. For this analysis,
the same probability distribution as in the last example has been used. Since the mean of the
prior data does not affect the prior distribution, only the standard deviation is chosen differently.
An analysis, where the 10 prior patients are drawn with a standard deviation of σ = 0.04 while
the 5000 analysed patients have a standard deviation of σ = 0.07 and one where the two standard
deviations have been exchanged are visualized in figure 19.

(a) (b)

Figure 19: a) prior std = 0.07, treatment std = 0.04 17.0% < 0, mean = 0.30. b) prior std =
0.04, treatment std = 0.07, 17.3% < 0, mean = 0.96.

4.6 Tumor dose objective and 3D algorithm

When a patient cannot be clearly assigned to a suboptimal anatomy geometry, where the tumor
dose may be compromised, an optimization that considers OAR dose minimization is of interest.
The analyzed cohort shared the trait of having compromised tumor dose thus, the 2D algorithm
aiming on OAR dose minimization was not applied, but in the case of patient 13, an established
tumor prescription dose BT

pres of 72Gy BED10 may be reached with adaptive fractionation. Thus,
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the 2D OAR dose minimization algorithm can be applied. A comparison with the 3D algorithm
which optimizes a treatment plan, following a prescribed dose of BT

pre = 72Gy BED10 and a
OAR constraint of BN

max = 90Gy BED3, is shown in table 6 for patient 8. The optimal doses
based on the 2D algorithm for OAR dose minimization is given as well.

fraction sparing factor 3D plan 2D plan reference plan upper bound
first fraction 0.88 4.4 4.8 6.8 0.4

second fraction 0.8 8.7 9.6 7.5 1
third fraction 0.58 17 16.3 10.3 21.6
fourth fraction 0.86 0.9 0.9 7 0.6
fifth fraction 0.77 2.1 1.9 7.8 1.3

total BED tumor 72 72 71.3 72
total BED OAR 77.7 79.9 90 68.3

Table 6: Dose delivered to the tumor in Gray. The 2D plan used the 2D OAR dose minimization
algorithm applying the prescribed dose to the tumor. The optimal plan was computed
with posterior knowledge, giving an upper bound.

Although the 3D and the 2D algorithm deliver the same total BED to the tumor, the accumu-
lated BED in the OAR is not equal. The 3D algorithm is superior in this specific case. It can
also be noted, that the reference plan can not reach the prescribed tumor dose subject to the
OAR limit by applying 6Gy to the OAR in each fraction. The policies of the first fraction are
given in figure 20. The 3D algorithm has a tendency to deliver less dose due to the different
terminal reward in equation (16). Apparently, the additional penalty on an underdosed tumor
and the upper bound on the OAR BED lead to the lower policy, as the probability distribution
resulting from the sparing factors δ0 = 0.77 and δ1 = 0.88 expects lower sparing factors in future
fractions which can be exploited better and thus improving the trade-off of the terminal reward.

Figure 20: Comparison of first fraction policy for the 3D and 2D algorithm in patient 8.

In the third fraction, the 3D algorithm delivers a larger dose than the 2D algorithm which could
imply that now the 3D algorithm tends to deliver larger doses in general. In figure 21 the policy
of both algorithms are plotted against the accumulated tumor BED with the sparing factor fixed
at δ3 = 0.58. The hypothesis that the 3D algorithm now applies higher doses can be proven
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wrong, since the two algorithms are basically equivalent except for the first 10Gy BED. The
reason for the higher dose of the 3D plan, is the lower accumulated tumor BED. As the 3D
algorithm did not apply as much dose as the 2D algorithm in the former fractions, the optimal
dose is higher for the 3D algorithm. Furthermore, the deviation at low BED values comes from
the additional constraint of not surpassing the defined OAR BED. Thus, the 3D algorithm does
not maximize the tumor BED as the 2D algorithm does for lower accumulated tumor BEDs.

Figure 21: Comparison of first fraction policy for the 3D and 2D algorithm in patient 8, given
that the sparing factor δ3 = 0.58.

Further, the 3D algorithm is applied to all other patients, where a theoretical prescribed dose of
72Gy BED10 can not be reached. The results only deviate in patient 10 and 15 from the formerly
computed plans with the 2D tumor dose maximization algorithm presented in the section 4.3

Patient 10 Patient 15
sparing factor 3D plan 2D plan sparing factors 3D plan 2D plan

0.78 10.2 10.1 0.72 11.9 10.7
0.794 7.7 7.7 0.74 7.5 7.7
0.81 6.3 6.4 0.83 4.2 4.1
0.825 6.2 5.9 0.79 6.6 7.1
0.73 7.3 7.7 0.79 7.9 8.7

total BED tumor 70.3 70 67.3 67.3

Table 7: Optimal dose differences for patient 10 and 15. The 2D plan corresponds to the tumor
dose maximization algorithm.

Table 7 shows that for patient 10 a slightly larger tumor BED could be delivered, while for
patient 15 the difference only becomes detectable with more significant digits, where the 2D plan
would deliver more biological effective dose to the tumor. Additionally, the 3D algorithm starts
with larger doses compared to the 2D algorithm. Here, the assurance of achieving the objective
(reaching the prescribed tumor BED) is prioritized over minimizing the OAR BED from the
very beginning. This behaviour highlights the impact of tracking the OAR and the tumor BED
during the whole optimization.
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4.7 Code extensions

4.7.1 Dose constraint extension

If there is no upper limit for a fraction dose the algorithm in theory could deliver unfeasible
doses in a single fraction. In practice, proposed doses like 19.6Gy in fraction three of patient 8
(see table 10) would not necessarily be delivered due to lack of experience how tissue reacts to
such large doses. Consequently, setting an upper limit for fraction sizes is of interest. A lower
and upper limit that is motivated clinically would be given with dmin = 2Gy and dmax = 13.5.
These limits were applied to the 2D algorithm to maximize tumor dose. In this case, patients 8
and 13 had altered plans where the total dose delivered to the tumor changed.

Patient 8 Patient 13
sparing factor 2D plan 2D constrained sparing factor 2D plan 2D constrained

0.88 4.4 4.4 0.92 9 9
0.8 8.7 8.7 0.84 9.6 9.5
0.58 19.6 13.5 0.82 6.8 6.8
0.86 0.9 3.6 1.01 2.4 2.5
0.77 2.2 9.1 0.53 7.3 7.4

total BED tumor 93.1 76.7 62.9 63.1

Table 8: Differences between 2D optimization without constraint (2D plan) and with constraint.
There was no difference in the constrained plans of the remaining unbiased patients.

The constraints lead to an decrease of tumor BED in patient 8, while increasing the tumor BED
of patient 13 (see table 8). The remaining patients which were not included in the prior were
not affected by the constraints as none of the previously optimized plans proposed to deliver a
larger or lower dose than allowed.

As in section 4.5, two cohorts with 5000 patients have been generated where both populations
have a mean µ = 0.9 and standard deviations σ = 0.04 and σ = 0.07. In a first step, the resulting
patients with a standard deviation of σ = 0.07 have been evaluated with the constrained 2D
algorithm where only a maximum dose dmax = 13.5Gy has been defined (figure 22). In a second
step, the minimum dose dmin = 2Gy and the maximum dose constraint are applied on both
cohorts. Constraining the maximum dose of the adaptive fractionation algorithm leads to a
reduced mean benefit of 0.05Gy BED, but also to a decrease of inferior treatment plans. The
reduction of mean benefit is mostly due to the decrease of extreme positive results. Similarly,
limiting the actionspace by setting a minimum and a maximum dose results in slightly worse
outcomes compared to the unconstrained plans for patients with small δ variation, where a
decrease of mean benefit of 0.01Gy BED has been observed, and also a decrease of superior
treatment plans (figure 23). For the patients with a larger variation, the mean benefit now
only decreased by 0.01 while the amount of superior plans increased. In figure 23 the difference
between the adaptive fractionation plan and the reference plan are plotted, where the tails of
the distribution are visibly less extreme for patients with large δ variation when compared to the
unconstrained plans in figure 18.
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Figure 22: δ distribution with 0.07 std and a maximum dose constraint of dmax = 13.5Gy. mean
of differences = 0.93, 16.4% < 0.

(a) (b)

Figure 23: Differences of adaptive fractionation with minimum dose dmin = 2Gy and maximum
dose of dmax = 13.5Gy. a) δ distribution with 0.04 std. mean of differences = 0.31,
16.9%<0 b) δ distribution with 0.07 std. mean of differences = 0.97, 15.7%<0.

4.7.2 Risk factor extension

The impact of the risk factor is first analyzed on the extracted patients. In table 9 the differ-
ences between the plan optimization with the risk factor extension and the optimization without
the extension are given. As expected, there are only minor differences. Patient 13, where an
extremely negative result was obtained with adaptive fractionation, improved by 3Gy BED10,
thus reducing the drawback of adaptive fractionation. By forcing the algorithm to stay closer to
the reference fractionation, a larger residual dose is available in the last fraction which results in
an improvement compared to the unconstrained adaptive fractionation.
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Patient number Difference
1 0.0
2 0.0
3 0.9
4 -0.4
5 -0.7
6 0.0
7 -0.1
8 0.2
9 -0.1
10 -0.1
11 0.6
12 -0.4
13 3.0
14 0.0
15 -0.5
16 0.1

Table 9: Difference of adaptive fractionation with a risk factor of 0.1 minus adaptive fractionation
without risk reduction.

An extension to 5000 generated patients showed a decrease in mean benefit of the treatment
plans. For patients with large variations, the extreme negative plans were limited similarly to
the plans with a dose constraint (see figure 24). But additionally, some of the extreme plans
with large benefit were conserved. Similarly, the spread of the differences was reduced for the
small variation where the most extreme inferior plan was given with a difference of -0.6Gy BED.
Also, there is a more notable decrease of treatment plans with large benefit.

(a) (b)

Figure 24: a) δ distribution with 0.04 std. mean of differences = 0.19, 16.1%<0 b) δ distribution
with 0.07 std. mean of differences = 0.82, 14.8%<0
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5 Graphical user interface

To grant easy access to the DP algorithm, three different interfaces have been developed. Two
of them allow direct plan calculation where the 2D functions and 3D function have been split
into different programs with similar architecture.

Figure 25: 3D interface with default values set when opening the program.

Figure 25 shows the general layout of the interface which is split into four main blocks:

1 Probability distribution menu to define the features of the probability distribution

2 Extension menu to set the number of fractions and dose constraints

3 Main input menu. In this block the patient specific information is provided

4 Output window where the resulting optimal doses are displayed

All of the input blocks have an information button joined, marked by a question mark to get fur-
ther information how to fill in or use the respective feature. Additionally, both of the calculation
interfaces come with default values set adapted to the patients used in this work.
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5.1 Probability distribution menu

The first main block includes three different options to set the probability distribution to be
used in the dynamic programming algorithm to compute the values and optimal policies (see
equations (9) and (10)). The standard function is to use hyperparameters estimated from prior
patients that are assumed to be from the same population as the analyzed patient. To give
visual feedback on the impact of the hyperparameters, a third interface has been provided,
which plots the resulting distribution of the conjugate prior thus allows a manual setup of the
hyperparameters even without prior data.

Figure 26: Inverse-gamma distribution interface

In the interface (figure 26), two sliders allow the manipulation of the conjugate prior plotted
below, thus giving a direct visual feedback about the prior distribution to be used in the opti-
mization.
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A second option is to use prior data to directly estimate the hyperparameters. To do so, a csv
file can be selected via the Open a file button that is enabled if the radio button prior data is
selected (see figure 27). The data must be ordered in such that each row represents a new patient
while the different sparing factors observed for a patient are separated in columns.

Figure 27: Probability distribution block with prior option selected. Changing the distribution
setup via the radio buttons enables the respective options and disables the other input
areas.

If the sparing factor distribution should not be updated, but the whole plan should be computed
by a fixed probability distribution, the define normal distribution radio button can be selected.
This option enables the setup of a normal distribution by setting the mean and standard deviation
of the sparing factor distribution that is used for all fractions of a patient.

5.2 Extension menu

The default values of the extension menu are set to a five fraction treatment with no maximum or
minimum dose in each fraction. Increasing the number of fractions leads to longer computation
time, which are still in time frame of a few minutes even at 30 fractions for the 2D algorithm.
The computation time for the 3D algorithm is heavily increased. Thus, the computation of 30
fraction treatment is not recommended with the 3D interface.
Setting up minimum and maximum doses to be delivered in each fraction lower computation
time. Hence it is adviced to set additional boundaries if the 3D interface is used with more than
five fractions.
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5.3 Main input menu

As the 2D and 3D programs do not use the same objectives, the main input menu differs between
the two interfaces.

(a)

(b)

Figure 28: a) 2D interface main input menu. b)3D interface main input menu.

The five entry areas starting from the top are the same for both interfaces. A list of sparing
factors must be provided to compute optimal doses. The separation of the sparing factors must
be done by spaces. Any other separator leads to an error. alpha-beta ratios, OAR limits and
prescribed tumor doses can be given as float numbers. For the 2D interface, the prescribed tumor
dose is disabled in the default operation. The 2D algorithm maximizes tumor dose subject to an
OAR limit, thus a prescribed tumor dose is not needed. A second 2D algorithm can be used, to
minimize OAR BED and aiming on the prescribed tumor dose. To do so, the Calculate optimal
plan by minimizing OAR and aiming on prescribed tumor dose checkbox must be selected. The
checkbox disables the OAR limit and enables the prescribed tumor dose in the 2D interface and
changes the optimization algorithm to be used.
If the optimal doses for a single fraction, instead of a whole plan, should be calculated, the
algorithm requires the amount of dose that was delivered to the OAR and tumor. The 2D
interface only needs the accumulated dose of the tracked tissue, i.e. the OAR BED in default
mode and the tumor BED if OAR dose should be minimized. To enable the calculation of a
single fraction, the Calculate dose only for actual fraction must be selected. The actual fraction
is given by the amount of sparing factors. For example, if the third fraction dose should be
calculated, all four known sparing factors are to be provided as depicted in figure 28a.
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5.4 Output window

In the output window, all results are displayed. The display type depends on whether one fraction
is calculated:

(a)

(b)

Figure 29: a) Output for single fraction computation. b)Output for a whole five fraction treat-
ment.

Since the 3D algorithm takes a few minutes to calculate a whole five fraction treatment, a
progression bar has been implemented in the output window. The progression bar depicts the
amount of fractions that have been calculated. Therefore, each progression of the bar takes less
time as the farther into the treatment, the less future fractions have to be considered (see figure
30).

Figure 30: 3D interface progression bar.

The 2D interface takes only a few seconds to compute a complete five fraction plan and roughly
three minutes for a 30 fraction plan with updated probabilities. Hence, no progression bar was
implemented.
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6.1 Illustration of adaptive fractionation for an example patient

Table 1 shows that the 2D algorithm has the potential to approach the optimal treatment plan
and therefore increasing the tumor dose during the treatment. Furthermore, the impact of
probability updating depicted in figure 13 displays that the addition of information is valuable,
as the decision making has an impact of up to one Gray in fraction 4 for patient 7, where the
sparing factors have a standard deviation of 0.06. The optimal dose of fraction one is decreased
by 1.7Gy even though a higher dose would be more optimal. Thus, the improved probability
distribution does not necessarily mean that the decision making is shifted towards the most
optimal plan by updating the probability distribution. Nevertheless, the adjustment of the
probability distribution for patient 8 illustrates how big of an impact the probability updating
can have to describe the potential motion of a patient.

6.2 Evaluation of patients

An analysis of all patients with the 2D algorithms is listed in table 2. Patients 3,8 and 13 stand
out the most. The large differences to the reference plans are explained by their sparing factor
distributions which is depicted in figure 13. The three patients have one exceptionally low spar-
ing factor, where patient 3 and 8 have the exceptional sparing factor between fraction one and
four whereas patient 13 has the low sparing factor in the fifth fraction. A low sparing factor
between fraction one and four allows an optimal exploitation. If the extraordinarily low sparing
factor shows up in the fifth fraction, the exploitation is not possible. The adaptive fractionation
algorithm does not "expect" such a sparing factor based on the probability distribution so far
in the planning session and the fractions one to four. Thus, the algorithm does not save a large
amount of dose for the last fraction and ends up delivering less dose than the reference plan,
that delivers the same dose to the OAR in each fraction. Hence, the results are worse.

Considering the less extreme patients, the DP approach seems to be roughly equal to the ref-
erence approach. The patients included in the prior calculation improve slightly when adaptive
fractionation is applied while three of the ten unbiased patients have negative results. In general,
the differences are distributed closely around zero if no exceptional sparing factors show up. A
potential problem of the 2D algorithm that only tracks OAR BED is a possible overdosing of the
tumor. patients 3 and 8 reach rather high tumor BEDs which could be problematic in a clinical
setup. To handle such overdosing, the clinicians could limit the doses that are to be delivered
during the application of the treatment or stop the treatment once a prescribed tumor dose has
been delivered.

To investigate whether there is a difference in treatment plan quality if GTV based sparing
factors are used for an optimal treatment calculation, the GTV based plans were compared to
the PTV based plans in tables 3 and 4. Judging from the results, it seems to be advantageous to
use the GTV to compute an optimal fraction dose as the average benefit of both target volumes,
GTV and PTV, is larger in that case. As the sample size is quite low, a paired t-test was
applied on the unbiased ten patients to check whether the plan differences are significant. The
differences of the PTV plans have a p-value of 0.85 and a 95%CI of [-1.5,1.8]. The differences
of the GTV plans have a p-value of 0.57 with a 95% CI of [-2.07,3.6]. Thus, both results are
not significant and the CIs include zero. It follows, that these results could be coincidence and
a larger sample size is required to get a significant result. A further analysis to check whether
there is a regularity between the PTV and the GTV based sparing factors in table 5 did show
the expected tendency that all GTV based sparing factors are lower than the PTV based. This
is due to the higher prescription dose to the GTV and therefore originates in the definition of
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the PTV as an expansion of the GTV. Given the observed data, there seems to be no simple
transformation between the PTV and GTV sparing factors. Even the standard deviations of the
sparing factor distributions did not correlate on a regular basis. A first assumption, that the
standard deviations are roughly the same for PTV and GTV sparing factors was proven wrong.
Since the delineation of the target volumes follows a complex process that can not be modeled
easily with a probability distribution, no further analysis with artificial data was pursued on this
topic.

6.3 Permutation of extreme results

The impact of extreme sparing factors and the fraction in which they come about was further
studied by permuting the sparing factors of patient 8 and 13. Both outcomes have been visualized
in figures 16 and 17. By highlighting the differences, the assumption, that extreme negative
results occur when the exceptionally low sparing factor is in the last fraction was affirmed.
Additionally, having the low sparing factor in the planning session may lead to bad results
as well. By observing an extremely low sparing factor in the planning session, the algorithm
underestimates the mean of the future sparing factor and proposes doses that are not well suited
for the future sparing factors. Having the exceptional sparing factor in fractions 1 to 4 can be
exploited as suggested before. Especially in the second fraction, the algorithm can still adapt to
such a low sparing factor as a lot of dose has yet to be delivered where results with a difference
up to 30Gy BED can arise.

6.4 Artificial data

The artificial data shows that a larger standard deviation in a population leads to more extreme
results. A larger variation between the sparing factors gives rise to a potentially better plan, but
also a larger risk of getting a significantly worse treatment plan. Furthermore, exact information
about the probability distribution increases the benefit of adaptive fractionation by producing
less negative plans, i.e. less plans that are inferior compared to the reference treatment, and
increases the mean of the differences. In contrast to the 16 analyzed patients, the amount of
negative plans is below 18% for both cases, where the prior patients are drawn from the same
distribution as the analyzed cohort and where the prior patients have a different probability
distribution than the analyzed data.

A closer look on the analysis where the prior population was drawn with a different probability
distribution in figures 19a and b shows that the quality of the results only decreases marginally
compared to the case where the prior was chosen to coincide with the analyzed patients. In
the case, where the prior had a smaller standard deviation than the actual population, only a
increase of 0.6% in negative cases has been observed as opposed to the the increase of 1.1% when
the standard deviation is overestimated. This suggests, that underestimating the spread of the
sparing factors has a lower impact on the results. Generally, the prior distribution does not have
such a large impact on the adaptive fractionation results when dealing with standard deviations
below 0.1.

6.5 Tumor dose objective and 3D algorithm

Table 6 lists a case of a patient where a prescribed tumor dose of 72Gy BED10 can be reached.
There is a slight discrepancy between the 2D plan that aims on the prescribed tumor dose and
the 3D plan that optimizes tumor and OAR dose. The 3D plan achieves a better result in this
case. This can not be generalized for all patients based on this result. Generally, similar re-
sults are to be expected if the prescribed tumor dose can be reached based on the same penalty
that is assigned to the OAR dose. Nonetheless, from the listed examples, tracking tumor and
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OAR BED is superior than just optimizing based on one single objective since borderline cases,
where the achievement of the prescribed tumor dose is not certain, can be properly optimized.
To further examine the 2D algorithm that minimizes OAR dose and compare it with the 3D
algorithm, patients where the tumor dose did not have to be compromised need to be exported.
A generation of artificial patients with such preconditions has not be conducted.

The application of the 3D algorithm on the patients, where a prescribed tumor dose of 72Gy
BED10 could not be met lead to similar results as the 2D algorithm in section 4.3. Since the
rewards of the 3D algorithm are setup in a related manner, the results only differ in cases where
there are rather low sparing factors and the prescribed tumor dose is nearly achieved as in
patients 10 and 15.

6.6 Algorithm extensions

Since this work focuses on patients who undergo SBRT treatments at the MR-Linac, a thorough
discussion of cases where a patient is treated in more fractions is omitted. In the clinic, patients
with more fractions are generally not treated at the MR-Linac, as the high precision is often not
required, thus the daily scans are not provided. In addition, the workload at the MR-Linac is
high, thus extended fractionation schemes can not be considered. Evaluations of treatments with
larger fraction numbers have been covered by Ramakrishnan et al.[22] but with artificial data.

A reasonable upper and lower limit for the dose per fraction was given with 2Gy and 13.5Gy.
Such a limitation reduces the action space of the algorithm, altering the results of patient 8 and
13 (see table 8). If tumor dose escalation was enabled by exploiting a low sparing factor, as it
is the case with patient 8, the escalation is limited by the upper bound. Furthermore, the lower
bound forces a minimum dose, which increases the dose to be delivered in fraction 4, deviating
further from the optimal treatment given in table 10. The resulting treatment plan delivers
16.3Gy BED10 less to the PTV. In other cases, where the optimal sparing factor may show up in
the last fraction, e.g. patient 13 the lower limit can lead to improved plans, compared to unlim-
ited adaptive fractionation. The lower limit assures that a larger dose can be delivered in the last
fraction, thus improving the treatment plan. By increasing the lower limit to 4Gy, the accumu-
lated tumor BED increases to 65.6Gy BED10 reducing the tumor BED decrease to -3.7Gy BED10.

An evaluation of 5000 generated patients with small and large standard deviation indicated a
slight decrease of treatment plan quality compared to unconstrained adaptive fractionation. In
the population with a standard deviation of 0.04, the mean benefit was reduced by 0.01, while 1%
more patients had a negative treatment plan. The population with a standard deviation of 0.07
had a similar decrease in differences of 0.01, while the number of patients with an inferior plan
decreased from 16.7% to 15.7%. Compared to just setting an upper dose limit, the application
of a minimum and a maximum dose delivers better results as the mean benefit decreases by a
smaller margin and the amount of inferior decreases to 15.7% instead of just 16.4%. A graphical
comparison in figure 31 shows an decrease of spread of the differences for both populations, while
the population with large standard deviation has mostly less extreme outliers. In summary, the
proposed limitation of the action space has a negligible impact on the mean benefit of the pa-
tients, while patients with large δ variation have a reduced probability for an extreme inferior or
superior treatment plan.

Introducing a heuristic constraint to reduce the deviation from the standard plan by adding a
penalty had only a minor impact on the extracted patients. 7 out of 16 patients had a decrease of
benefit while the adapted treatments were still superior to the reference treatments. The benefit
for patient 11 even increased such that the optimal plan based on the reduced risk algorithm
became better than the reference treatment, which was not the case for the unconstrained plan.
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Applying the algorithm on the artificially generated data shows that the reduced risk model does
yield the desired effect of lowering the percentage of negative plans for larger δ variation and also
reduces the amount of extreme inferior plans but with the cost of also limiting the large benefit
from adaptive fractionation. Nonetheless, more positive outliers can be observed for the larger δ
variation in 31 than when using the dose constraint.
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Figure 31: Boxplot summarizing the distributions from figures 19, 23 and 24.
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Using a DP algorithm for adaptive fractionation when there is a tumor and organ movement
involved during the treatment on average only provides a small increase in tumor dose in pa-
tients where tumor dose had to be compromised. By sampling a larger number of patients, a
tendency toward a slight mean increase in treatment quality when using adaptive fractionation
under the assumption that the prior distribution is not excessively different compared to the true
population distribution can be shown. A larger impact on the treatment quality arises from ex-
traordinarily low sparing factors. Having such exceptional sparing factors in the planning session
or the last fraction significantly worsen the treatment plans when no constraints are applied to
the algorithm. Whereas extremely low sparing factors in fraction one to four can be exploited
and result in largely improved treatment plans. In general, patients with large variations in
geometry may yield substantial benefits when adaptive fractionation is applied.

The application of the 3D algorithm can further improve the choice of doses to be delivered as an
optimal prescription dose can be pursued without risking an overdosing of the OAR. Hence, the
3D algorithm is superior compared to the two 2D algorithms, as the algorithm delivers nearly
identical results for patients where the prescribed dose is reached throughout the treatment and
where the goal is to minimize the OAR BED such as for patients where the OAR BED is reached
and tumor BED is to be maximized without having to decide on one of the two algorithms at
the beginning of the treatment. A drawback of the 3D algorithm is the larger computation time,
which could easily be reduced by using a parallel programming approach which is well fit for
dynamic programming. Nonetheless, the optimal dose for a single fraction can be calculated in a
few minutes for a five fraction treatment making the algorithm potentially applicable in the clinic.

Adding further constraints on the 2D algorithm to maximize tumor dose limits the benefit of
adaptive fractionation. An upper limit of 13.5Gy restricts the algorithm and the exploitation
of good days is limited. Increasing the actionspace interval would improve the algorithm and
the results would converge to the results of unconfined adaptive fractionation. In a potential
application, choosing a large actionspace, i.e. a low minimum dose and a high maximum dose
for each case should be pursued to maximize the improvement of adaptive fractionation, while
the application of a minimum dose allows to reduce the risk of obtaining a significantly worse
result than when using the reference treatment. The extension with the risk factor lead to similar
results as the dose constraint with only small differences and can be considered as an additional
option to reduce the probability of delivering an inferior treatment plan.

Compared to the research stated before by Lu et al.[3] and Chen et al.[4], the relative dose
difference between the reference plan and adaptive fractionation is significantly lower, since both
papers reported a decrease of OAR dose between 7.5%-22%/30% using adaptive fractionation.
The average relative difference in tumor BED in this work is in the magnitude of a few percent.
This large difference may originate from two key differences. In this analysis, the standard
deviations of the probability distributions, which were motivated by observed patient data, were
notably lower than in the mentioned papers, where standard deviations between 0.1 an 0.6 were
use to model the distance between tumor and OAR. Furthermore, the fractionation schemes
used in their research were not motivated by SBRT, but followed treatments with 40 fractions.
Such treatments give more freedom to the algorithm to deliver lower doses on bad days and
if probability updating is used, the probability distribution becomes more accurate than when
using 6 sparing factors. Additionally, in both papers, no probability updating was conducted,
but the probability distribution of the sparing factors was assumed to be known a priori which
improves the quality of the treatment plans as well.
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Based on the evaluation of the patient data, adaptive fractionation at the MR-Linac could be
performed with an expected average improvement of treatment plans. One big limitation of this
work is the modeling of organ movement. All the geometrical information about the tumor and
the OAR is reduced to one single number, discarding a large amount of information. Just the
sparing factor definition based on different target volumes leads to different results. A more
refined method to include organ motion into the algorithm may provide more possibilities to
improve the quality of adaptive fractionation and the prediction of future patient geometries.

So far, the treatment optimization was based on the BED model and aiming on tumor dose
escalation. A direct optimization of tumor control probability and minimization of the normal
tissue complication probability gives the opportunity to pursue alternative objectives that could
be of interest. The resulting optimal doses would not change if the same objectives are applied
since both models are derived from the linear-quadratic model, but different objectives such as
maximizing the TCP/NTCP ratio or other relevant objectives could be pursued.

In general, the algorithms can be extended with several functions. As stated before, the analyzed
patients only had one dose limiting OAR. In practice, several organs can be in proximity of the
tumor leading to a more complex dose computation, as several OAR limits must be met. An
extension to multiple OARs can be conducted similar to the 3D algorithm, where more then
one tissue BED is tracked. Additionally, the algorithms can be altered, such that the number
of fractions are not fixed, but minimized as a new objective. Instead of determining the number
of fractions at the beginning of treatment, a maximum amount of fractions can be set. The
algorithm can then optimize the treatment such that the prescribed dose can be achieved in
a minimum amount of fractions subject to the OAR limit. Such an objective can be valuable
especially for the MR-Linac which has a workload.

The objectives and possibilities of adaptive fractionation are broad, depending on the goals
that are relevant for clinical application. Further studies should aim on including more real
patient data to asses the payoff of adaptive fractionation. In addition, a recalculation of dose
distribution based on the optimal doses given by the optimization algorithm, i.e. not just scaling
the dose to be delivered, but applying new prescribed tumor doses and OAR limits, may be an
interesting subject of studies as the computed dose distributions largely depend on the defined
tissues constraints.
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10.1 Code and patient data

The code for adaptive fractionation and all interfaces have been stored and made accessible in a
github repository. The DVHs and the respective plots are also available in a separate folder.

Repository link

10.2 Tables and Figures

Figure 32: Dose volume histogram of patient 7. All relevant volumes are outlined with each
fraction shown in a different color.
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Figure 33: Dose volume histogram of patient 8. All relevant volumes are outlined with each
fraction shown in a different color. Fraction three (magenta) stands out with an
exceptionally low sparing factor.

Figure 34: Dose volume histogram of patient 13. All relevant volumes are outlined with each
fraction shown in a different color. Fraction five (black) stands out with an excep-
tionally low sparing factor.
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patient plan type planning fraction 1 fraction 2 fraction 3 fraction 4 fraction 5

1
sparing factor 0.99 0.95 0.98 0.96 1.02 1.01

adaptive 7 5.7 6.4 5 6.35
optimal 7.7 6 7.1 4.6 4.9

2
sparing factor 0.9 0.91 0.92 0.88 0.9 0.89

adaptive 6.4 6.2 7.8 6.4 6.5
optimal 6 5.6 7.9 6.6 7.2

3
sparing factor 0.73 0.67 0.78 0.53 0.89 0.73

adaptive 12 4.1 20.7 0.3 2.17
optimal 1.6 0.4 27.9 0 0.8

4
sparing factor 0.95 1 0.92 0.92 1.04 1.01

adaptive 5.2 8 7 4 6.36
optimal 4.7 8.7 8.7 3.7 4.4

5
sparing factor 0.94 0.83 0.97 1.13 1.05 0.96

adaptive 9.9 4 2.4 4.9 8.64
optimal 14.9 4 1.7 2.5 4.2

6
sparing factor 1.04 1.03 1.1 1.04 1.14 1.08

adaptive 5.9 4.5 6.3 4.4 4.63
optimal 7.3 4.6 6.7 3.8 5.2

7
sparing factor 0.88 0.99 0.87 0.98 1.04 1

adaptive 4.4 9 4.5 4.3 7.95
optimal 4.4 12.6 4.7 3.3 4.1

8
sparing factor 0.77 0.88 0.8 0.58 0.86 0.77

adaptive 4.4 8.7 19.6 0.9 2.17
optimal 0.49 1.1 25.3 0.6 1.4

9
sparing factor 1.04 1.02 0.99 1.02 1.08 1.05

adaptive 6.1 6.7 5.5 4.6 6.1
optimal 6 7.6 6 4.2 5

10
sparing factor 0.86 0.78 0.79 0.881 0.83 0.73

adaptive 10.1 7.7 6.4 5.9 7.7
optimal 6.8 6.1 5 4.4 14

11
sparing factor 1.01 0.83 0.8 0.82 0.85 0.91

adaptive 11.4 8.6 5.7 4.3 4
optimal 7.2 10.2 8 5.9 4

12
sparing factor 0.88 0.94 0.88 0.97 0.96 0.85

adaptive 5.3 7.9 4.7 6 8.65
optimal 4.8 7.9 3.9 4.2 10.9

13
sparing factor 1.06 0.92 0.84 0.82 1.01 0.53

adaptive 9 9.6 6.8 2.4 7.27
optimal 0 0.1 0.2 0 28.3

14
sparing factor 0.84 0.85 0.83 0.87 0.82 0.84

adaptive 6.8 7.7 9.8 6 5.85
optimal 5.2 6.3 11.4 7 5.7

15
sparing factor 0.78 0.72 0.74 0.83 0.79 0.79

adaptive 10.7 7.7 4.1 7.1 8.7
optimal 13.3 9.6 3.7 5.3 5.3

16
sparing factor 0.98 1.05 1.06 1.06 0.9 0.74

adaptive 4.8 5.1 5.5 9.7 5.66
optimal 1.3 1.3 1.3 3 18.8

Table 10: Delivered doses in adaptive fractionation and in the optimal plan.
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